Lecture 8:
Query Execution

Wednesday, November 17, 2010
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Outline

 Relational Algebra: Ch. 4.2
 Overview of query evaluation: Ch. 12
- Evaluating relational operators: Ch. 14
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The WHAT and the HOW

In SQL we write WHAT we want to get form
the data

+ The database system needs to figure out
HOW to get the data we want

+ The passage from WHAT to HOW goes
through the Relational Algebra
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SQL = WHAT

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattle’

It's clear WHAT we want, unclear HOW to get
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Relational Algebra = HOW

Final answer

Product(pid, name, price)
Purchase(pid, cid, store) \ U e )
IT

Customer(cid, name, Clty)

X.name,z.name

T3(...)

T2(....) )
\ price>100 and city=‘Seattle’

T1(pid,name,price,pid,cid, store)/ id=cid

[Temporary

tables ld=pid
T1, T2, . .. Customer

Product Purchase 5




Relational Algebra = HOW

The order is now clearly specified:

/Iterate over PRODUCT... \
...Jjoin with PURCHASE...
...Join with CUSTOMER...
...select tuples with Price>100 and
City="Seattle’...

...eliminate duplicates...
’ . '
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Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,(f},{}, ...
- Bags: {a, a, b, c}, {b, b, b, b, b}, ...

Relational Algebra has two semantics:
- Set semantics
+ Bag semantics
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Extended Algebra Operators

- Union ™, intersection = |, difference -

- Selection o

* Projection I

- Join X

* Rename p

 Duplicate elimination o
 Grouping and aggregation vy
+ Sorting T
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Relational Algebra (1/3)

The Basic Five operators:
- Union: &

- Difference: -

- Selection: o

' Projection: T

- Join: [X]
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Relational Algebra (2/3)

Derived or auxiliary operators:
* Renaming: p
* Intersection, complement
* Variations of joins
- natural, equi-join, theta join,
semi-join, cartesian product
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Relational Algebra (3/3)

Extensions for bags:

* Duplicate elimination: o
- Group by: vy

- Sorting: 1
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Union and Difference

R1 7 R2
R1-R2

[What do they mean over }
bags ?
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What about Intersection ?

* Derived operator using minus

R1= R2=R1-(R1-R2)

- Derived using jointwill explain later)

R1 = R2=R1 ] R2
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Selection

 Returns all tuples which satisfy a
condition

oc(R)

+ Examples
- Osalary > 40000 (Employee)
- Oname = “Smith” (Employee)

+ The condition ccan be =, <, «l, >, _.

<> |
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Employee SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000
Osalary > 40000 (Employee)

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000
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Projection

- Eliminates columns

N A1,...An(R)

* Example: project social-security number
and names:

- [1 SSN, Name (Employee)

- Answer(SSN, Name)

[Semantics differs over set or over }
bags
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Employee SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000
N Name,Salary (Employee)
Name Salary Name Salary
John 20000 John 20000
John 60000 John 60000
John 20000

Bag semantics

Set semantics

Which is more efficient to implement ?
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Cartesian Product

+ Each tuple in R1 with each tuple in R2
R1 = R2

* Very rare In practice; mainly used to
express joins
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Employee Dependent
Name SSN EmpSSN DepName
John 999999999 999999999 | Emily
Tony [rrreeery? (rrrreri? | Joe
Employee [0 Dependent
Name SSN EmpSSN DepName
John 999999999 | 999999999 Emily
John 999999999 | 7/77777777 |Joe
Tony [777r7rr7r77 | 999999999 Emily
Tony (rrrereesr \(r7r7rriri7’ | Joe
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Renaming

+ Changes the schema, not the instance
0 B1,...,.Bn (R)

- Example:
- PN, S(Employee) . Answer(N, S)
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Natural Join

R1 D] R2

* Meaning: R1PX] R2 = MA(o(R1 x R2))

- Where:

- The selection o checks equality of all
common attributes

- The projection eliminates the duplicate
common attributes
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Natural Join

R A B s (B Cc

X Y Z U

X Z Vv W

Y Z Z Vv

Z Vv

A B C
RIX|S = X Z U
MABC(oR.B=S.B(R x S)) > z y
Y Z U
Y Z V
Z V W
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Natural Join

 Given the schemas R(A, B, C, D), S(A, C,
E), what is the schema of R X] S ?

