
1

Lecture 7:
Indexes and Database Tuning

Wednesday, November 10, 2010

Dan Suciu -- CSEP544 Fall
2010

The Take-home Final

• Poll: no date is good for everyone
• Will settle for maximum flexibility
• Main take-home final

– December 4 and 5 (Saturday, Sunday)
– Grades will be posted by December 11

• Makeup take-home final
– Exact date TBD, but before December 9
– On request (send me email)

Dan Suciu -- CSEP544 Fall
2010

2

A Note

Xquery replaced document(“…”) with
doc(“…”)

• Slides have: document(“…”)

• You should use: doc(“…”)

Dan Suciu -- CSEP544 Fall
2010

3

4

Outline

• Storage and indexing: Chapter 8, 9, 10
– Will start today, continue next week

• Database Tuning: Chapter 20
– Will discuss today

• Security in SQL: Chapter 21
– Will not discuss in class

Dan Suciu -- CSEP544 Fall
2010

Storage Model

• DBMS needs spatial and temporal control over
storage
– Spatial control for performance
– Temporal control for correctness and performance

• For spatial control, two alternatives
– Use “raw” disk device interface directly
– Use OS files

CSEP 544 - Spring 2009 5

CSEP 544 - Spring 2009

Spatial Control
Using “Raw” Disk Device Interface

• Overview
– DBMS issues low-level storage requests directly to disk device

• Advantages
– DBMS can ensure that important queries access data

sequentially
– Can provide highest performance

• Disadvantages
– Requires devoting entire disks to the DBMS
– Reduces portability as low-level disk interfaces are OS specific
– Many devices are in fact “virtual disk devices”

6

CSEP 544 - Spring 2009

Spatial Control
Using OS Files

• Overview
– DBMS creates one or more very large OS files

• Advantages
– Allocating large file on empty disk can yield good physical

locality

• Disadvantages
– OS can limit file size to a single disk
– OS can limit the number of open file descriptors
– But these drawbacks have mostly been overcome by

modern OSs

7

CSEP 544 - Spring 2009

Commercial Systems

• Most commercial systems offer both alternatives
– Raw device interface for peak performance
– OS files more commonly used

• In both cases, we end-up with a DBMS file
abstraction implemented on top of OS files or raw
device interface

8

9

File Types

The data file can be one of:
• Heap file

– Set of records, partitioned into blocks
– Unsorted

• Sequential file
– Sorted according to some attribute(s) called

key

Dan Suciu -- CSEP544 Fall
2010

Note: “key” here means something else than “primary
key”

10

Arranging Pages on Disk

• Block concept:
– blocks on same track, followed by
– blocks on same cylinder, followed by
– blocks on adjacent cylinder

• Blocks in a file should be arranged
sequentially on disk (by `next’), to minimize
seek and rotational delay.

• For a sequential scan, pre-fetching several
pages at a time is a big win!

Dan Suciu -- CSEP544 Fall
2010

11

Representing Data Elements

• Relational database elements:

• A tuple is represented as a record
• The table is a sequence of records

CREATE TABLE Product (

pid INT PRIMARY KEY,
name CHAR(20),
description VARCHAR(200),
maker CHAR(10) REFERENCES Company(name)

)

Dan Suciu -- CSEP544 Fall
2010

12

Issues

• Managing free blocks

• Represent the records inside the blocks

• Represent attributes inside the records

Dan Suciu -- CSEP544 Fall
2010

13

Managing Free Blocks

• Linked list of free blocks

• Or bit map

Dan Suciu -- CSEP544 Fall
2010

14

File Organization

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:

Data
page

Data
page

F
ull pag es

P
ages w

ith som
e free space

15

File Organization

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header

16

Page Formats

Issues to consider
• 1 page = fixed size (e.g. 8KB)
• Records:

– Fixed length
– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)

Why do we need RID’s in a relational DBMS ?

17

Page Formats

Fixed-length records: packed representation

Rec
1

Rec
2

Rec
N

Free space N

Problems ?

18

Page Formats

Free
space

S
lot dire ctory

Variable-length records

19

Record Formats: Fixed Length

• Information about field types same for all records
in a file; stored in system catalogs.

• Finding i’th field requires scan of record.
• Note the importance of schema information!

Base address (B)

L1 L2 L3 L4

pid name descr maker

Address = B+L1+L2

Product (pid, name, descr, maker)

20

Record Header

L1 L2 L3 L4

To schema

length

timestamp

Need the header because:
•The schema may change

for a while new+old may coexist
•Records from different relations may coexist

header

pid name descr maker

21

Variable Length Records

L1 L2 L3 L4

Other header information

length

Place the fixed fields first: F1
Then the variable length fields: F2, F3, F4
Null values take 2 bytes only
Sometimes they take 0 bytes (when at the end)

header pid name descr maker

22

BLOB

• Binary large objects
• Supported by modern database systems
• E.g. images, sounds, etc.
• Storage: attempt to cluster blocks together

CLOB = character large object
• Supports only restricted operations

File Organizations

• Heap (random order) files: Suitable when typical
access is a file scan retrieving all records.

• Sorted Files: Best if records must be retrieved in
some order, or only a `range’ of records is needed.

• Indexes: Data structures to organize records via
trees or hashing.
– Like sorted files, they speed up searches for a subset of

records, based on values in certain (“search key”) fields
– Updates are much faster than in sorted files.

23

24

Modifications: Insertion

• File is unsorted: add it to the end (easy)
• File is sorted:

– Is there space in the right block ?
• Yes: we are lucky, store it there

– Is there space in a neighboring block ?
• Look 1-2 blocks to the left/right, shift records

– If anything else fails, create overflow block

25

Modifications: Deletions

• Free space in block, shift records
• Maybe be able to eliminate an overflow

block
• Can never really eliminate the record,

because others may point to it
– Place a tombstone instead (a NULL record)

26

Modifications: Updates

• If new record is shorter than previous,
easy 

• If it is longer, need to shift records, create
overflow blocks

Index

• A (possibly separate) file, that allows
fast access to records in the data file

• The index contains (key, value) pairs:
– The key = an attribute value
– The value = one of:

• pointer to the recordsecondary index
• or the record itself primary index

27Dan Suciu -- CSEP544 Fall
2010

Note: “key” (aka “search key”) again means something
else

28

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data
– Unclustered = records close in index may be far in data

• Primary/secondary
– Meaning 1:

• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered
• Organization: B+ tree or Hash table

Clustered/Unclustered

• Clustered
– Index determines the location of indexed records
– Typically, clustered index is one where values are

data records (but not necessary)

• Unclustered
– Index cannot reorder data, does not determine

data location
– In these indexes: value = pointer to data record

CSEP 544 - Spring 2009 29

30

Clustered Index

• File is sorted on the index attribute
• Only one per table

10

20

30

4050

60

70

80

10

20

30

40

50

60

70

80

31

Unclustered Index

• Several per table

10

10

20

2020

30

30

30

20

30

30

20

10

20

10

30

Clustered vs. Unclustered
Index

Data entries
(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

32Dan Suciu -- CSEP544 Fall
2010

CSEP 544 - Spring 2009

Hash-Based Index

18

18

20

22
19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 11

sid

H2age

h2(age) = 00

h2(age) = 01

Another example of
clustered/primary index

Another example
of unclustered/secondary index

Good for point queries but not range queries

33

34

Alternatives for Data Entry k*
in Index

Three alternatives for k*:

• Data record with key value k

• <k, rid of data record with key = k>

• <k, list of rids of data records with key = k>

35

Alternatives 2 and 3

10

10

20

2020

30

30

30

10

20

30

…

36

B+ Trees

• Search trees

• Idea in B Trees
– Make 1 node = 1 block
– Keep tree balanced in height

• Idea in B+ Trees
– Make leaves into a linked list: facilitates range

queries

Dan Suciu -- CSEP544 Fall
2010

37

• Parameter d = the degree
• Each node has >= d and <= 2d keys (except

root)

• Each leaf has >=d and <= 2d keys:

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2
Find the key 40

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2
Find the key 40

40 80

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2
Find the key 40

40 80

20 < 40 60

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2
Find the key 40

40 80

20 < 40 60

30 < 40 40

42

Using a B+ Tree

• Exact key values:
– Start at the root
– Proceed down, to the leaf

• Range queries:
– As above
– Then sequential traversal

Select name
From People
Where age = 25

Select name
From People
Where 20 <= age
 and age <= 30

Dan Suciu -- CSEP544 Fall
2010

Index on People(age)

Which queries can use this
index ?