+ Given R(A, B, C), S(D, E), whatisR ] S
?

. Given R(A, B), S(A, B), whatis R]X|S ?
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Theta Join

* Ajoin that involves a predicate

R1DOR2 = 00 (R1 = R2)

* Here 0 can be any condition
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Eg-join

+ Atheta join where 6 is an equality

R1 DJA=BR2 = 0A=B (R1 = R2)

 This is by far the most used variant of
join in practice
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So Which Join Is It ?

+ When we write R [X] S we usually mean
an eqg-join, but we often omit the

equality predicate when it is clear from
the context
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Semijoin

RCS =MA1,.. An (R[XCS)

- Where A1, ..., An are the attributes iIn R

Formally, R IXC S means this: retain from R only those
tuples that have some matching tuple in S

* Duplicates in R are preserved

- Duplicates in S don’t matter
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Semijoins in Distributed
Databases

Dependent

Employee

DepName | Age

SSN | Name | Stuff

network

Employee D}]SSN=EmpSSN (o age>71 (Depender

Assumptions: Very few Employees have dependents.
Very few dependents have age > 71.
“Stuff” is big.

Task: compute the query with minimum amount of data transfer




Semijoins in Distributed
Databases

Dependent

Employee

DepName | Age

SSN | Name | Stuff

network

Employee D}]SSN=EmpSSN (o age>71 (Depender

T(SSN) =T SSN o age>71 (Dependents)
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Semijoins in Distributed
Databases

Dependent

Employee

DepName | Age

SSN | Name | Stuff

network

Employee D}]SSN=EmpSSN (o age>71 (Depender

A T(SSN) =T SSN o age>71 (Dependents)

v
R = Employee DX]SSN=EmpSSN T
= Employee IXSSN=EmpSSN (o age>71 (Dependents))
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Semijoins in Distributed
Databases

Dependent

Employee

DepName | Age

SSN | Name | Stuff

network

Employee D}]SSN=EmpSSN (o age>71 (Depender

T(SSN) =T SSN o age>71 (Dependents)

<

R = Employee XSSN=EmpSSN T

>

Answer = R DX|SSN=EmpSSN Dependents




Joins R US

 The join operation in all its variants (eq-
join, natural join, semi-join, outer-join) is
at the heart of relational database
systems

- WHY ?
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Operators on Bags

 Duplicate elimination 0
O(R) = select distinct * from R

- Grouping y
VA, sum(B) (R) = select A,sum(B) from R group by A
- Sorting T
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Complex RA Expressions

Y u.name, count(*)
<]

>

y.seller-ssn=z.ssn

[1ssn 1 pid

oname=frethame=gizma

Person x Purchase y Person z Product u
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RA = Dataflow Program

- Several operations, plus strictly
specified order

- In RDBMS the dataflow graph is always
a tree

 Novel applications (s.a. PIG), dataflow
graph may be a DAG
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Limitations of RA

Cannot compute “transitive closure”

Name1 Name2 Relationship
Fred Mary Father
Mary Joe Cousin
Mary Bill Spouse

Nancy Lou Sister

Find all direct and indirect relatives of Fred
Cannot express in RA !l Need to write Java program
Remember the Bacon number ? Needs TC too !
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Steps of the Query Processor

SQL query

Query
optimization

e
=

37



Example Database Schema

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psi ze,pcolor)
Supply(sno,pno,price)

View: Suppliers in Seattle

CREATE VIEW NearbySupp AS
SELECT sno, shame

FROM Supplier
WHERE scity="'Seattle' AND sstate="WA'
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Example Query

Find the names of all suppliers in Seattle
who supply part number 2

SELECT sname FROM NearbySupp
WHERE sno IN ( SELECT sno
FROM Supplies
WHERE pno = 2)
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Steps in Query Evaluation

Step 0: Admission control

- User connects to the db with username, password
- User sends query in text format

Step 1: Query parsing

- Parses query into an internal format

- Performs various checks using catalog
* Correctness, authorization, integrity constraints

Step 2: Query rewrite
- View rewriting, flattening, etc.
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Rewritten Version of QOur
Query