Dan Suciu -- CSEP544 Fall
2010

43

Select *
From People
Where name = ‘Smith’
 and zipcode = 12345

Index on People(name, zipcode)

Select *
From People
Where name = ‘Smith’

Select *
From People
Where zipcode = 12345

44

B+ Tree Design

• How large d ?
• Example:

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 byes

• 2d x 4 + (2d+1) x 8 <= 4096
• d = 170

Dan Suciu -- CSEP544 Fall
2010

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%
– average fanout = 133

• Typical capacities
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 Mbytes

45Dan Suciu -- CSEP544 Fall
2010

46

Insertion in a B+ Tree

Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, keep K3 too in right node
• When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
 K3

parent

47

Insertion in a B+ Tree

80

20 60

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

48

Insertion in a B+ Tree

80

20 60

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

49

Insertion in a B+ Tree

80

20 60

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

50

Insertion in a B+ Tree

80

20 60

20 25 30 40 50

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

100 120 140

10 15 18 19 60 65 80 85 90

51

Insertion in a B+ Tree

80

20 60

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

100 120 140

20 25 30 40 5010 15 18 19 60 65 80 85 90

52

Insertion in a B+ Tree

80

20 30 60

10 15 18 19 20 25

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

30 40 50

100 120 140

60 65 80 85 90

53

Deletion from a B+ Tree

80

20 30 60

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

54

Deletion from a B+ Tree

80

20 30 60

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

40 50

May change to
40, or not

100 120 140

10 15 18 19 20 25 60 65 80 85 90

55

Deletion from a B+ Tree

80

20 30 60

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

100 120 140

40 5010 15 18 19 20 25 60 65 80 85 90

56

Deletion from a B+ Tree

80

20 30 60

20

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

100 120 140

40 5010 15 18 19 60 65 80 85 90

57

Deletion from a B+ Tree

80

19 30 60

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

100 120 140

19 2
0

40 5010 15 18 60 65 80 85 90

58

Deletion from a B+ Tree

80

19 30 60

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to merge nodes

50

100 120 140

19 2
0

5010 15 18 60 65 80 85 90

59

Deletion from a B+ Tree

80

19 60

19 20 50

10 15 18 20 60 65 80 85 9019

Final tree

50

100 120 140

10 15 18 60 65 80 85 90

Practical Aspects of B+ Trees

Key compression:
• Each node keeps only the from parent

keys
• Jonathan, John, Johnsen, Johnson … 

– Parent: Jo
– Child: nathan, hn, hnsen, hnson, …

Dan Suciu -- CSEP544 Fall
2010

60

Practical Aspects of B+ Trees

Bulk insertion
• When a new index is created there are

two options:
– Start from empty tree, insert each key one-

by-one
– Do bulk insertion – what does that mean ?

Dan Suciu -- CSEP544 Fall
2010

61

Practical Aspects of B+ Trees

Concurrency control
• The root of the tree is a “hot spot”

– Leads to lock contention during
insert/delete

• Solution: do proactive split during insert,
or proactive merge during delete
– Insert/delete now require only one

traversal, from the root to a leaf
– Use the “tree locking” protocol 62

63

Summary on B+ Trees

• Default index structure on most DBMS
• Very effective at answering ‘point’

queries:
 productName = ‘gizmo’

• Effective for range queries:
 50 < price AND price < 100

• Less effective for multirange:
 50 < price < 100 AND 2 < quant < 20

Dan Suciu -- CSEP544 Fall
2010

64

Hash Tables

• Secondary storage hash tables are much like
main memory ones

• Recall basics:
– There are n buckets
– A hash function f(k) maps a key k to {0, 1, …, n-

1}
– Store in bucket f(k) a pointer to record with key k

• Secondary storage: bucket = block, use
overflow blocks when needed

65

• Assume 1 bucket (block) stores 2 keys
+ pointers

• h(e)=0
• h(b)=h(f)=1
• h(g)=2
• h(a)=h(c)=3

Hash Table Example

e

b

f

g

a

c

0

1

2

3

Dan Suciu -- CSEP544 Fall
2010

66

• Search for a:
• Compute h(a)=3
• Read bucket 3
• 1 disk access

Searching in a Hash Table

e

b

f

g

a

c

0

1

2

3

Dan Suciu -- CSEP544 Fall
2010

67

• Place in right bucket, if space
• E.g. h(d)=2

Insertion in Hash Table

e

b

f

g

d

a

c

0

1

2

3

Dan Suciu -- CSEP544 Fall
2010

68

• Create overflow block, if no space
• E.g. h(k)=1

• More over-
flow blocks
may be needed

Insertion in Hash Table

e

b

f

g

d

a

c

0

1

2

3

k

69

Hash Table Performance

• Excellent, if no overflow blocks
• Degrades considerably when number of

keys exceeds the number of buckets
(I.e. many overflow blocks).

Dan Suciu -- CSEP544 Fall
2010

70

Extensible Hash Table

• Allows has table to grow, to avoid
performance degradation

• Assume a hash function h that returns
numbers in {0, …, 2k – 1}

• Start with n = 2i << 2k , only look at i
least significant bits

Dan Suciu -- CSEP544 Fall
2010

71

Extensible Hash Table

• E.g. i=1, n=2i=2, k=4

• Keys:
– 4 (=0100)
– 7 (=0111)

• Note: we only look at the last bit (0 or 1)

(010)0

(011)1

i=1 1

1

0

1

Dan Suciu -- CSEP544 Fall
2010

72

Insertion in Extensible Hash
Table

• Insert 13 (=1101)
(010)0

(011)1

(110)1

i=1 1

1

0

1

Dan Suciu -- CSEP544 Fall
2010

73

Insertion in Extensible Hash
Table

• Now insert 0101

• Need to extend table, split blocks
• i becomes 2

(010)0

(011)1

(110)1, (010)1

i=1 1

1

0

1

Dan Suciu -- CSEP544 Fall
2010

74

Insertion in Extensible Hash
Table

(010)0

(11)01

(01)01

i=2 1

2

00

01

10

11

(01)11 2

(010)0

(011)1

(110)1, (010)1

i=1
1

1

0

1

Dan Suciu -- CSEP544 Fall
2010

75

Insertion in Extensible Hash
Table

• Now insert 0000, 1110

• Need to split block

(010)0

(000)0, (111)0

(11)01

(01)01

i=2 1

2

00

01

10

11

(01)11 2

Dan Suciu -- CSEP544 Fall
2010

76

Insertion in Extensible Hash
Table

• After splitting the block

(01)00

(00)00

(11)01

(01)01

i=2 2

2
00

01

10

11

(01)11 2

(11)10 2

1
becam

e 2

77

Extensible Hash Table

• How many buckets (blocks) do we need
to touch after an insertion ?

• How many entries in the hash table do
we need to touch after an insertion ?

Dan Suciu -- CSEP544 Fall
2010

78

Performance Extensible Hash
Table

• No overflow blocks: access always one
read

• BUT:
– Extensions can be costly and disruptive
– After an extension table may no longer fit

in memory

Dan Suciu -- CSEP544 Fall
2010

79

Linear Hash Table

• Idea: extend only one entry at a time
• Problem: n= no longer a power of 2
• Let i be such that 2i <= n < 2i+1
• After computing h(k), use last i bits:

– If last i bits represent a number > n,
change msb from 1 to 0 (get a number <=
n)

Dan Suciu -- CSEP544 Fall
2010

80

Linear Hash Table Example

• n=3
(01)00

(11)00

(10)10

i=2

00

01

10

(01)11 BIT FLIP

Dan Suciu -- CSEP544 Fall
2010

81

Linear Hash Table Example

• Insert 1000: overflow blocks…

(01)00

(11)00

(10)10

i=2

00

01

10

(01)11

(10)00

Dan Suciu -- CSEP544 Fall
2010

82

Linear Hash Tables

• Extension: independent on overflow
blocks

• Extend n:=n+1 when average number
of records per block exceeds (say) 80%

Dan Suciu -- CSEP544 Fall
2010

83

Linear Hash Table Extension

• From n=3 to n=4

• Only need to touch
one block (which one ?)

(01)00

(11)00

(10)10

i=2

00

01

10

(01)11
(01)11

(01)11

i=2

00

01

10

(10)10

(01)00

(11)00

n=11

84

Linear Hash Table Extension

• From n=3 to n=4 finished

• Extension from n=4
to n=5 (new bit)

• Need to touch every
single block (why ?) (01)11

i=2

00

01

10

(10)10

(01)00

(11)00

11

Indexes in Postgres

85

CREATE INDEX V1_N ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX VVV ON V(M, N)

CLUSTER V USING V2 Makes V2
clustered

Database Tuning Overview

• The database tuning problem
• Index selection (discuss in detail)
• Horizontal/vertical partitioning (see

lecture 3)
• Denormalization (discuss briefly)

86CSEP 544 - Spring 2009

CSEP 544 - Spring 2009

Levels of Abstraction in a
DBMS

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

views
access control

87

The Database Tuning Problem

• We are given a workload description
– List of queries and their frequencies
– List of updates and their frequencies
– Performance goals for each type of query

• Perform physical database design
– Choice of indexes
– Tuning the conceptual schema

• Denormalization, vertical and horizontal partition
– Query and transaction tuning