SELECT sname

. _ FROM NearbySupp
Original query: WHERE sno IN ( SELECT sno
FROM Supplies
WHERE pno=2)

SELECT S.sname
FROM Supplier S, Supplies U
WHERE S.scity="Seattle' AND S.sstate="WA’

Rewritten query: AND S.sno = U.sno
AND U.pno = 2;
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Continue with Query

Evaluation
Step 3: Query optimization
- Find an efficient query plan for executing the query

A query plan is
- Logical query plan: an extended relational algebra tree

- Physical query plan: with additional annotations at each
node
* Access method to use for each relation
* Implementation to use for each relational operator
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Extended Algebra Operators

- Union ™, intersection = |, difference -

- Selection o

* Projection =

- Join X

 Duplicate elimination o
 Grouping and aggregation y
- Sorting T

* Rename p

Dan Suciu -- CSEP544 Fall 43
2010



Logical Query Plan

IBhame

o sscity="'Seattle’ ~Isstate="WA’' - pno=2

>

SNOo = SNnOo

N

Suppliers Supplies
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Query Block

Most optimizers operate on individual query
blocks

A query block is an SQL query with no nesting

- Exactly one
 SELECT clause
* FROM clause

- At most one
* WHERE clause
* GROUP BY clause
* HAVING clause

Dan Suciu -- CSEP544 Fdl| 45
2010



Typical Plan for Block (1/2)

Tt fields

o selection condition

SELECT-PROJECT-JOIN
join condition Query

< N

join condltlon

PN

R S —
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Typical Plan For Block (2/2)

ohaving-ondition

y fields, sum/count/min/max(fields)

o selection condition

join condition
/ \
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Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA
and not exists
SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100

Dan Suciu -- CSEP544 Fdl| 48
2010



Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate WA~
and not exists
SELECT * ion !
FROM Supply P

WHERE P.sno = Q.sno
and P.price > 100 |

Dan Suciu -- CSEP544 Fdl| 49
2010



Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA .
and not exists Correlatio

SELECT * ﬁ N

FROM Supply P

WHERE P.snp = Q.sho SELECT Q.sno

and P.price > 100 FROM Supplier Q

WHERE Q.sstate = ‘WA
and Q.sno not in
SELECT P.sno
FROM Supply P
WHERE P.price > 100

Dan Suciu -- CSEP544 Fall 50
2010



Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

“un-_

(SELECT Q.sno -
FROM Supplier Q nesting
WHERE Q.sstate = ‘WA)
EXCEPT SELECT Q.snho
(SELECT P.sno FROM Supplier Q
FROM Supply P WHERE Q.sstate = ‘WA
WHERE P.price > 100) and Q.sno not in
< SELECT P.sno
FROM Supply P
WHERE P.price > 100
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Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

-

(SELECT Q.sno
FROM Supplier Q Y. /\
WHERE Q.sstate = ‘WA)
EXCEPT 7 sstate=‘WA’ 7 Price > 100
(SELECT P.sno :>
FROM Supply P

WHERE P.price > 100)

Supplier Supply
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Physical Query Plan

Logical query plan with extra annotations

- Access path selection for each relation
- Use a file scan or use an index

Implementation choice for each operator

- Scheduling decisions for operators
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Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Physical Query Plan

(On the fly) Ttsname

(On the fly) o sscity="Seattle’ ~Isstate="WA' - pno=2

(Nested loop) ]
sSno = sno
Suppliers Supplies
(File scan) (File scan)
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Final Step in Query

Step 4: Query execu?o%smg

- How to synchronize operators?
- How to pass data between operators?

What techniques are possible?
One thread per query

lterator interface

Pipelined execution

Intermediate result materialization
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lterator Interface

Each operator implements this interface
Interface has only three methods

open()
- Initializes operator state
- Sets parameters such as selection condition

get_next()
- Operator invokes get _next() recursively on its inputs
- Performs processing and produces an output tuple

close(): cleans-up state
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Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Pipelined Execution

(On the fly) Ttsname

(On the fly) o sscity="Seattle’ ~Isstate="WA' - pno=2

(Nested loop) <]
sSno = sno
Suppliers Supplies
(File scan) (File scan)
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Pipelined Execution

Applies parent operator to tuples directly as
they are produced by child operators