88CSEP 544 - Spring 2009

The Index Selection Problem

• Given a database schema (tables, attributes)
• Given a “query workload”:

– Workload = a set of (query, frequency) pairs
– The queries may be both SELECT and updates
– Frequency = either a count, or a percentage

• Select a set of indexes that optimizes the
workload

89

In general this is a very hard
problem CSEP 544 - Spring 2009

Index Selection: Which Search
Key

• Make some attribute K a search key if
the WHERE clause contains:
– An exact match on K
– A range predicate on K
– A join on K

90CSEP 544 - Spring 2009

Index Selection Problem 1

91

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

Dan Suciu -- CSEP544 Fall
2010

What
indexes ?

Index Selection Problem 1

92

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

Dan Suciu -- CSEP544 Fall
2010

A: V(N) and V(P) (hash tables or B-
trees)

Index Selection Problem 2

93

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

Dan Suciu -- CSEP544 Fall
2010

What
indexes ?

Index Selection Problem 2

94

V(M, N, P);

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

SELECT *
FROM V
WHERE N>? and N<?

Dan Suciu -- CSEP544 Fall
2010

A: definitely V(N) (must B-tree); unsure about
V(P)

Index Selection Problem 3

95

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

Dan Suciu -- CSEP544 Fall
2010

What
indexes ?

Index Selection Problem 3

96

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: V(N,
P)

Index Selection Problem 4

97

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

Dan Suciu -- CSEP544 Fall
2010

What
indexes ?

Index Selection Problem 4

98

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

Dan Suciu -- CSEP544 Fall
2010

A: V(N) secondary, V(P) primary
index

The Index Selection Problem

• SQL Server
– Automatically, thanks to AutoAdmin project
– Much acclaimed successful research project from

mid 90’s, similar ideas adopted by the other major
vendors

• PostgreSQL
– You will do it manually, part of homework 5
– But tuning wizards also exist

99Dan Suciu -- CSEP544 Fall
2010

Index Selection: Multi-attribute
Keys

Consider creating a multi-attribute key on
K1, K2, … if
• WHERE clause has matches on K1,

K2, …
– But also consider separate indexes

• SELECT clause contains only K1, K2, ..
– A covering index is one that can be used

exclusively to answer a query, e.g. index
R(K1,K2) covers the query: 100Dan Suciu -- CSEP544 Fall

2010
SELECT K2 FROM R WHERE K1=55

To Cluster or Not

• Range queries benefit mostly from
clustering

• Covering indexes do not need to be
clustered: they work equally well
unclustered

101CSEP 544 - Spring 2009

102

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

U
nc

lu
st

er
ed

 in
de

x

SELECT *
FROM R
WHERE K>? and K<?

Dan Suciu -- CSEP544 Fall
2010

Hash Table v.s. B+ tree

• Rule 1: always use a B+ tree 

• Rule 2: use a Hash table on K when:
– There is a very important selection query on

equality (WHERE K=?), and no range queries
– You know that the optimizer uses a nested loop

join where K is the join attribute of the inner
relation (you will understand that in a few
lectures)

Balance Queries v.s. Updates

• Indexes speed up queries
– SELECT FROM WHERE

• But they usually slow down updates:
– INSERT, DELECTE, UPDATE
– However some updates benefit from

indexes

UPDATE R
 SET A = 7
 WHERE K=55

Tools for Index Selection

• SQL Server 2000 Index Tuning Wizard
• DB2 Index Advisor

• How they work:
– They walk through a large number of

configurations, compute their costs, and
choose the configuration with minimum
cost

105Dan Suciu -- CSEP544 Fall
2010

Tuning the Conceptual
Schema

• Denormalization

• Horizontal Partitioning

• Vertical Partitioning

106Dan Suciu -- CSEP544 Fall
2010

Denormalization

107

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

Product(pid, pname, price, cid)
Company(cid, cname, city)

A very frequent query:

Dan Suciu -- CSEP544 Fall
2010

How can we speed up this query
workload ?

Denormalization

108

Product(pid, pname, price, cid)
Company(cid, cname, city)

Denormalize:
ProductCompany(pid,pname,price,cname,city)

Dan Suciu -- CSEP544 Fall
2010

INSERT INTO ProductCompany
 SELECT x.pid, x.pname,.price, y.cname, y.city
 FROM Product x, Company y
 WHERE x.cid = y.cid

Denormalization

109

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

Next, replace the query

Dan Suciu -- CSEP544 Fall
2010

SELECT pid, pname
FROM ProductCompany
WHERE price < ? and city = ?