Benefits
- No operator synchronization issues
- Saves cost of writing intermediate data to disk

- Saves cost of reading intermediate data from disk
- Good resource utilizations on single processor

This approach is used whenever possible
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Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)

Intermediate Tuple Matg&tialiZation

(On the fly) rsname
(Sort-merge join) <]
SNO = SNO
(Scan: write to T1) / \ (Scan: write to T2)
o sscity="Seattle’ -Isstate="WA G pno=2
Suppliers Supplies
(File scan) (File scan)
Dan Suciu -- CSEP544 Fall o9
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Intermediate Tuple
Materialization

* Writes the results of an operator to an
Intermediate table on disk

- No direct benefit but

Necessary data is larger than main memory

* Necessary when operator needs to examine
the same tuples multiple times
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Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

Will discuss several basic physical operators,
with a focus on join
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Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Question in Class

Logical operator:

Supply(snho,pno,price) pno=pno
Part(pno,pname,psize,pcolor)

Propose three physical operators for the join, assuming the
tables are in main memory:
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Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Question in Class

Logical operator:

Supply(snho,pno,price) pno=pno
Part(pno,pname,psize,pcolor)

Propose three physical operators for the join, assuming the
tables are in main memory:

. Nested Loop Join
> Merge join
. Hash join
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Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

1. Nested Loop Join

for S in Supply do {
for P in Part do {

if (S.pno == P.pno) output(S,P);

Supply = outer relation
Part = inner relation
Note: sometimes
terminology is switched

Would it be more efficient to
choose Part=inner, Supply=outer ?
What if we had an index on Part.pno ?
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It's more complicated...

- Each operator implements this interface

- open()
- get_next()
- close()
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Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Main Memory Nested Loop

Join

en () {
Supply.open( );
Part.open( );

S = Supply.get_next( );

close () {

}

Supply.close ( );
Part.close ( );

Revisited

get _next() {
repeat {
P= Part.get_next( );
if (P==NULL)
{ Part.close();
S= Supply.get_next( );
if (S== NULL) return NULL;
Part.open( );
P= Part.get _next( );
}
until (S.pno ==
return (S, P)

P.pno);

}

ALL operators need to be implemented this way !




BRIEF Review of Hash Tables

Separate chaining:

A (naive) hash function:

h(x) = x mod 10

Operations:

find(103) = ??
insert(488) = ?7

© o0 N oo o b~ wWw N -~ O©
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BRIEF Review of Hash Tables

- Insert(k, v) = inserts a key k with value v

+ Many values for one key
- Hence, duplicate k's are OK

- find(k) = returns the list of all values v
associated to the key k
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Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

2. Hash Join (main memory)

@%r S in Supply do insert(S.pno, S);
pha

>¢ for P in Part do {

LS = find(P.pno); ing
for S in LS do { output(S, P); }

J

Part=inn
er

Recall: need to rewrite as open, get_next, close




3. Merge Join (main

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

memory)

Part1 = sort(Part, pno);
Supply1 = sort(Supply,pno);
P=Part1.get_next(); S=Supply1.get_next();

While (P!=NULL and S!'=NULL) {
case:
P.pno > S.pno: P = Part1.get_next( );
P.pno < S.pno: S = Supply1.get_next();
P.pno == S.pno { output(P,S);
S = Supply1.get_next();
}

77?77
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Main Memory Group By

Grouping:
Product(name, department, quantity)

vdepartment, sum(quantity) (Product)
Answer(department, sum)

Main memory hash table
Question: How ?
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Duplicate Elimination IS
Group By

Duplicate elimination o(R) is the same as
group by y(R) WHY 7?77
* Hash table in main memory

+ Cost: B(R)
+ Assumption: B(0(R)) <= M

Dan Suciu -- CSEP544 Fdl| 72
2010



Selections, Projections

- Selection = easy, check condition on
each tuple at a time

* Projection = easy (assuming no
duplicate elimination), remove
extraneous attributes from each tuple
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Review (1/2)

Each operator implements this interface
open()

- Initializes operator state
- Sets parameters such as selection condition

get_next()
- Operator invokes get _next() recursively on its inputs
- Performs processing and produces an output tuple

close()
- Cleans-up state
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Review (2/2)

+ Three algorithms for main memory join:

- Nested loop join
- Hash join
- Merge join

If IR| = mand || =n,
what is the asymptotic
complexity for
computing R > S ?