Issues with Denormalization

110

• It is no longer in BCNF
– We have the hidden FD: cid cname, city

• When Product or Company are
updated, we need to propagate updates
to ProductCompany
– Use RULE in postgres (see below)
– Or use a trigger on a different RDBMS

• Sometimes cannot modify the query
– What do we do then ?

Denormalization Using Views

111Dan Suciu -- CSEP544 Fall
2010

INSERT INTO ProductCompany
 SELECT x.pid, x.pname,.price, y.cid, y.cname, y.city
 FROM Product x, Company y
 WHERE x.cid = y.cid;

DROP Product; DROP Company;

CREATE VIEW Product AS
 SELECT pid, pname, price, cid FROM ProductCompany

CREATE VIEW Compnay AS
 SELECT DISTINCT cid, cname, city FROM ProductCompany

Denormalization Using Views

112

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

Keep the query unchaged

What does the system do ?

Dan Suciu -- CSEP544 Fall
2010

Denormalization Using Views

• In postgres the rewritten query is non-
minimal:
– Means: has redundant joins
– To see this in postgres, type “explain . . .”
– For Project 2: it’s OK to use

denormalization using views (don’t forget
indexes); performance is reasonable

• SQL Server does a better job with this
query

113Dan Suciu -- CSEP544 Fall
2010

Horizontal Partition

Horizontal partition on price < 10 and price
>= 10
• When few products have price < 10 but

most queries are about these products

114

Product(pid, pname, price, cid)

Dan Suciu -- CSEP544 Fall
2010

Horizontal Partition

115

INSERT INTO CheapProduct . . . WHERE price<10
INSERT INTO ExpensiveProduct . . . WHERE price >=10

DROP Product

CREATE VIEW Product AS
 (select * from cheapProduct) UNION ALL
 (select * from expensiveProduct)

Dan Suciu -- CSEP544 Fall
2010

Horizontal Partition

116

SELECT *
FROM Product
WHERE price = 2

Which of the tables cheapProduct
and
expensiveProduct does it touch ?

Dan Suciu -- CSEP544 Fall
2010

Horizontal Partition

• The query will touch both cheapProduct
and expensiveProduct because we
haven’t told the system the partition
criteria (price < 10 and >= 10)

• We can do this in two ways:
– As a predicate in the view definition
– As a constraint in the table definition

117Dan Suciu -- CSEP544 Fall
2010

Partition Criteria As View
Predicates

118

CREATE VIEW Product AS
 (select * from cheapProduct where price < 10)
 UNION ALL
 (select * from expensiveProduct where price >= 10)

SQL Server correctly optimizes the query, but postgres
doesn’t

Dan Suciu -- CSEP544 Fall
2010

Partition Criteria As Table
Constraints

119

CREATE TABLE CheapProduct (
 pid int primary key not null,
 pname varchar(20) not null,
 price int not null,
 CHECK (price < 10));

CREATE TABLE ExpesniveProduct (

 CHECK (price >= 10));

Dan Suciu -- CSEP544 Fall
2010

If you set “constraint_exclusion = on” in
postgresql.conf,
then postgres optimizes this fine.

Updates Through Views

• Product is a view:
– What should “INSERT INTO Product” do ?

• Sometime it is possible for the system
to figure out which base tables to
update

• If not, then use RULES or TRIGGERS
120Dan Suciu -- CSEP544 Fall

2010

RULES in Postgres

121

CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING |
 command | (command ; command ...) }

Where
 name = a name for the rule
 event = SELECT, INSERT, UPDATE, or DELETE
 command = SELECT, INSERT, UPDATE, DELETE
 use new for the new tuple, and old for the old tuple

Dan Suciu -- CSEP544 Fall
2010

RULES in Postgres

122

CREATE OR REPLACE RULE productInsertRule AS
 ON INSERT TO Product DO INSTEAD
 (INSERT INTO cheapProducts
 SELECT DISTINCT new.pid, new.pname, new.price
 FROM anyDummyTablePreferablyWithOneTuple
 WHERE new.price < 10;
 INSERT INTO expensiveProducts
 SELECT DISTINCT new.pid, new.pname, new.price
 FROM anyDummyTablePreferablyWithOneTuple
 WHERE new.price >= 10);

Dan Suciu -- CSEP544 Fall
2010

RULES in Postgres

123

CREATE OR REPLACE RULE productDeleteRule AS
 ON DELETE TO Product DO INSTEAD
 (DELETE FROM cheapProducts
 WHERE pid = old.pid
 DELETE FROM expensiveProducts
 WHERE pid = old.pid);