+ Algorithms for selection, projection,

group-by
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2010




External Memory Algorithms

- Data is too large to fit in main memory

- |ssue: disk access is 3-4 orders of

magnitude slower than memory access

 Assumption: runtime dominated by # of
disk I1/O’s; will ignore the main memory

part of the runtime
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Cost Parameters

The cost of an operation = total number of I/Os
Cost parameters:

B(R) = number of blocks for relation R

T(R) = number of tuples in relation R
V(R, a) = number of distinct values of attribute a

M = size of main memory buffer pool, in blocks

Facts: (1) B(R) << T(R):
(2) When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) << T(R)
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Ad-hoc Convention

- We assume that the operator reads the
data from disk

- We assume that the operator does not
write the data back to disk (e.q.:

pipelining)

- Thus:

Any main memory join algorithms for R > S: Cost = B(R)+B(S)

Any main memory grouping Y(R): Cost = B(R)
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Sequential Scan of a Table R

When R is clustered

- Blocks consists only of records from this table
- B(R) << T(R)

- Cost = B(R)

When R is unclustered

- Its records are placed on blocks with other tables
- B(R) = T(R)

- Cost = T(R)
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Nested Loop Joins

 Tuple-based nested loop R X' S

for each tuple rin R do o o
fo_r each tuple sinS d_O S=inner relation
if rand s join then output (r,s)

- Cost: T(R) B(S) when S is clustered
- Cost: T(R) T(S) when S is unclustered
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Examples

M=4: R,S are clustered
Example 1:
- B(R) = 1000, T(R) = 10000
- B(S)=2, T(S) =20

- Cost="7? Can you do better ?

- Example 2:
- B(R) = 1000, T(R) = 10000
- B(S) =4, T(S) =40
- Cost="7
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Block-Based Nested-loop Join

[\ 9]

vl ¢

for each (M-2) blocks bs of S do
for each block br of R do
for each tuple s in bs
for each tuple r in br do
if “rand s join” then output(r,s)

Terminology alert: book calls S the inner relation
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Block Nested-loop Join

R In Result
Cg Hash table for block of S Joceéu
(M-2 pages)
>
> >
Input buffer for R  Output buffer
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Examples

M=4; R, S are clustered

Example 1:

- B(R) = 1000, T(R) = 10000
- B(S) =2, T(S) =20

- Cost = B(S) + B(R) = 1002

Note: T(R) and
T(S) are irrelevant

Example 2: hore
- B(R) = 1000, T(R) = 10000

- B(S) =4, T(S) =40

- Cost = B(S) + 2B(R) = 2004
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Cost of Block Nested-loop Join

* Read S once: cost B(S)

* Quter loop runs B(S)/(M-2) times, and
each time need to read R: costs
B(S)B(R)/(M-2)

Cost = B(S) + B(S)B(R)/(M-2)

Dan Suciu -- CSEP544 Fall 85
2010



Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELET *

FROM Movie B(Movie) = 10k
WHERE id = ‘12345’ T(Movie) = 1M

SELET * What is your estimate
FROM Movie of the I/O cost 7
WHERE vyear = ‘1995’
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Index Based Selection
Selection on equality: oa=v(R)
+ Clustered index on a: cost B(R)/V(R,a)

* Unclustered index : cost T(R)/V(R,a)
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Index Based Selection

B(R) = 10k

Example: T(R) = 1M

V(R, a) = 100

cost of ca=v(R) = ?

Table scan (assuming R is clustered):
- B(R) = 10k I/Os
Index based selection:

- Ifindex is clustered: B(R)/V(R,a) = 100 I/Os
- If index is unclustered: T(R)/V(R,a) = 10000 I/Os

Rule of thumb:

don’t build unclustered indexes when V(R,a) is small !

Dan Suciu -- CSEP544 Hall
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Index Based Join

- R X S
- Assume S has an index on the join
attribute

for each tuple rin R do

lookup the tuple(s) s in S using the index
output (r,s)
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Index Based Join

Cost (Assuming R is clustered):

- If index is clustered: B(R) + T(R)B(S)/V(S,a)
- |f unclustered: B(R) + T(R)T(S)/V(S,a)
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Operations on Very Large
Tables

- Compute R X S when each is larger
than main memory

- Two methods:

- Partitioned hash join (many variants)
- Merge-join

+ Similar for grouping
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Partitioned Hash-based
Algorithms

|dea:

- If B(R) > M, then partition it into smaller files:
R1, R2, R3, ..., Rk

- Assuming B(R1)=B(R2)=...= B(Rk), we have
B(Ri) = B(R)/k

+ Goal: each Ri should fit in main memory:
B(Ri) <M

D2 How big can k be ? L“ 92
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Partitioned Hash Algorithms

|dea: partition a relation R into M-1 buckets, on disk

Each bucket has size approx. B(R)/(M-1) = B(R)/M
Relation R

B(R)

i

OUTPUT
1

4
INPUT 2 \
—> fui?laﬁl%n i
" M-1
N\

Disk

M main memory buffers

Partitions
e

Disk

1
2

M-1

Assumption: B(R)/M <=M, i.e. B(R) <= M2
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Grouping

* Y(R) = grouping and aggregation
- Step 1. Partition R into buckets

- Step 2. Apply y to each bucket (may
read in main memory)

+ Cost: 3B(R)
 Assumption: B(R) <= M2

Dan Suciu -- CSEP544 F| 94
2010



Partitioned Hash Join

RIX S

- Step 1:
- Hash S into M buckets
- send all buckets to disk
Step 2
- Hash R into M buckets
- Send all buckets to disk
Step 3

- Join every pair of buckets
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Hash-Join

Partition both relations
using hash fn h: R tuples
in partition i will only
match S tuples in partition
I

Read in a partition of R,
hash it using h2 (<> h!).
Scan matching partition of
S, search for matches.

Original
Relation OUTPUT Partitions
e 1 S
- 1 1
4
INPUT 2 \ "
> furr‘iﬁl%n i
| u | M-1
A — M-1
Disk B main memory buffers Disk
Partitions Join Result
of R S oin Resu
C&> Hash table for partition
hash Si ( < M-1 pages)
fn
h2
h2
Input fer Output
Porw buffer
Disk
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Partitioned Hash Join

+ Cost: 3B(R) + 3B(S)
+ Assumption: min(B(R), B(S)) <= M2
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External Sorting

- Problem:

- Sort a file of size B with memory M

- Where we need this:

- ORDER BY in SQL queries
- Several physical operators
- Bulk loading of B+-tree indexes.

 WIll discuss only 2-pass sorting, when B < M2
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External Merge-Sort: Step 1

* Phase one: load M bytes in memory, sort

\\X M

Disk Main memory Disk
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External Merge-Sort: Step 2

* Merge M — 1 runs into a new run
- Result: runs of length M (M — 1) . M2

Input 1

~
|nput 2 \i Output >

./’

Input M

—

Disk Main memory

Disk

If B <= M2 then we are done
2010




Cost of External Merge Sort
- Read+write+read = 3B(R)

* Assumption: B(R) <= M2
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Grouping

Grouping: va, sum(b) (R)
- |ldea: do a two step merge sort, but
change one of the steps

- Question in class: which step needs to
be changed and how ?

Cost = 3B(R)

Assumption: B(d(R)) <= M2
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Merge-Join

Join R X| S

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join
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Disk

M1 = B(R)/M runs for R

Merge-Join

—

Input 1

N

Input 2

RN

\A

./’

Input M

Main memory

Output

M2 = B(S)/M runs for S

Merge-join M1 + M2 runs;

need M1 + M2 <=M

Disk




Two-Pass Algorithms Based

on Sorting
Join R[X| S
* If the number of tuples in R matching
those in S is small (or vice versa) we

can compute the join during the merge
phase

- Total cost: 3B(R)+3B(S)
- Assumption: B(R) + B(S) <= M2
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Summary of External Join

Algorithms
* Block Nested Loop: B(S) + B(R)*B(S)/M

* Index Join: B(R) + T(R)B(S)/V(S,a)

+ Partitioned Hash: 3B(R)+3B(S);
- min(B(R),B(S)) <= M2

+ Merge Join: 3B(R)+3B(S)
- B(R)+B(S) <= M2
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