Dan Suciu -- CSEP544 Fall
2010

Vertical Partition

124

Split vertically into:
Product1(pid, name, price)
Product2(pid, description)

Define Product as view

Product(pid, pname, price, description)

Varchar(
500)

Dan Suciu -- CSEP544 Fall
2010

Vertical Partition

125

CREATE VIEW Product AS
 (select x.pid, x.pname, x.price, y.description
 from Product1 x, Product 2 y
 where x.pid = y.pid)

Dan Suciu -- CSEP544 Fall
2010

Vertical Partition

126

SELECT pid, pname
FROM Product
WHERE price > 20

Now consider a query on Product:

Which tables are touched by the
system ?

Dan Suciu -- CSEP544 Fall
2010

Vertical Partition

• SQL Server does the right thing:
– Touches only product1

• But postgres insists on joining product1
with product2 instead
– I couldn’t figure out how to coerce postgres

to optimize this query
– 10 bonus points for whoever finds out first !
– In the meantime, we will cheat like this:

127Dan Suciu -- CSEP544 Fall
2010

128

CREATE VIEW Product AS
 select pid, pname, price, ‘blah’ as description
 from Product1

Dan Suciu -- CSEP544 Fall
2010

NOT DISCUSSED IN CLASS

Dan Suciu -- CSEP544 Fall
2010

129

Security in SQL

• Discretionary access control in SQL

• Using views for security

CSEP 544 - Spring 2009 130

131

Discretionary Access Control
in SQL

GRANT privileges
 ON object
 TO users
 [WITH GRANT OPTIONS]

privileges = SELECT |
 INSERT(column-name) |
 UPDATE(column-name) |
 DELETE |
 REFERENCES(column-name)
object = table | attribute

132

Examples

GRANT INSERT, DELETE ON Customers
 TO Yuppy WITH GRANT OPTIONS

Queries allowed to Yuppy:

Queries denied to Yuppy:

INSERT INTO Customers(cid, name, address)
 VALUES(32940, ‘Joe Blow’, ‘Seattle’)

DELETE Customers
 WHERE LastPurchaseDate < 1995

SELECT Customer.address
FROM Customer
WHERE name = ‘Joe Blow’

133

Examples

GRANT SELECT ON Customers TO Michael

Now Michael can SELECT, but not INSERT or DELETE

134

Examples

GRANT SELECT ON Customers
 TO Michael WITH GRANT OPTIONS

Michael can say this:
 GRANT SELECT ON Customers TO Yuppi

Now Yuppi can SELECT on Customers

135

Examples

GRANT UPDATE (price) ON Product TO Leah

Leah can update, but only Product.price, but not Product.name

136

Examples

GRANT REFERENCES (cid) ON Customer TO Bill

Customer(cid, name, address, balance)
Orders(oid, cid, amount) cid= foreign key

Now Bill can INSERT tuples into Orders

Bill has INSERT/UPDATE rights to Orders.
BUT HE CAN’T INSERT ! (why ?)

137

Views and Security

CREATE VIEW PublicCustomers
 SELECT Name, Address
 FROM Customers
GRANT SELECT ON PublicCustomers TO Fred

David
says

Name Address Balance

Mary Huston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520

David
owns

Customers:

Fred is
not

allowe
d to
see
this

138

Views and Security

Name Address Balance

Mary Huston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520

CREATE VIEW BadCreditCustomers
 SELECT *
 FROM Customers
 WHERE Balance < 0
GRANT SELECT ON BadCreditCustomers TO John

David
says

David
owns

Customers:

John is
allowed

to
see

only <0
balanc

es

139

Views and Security

• Each customer should see only her/his record

CREATE VIEW CustomerMary
 SELECT * FROM Customers
 WHERE name = ‘Mary’
GRANT SELECT
ON CustomerMary TO Mary

Doesn’t scale.

Need row-level access control !

Name Address Balance

Mary Huston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520

David
says

CREATE VIEW CustomerSue
 SELECT * FROM Customers
 WHERE name = ‘Sue’
GRANT SELECT
ON CustomerSue TO Sue

. . .

140

Revocation

REVOKE [GRANT OPTION FOR] privileges
 ON object FROM users { RESTRICT | CASCADE }

Administrator says:

REVOKE SELECT ON Customers FROM David CASCADE

John loses SELECT privileges on BadCreditCustomers

141

Revocation

Joe: GRANT [….] TO Art …
Art: GRANT [….] TO Bob …
Bob: GRANT [….] TO Art …
Joe: GRANT [….] TO Cal …
Cal: GRANT [….] TO Bob …
Joe: REVOKE [….] FROM Art CASCADE

Same
privilege,

same
object,
GRANT
OPTION

What happens ??

142

Revocation

Admin

Joe Art

Cal Bob

0

1

234

5

Revoke

According to SQL everyone keeps the privilege

Summary of SQL Security

Limitations:
• No row level access control
• Table creator owns the data: that’s unfair !
• Today the database is not at the center of

the policy administration universe

143

	Slide 1
	The Take-home Final
	A Note
	Outline
	Storage Model
	Spatial Control
Using “Raw” Disk Device Interface
	Spatial Control
Using OS Files
	Commercial Systems
	File Types
	Arranging Pages on Disk
	Representing Data Elements
	Issues
	Managing Free Blocks
	File Organization
	File Organization
	Page Formats
	Page Formats
	Page Formats
	Record Formats: Fixed Length
	Record Header
	Variable Length Records
	BLOB
	File Organizations
	Modifications: Insertion
	Modifications: Deletions
	Modifications: Updates
	Index
	Index Classification
	Clustered/Unclustered
	Clustered Index
	Unclustered Index
	Clustered vs. Unclustered Index
	Hash-Based Index
	Alternatives for Data Entry k* in Index
	Alternatives 2 and 3
	B+ Trees
	B+ Trees Basics
	B+ Tree Example
	B+ Tree Example
	B+ Tree Example
	B+ Tree Example
	Using a B+ Tree
	Which queries can use this index ?
	B+ Tree Design
	B+ Trees in Practice
	Insertion in a B+ Tree
	Insertion in a B+ Tree
	Insertion in a B+ Tree
	Insertion in a B+ Tree
	Insertion in a B+ Tree
	Insertion in a B+ Tree
	Insertion in a B+ Tree
	Deletion from a B+ Tree
	Deletion from a B+ Tree
	Deletion from a B+ Tree
	Deletion from a B+ Tree
	Deletion from a B+ Tree
	Deletion from a B+ Tree
	Deletion from a B+ Tree
	Practical Aspects of B+ Trees
	Practical Aspects of B+ Trees
	Practical Aspects of B+ Trees
	Summary on B+ Trees
	Hash Tables
	Hash Table Example
	Searching in a Hash Table
	Insertion in Hash Table
	Insertion in Hash Table
	Hash Table Performance
	Extensible Hash Table
	Extensible Hash Table
	Insertion in Extensible Hash Table
	Insertion in Extensible Hash Table
	Insertion in Extensible Hash Table
	Insertion in Extensible Hash Table
	Insertion in Extensible Hash Table
	Extensible Hash Table
	Performance Extensible Hash Table
	Linear Hash Table
	Linear Hash Table Example
	Linear Hash Table Example
	Linear Hash Tables
	Linear Hash Table Extension
	Linear Hash Table Extension
	Indexes in Postgres
	Database Tuning Overview
	Levels of Abstraction in a DBMS
	The Database Tuning Problem
	The Index Selection Problem
	Index Selection: Which Search Key
	Index Selection Problem 1
	Index Selection Problem 1
	Index Selection Problem 2
	Index Selection Problem 2
	Index Selection Problem 3
	Index Selection Problem 3
	Index Selection Problem 4
	Index Selection Problem 4
	The Index Selection Problem
	Index Selection: Multi-attribute Keys
	To Cluster or Not
	Slide 102
	Hash Table v.s. B+ tree
	Balance Queries v.s. Updates
	Tools for Index Selection
	Tuning the Conceptual Schema
	Denormalization
	Denormalization
	Denormalization
	Issues with Denormalization
	Denormalization Using Views
	Denormalization Using Views
	Denormalization Using Views
	Horizontal Partition
	Horizontal Partition
	Horizontal Partition
	Horizontal Partition
	Partition Criteria As View Predicates
	Partition Criteria As Table Constraints
	Updates Through Views
	RULES in Postgres
	RULES in Postgres
	RULES in Postgres
	Vertical Partition
	Vertical Partition
	Vertical Partition
	Vertical Partition
	Slide 128
	NOT DISCUSSED IN CLASS
	Security in SQL
	Discretionary Access Control in SQL
	Examples
	Examples
	Examples
	Examples
	Examples
	Views and Security
	Views and Security
	Views and Security
	Revocation
	Revocation
	Revocation
	Summary of SQL Security

