
Query Optimizers: Time to Rethink the Contract?
Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT
Query Optimization is expected to produce good execution plans
for complex queries while taking relatively small optimization
time. Moreover, it is expected to pick the execution plans with
rather limited knowledge of data and without any additional input
from the application. We argue that it is worth rethinking this
prevalent model of the optimizer. Specifically, we discuss how
the optimizer may benefit from leveraging rich usage data and
from application input. We conclude with a call to action to
further advance query optimization technology.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query Processing.

General Terms
Performance, Design, Experimentation

Keywords
Query optimizer, Cardinality Estimation.

1. INTRODUCTION
Query Optimization remains as relevant a problem as ever before,
if not more. Modern day database workloads include On-line
Transaction Processing Systems, Enterprise Resource Planning,
Customer Relationship Management, On-line Analytical
Processing and Data Analysis over Data-warehouses. The queries
generated by these workloads are increasingly complex and the
databases are larger than ever. Thus, the central role of query
optimization that searches the space of different execution
strategies and picks a good execution plan remains
unquestionable.
It has been thirty years since the publication of the System R
paper on Query Optimization [1] that acted as the defining
framework for query optimization. As we will review in the next
section, significant progress has been made on several aspects of
Query Optimization since the early days of relational databases.
At the same time, certain fundamental difficulties remain. For
example, cardinality estimation remains a difficult problem
despite years of research activity, search algorithms in optimizers
have significant ad-hoc elements to manage optimization time,
and cost estimation is not able to take into account the current
state of the server effectively.

While there are no easy solutions to these problems, one line of
thinking that has not been explored is revisiting the contract with
the optimizer. The contract, as defined in [1], is well-intentioned
as it imposed the least burden on applications: The optimizer will
produce high-quality execution plans for all queries while taking
relatively small optimization time with limited additional input
such as histograms. But, by virtue of this contract, optimizers are
also by design “closed” to additional information that can
potentially help lessen the difficulties of the challenges mentioned
above.
In this paper, we share our initial thoughts on “opening up” the
query optimizer so that each of its core modules (cardinality
estimation, cost estimation and search) is capable of leveraging
application input and past usage information. Such an approach
also impacts how we build these components of the optimizer and
we will discuss these consequences. The goal of this paper is to
motivate the idea of opening up the optimizer rather than to
present specifics of the interfaces we require of the optimizer.
The first part of the paper is retrospective in nature. We begin by
sketching the relevant history of query optimizers and we
summarize the key technical challenges (Section 2). We then
provide a broad overview of our proposal for enabling the
optimizer to leverage additional input from the application or
usage information (Section 3). The next two sections provide
further elaboration of this approach for cardinality estimation and
search components of the optimizer (Sections 4 and 5). We
conclude with an outline of the a few steps that can help push the
frontiers of query optimization (Section 6).

2. The State of the Art in Query Optimization
2.1 A Brief History
The seminal System-R paper [1] provided a framework for query
optimization that consisted of three pillars: (a) cardinality
estimation for SQL expressions, (b) cost estimation for SQL
execution plans (or partial plans) and (c) a dynamic programming
based algorithm to search the space of execution plans. However,
the paper also recognized that an ordering of tuples, even if
locally suboptimal, may pay off globally. This was referred to as
interesting orders. In many ways, this paper solved the query
optimization problem quite well for the simple execution engines
and relatively simple queries of that era.

Over the next fifteen years since [1], the query execution engines
became far more sophisticated with the addition of new logical
and physical operators. Parallel database technology allowed
relational systems to handle complex queries over very large data
sets. The SQL engines started being used widely during this era
for data warehousing and decision support systems. As a result,
database systems started experiencing the need to handle more
complex queries. Research on query optimization led to explosion
of work on query rewrite rules [21]. Some of the rewrite rules,
e.g., de-correlation and Magic sets, commuting Group By and join

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06...$5.00.

961

operators were significant in terms of their potential effect on
performance. The query optimization work during this period
focused on building extensible query optimizer architectures to
enable incorporation of new logical and physical operators as well
as transformation rules. Two of the key research projects that
addressed these challenges were Starburst [3] and
Volcano/Cascades [2]. Around the same time, there was
considerable amount of research on different types of histograms
[17] that led to improved histogram structures.

After query optimizer architectures stabilized in late 80s and mid-
90s, the research in core search architecture, new transformation
rules, and new operators have been relatively less compared to
earlier years. The key research direction that received attention
since then is leveraging cardinality information from execution.
To the best of our knowledge, we believe that the first use of
execution feedback was made in DEC Rdb/VMS system [18]. The
application of execution information in that system focused on
single table access path selection. The key observation was that a
priori selectivity estimation for a Boolean Expression will always
be uncertain. However, by running two access path plans in
competition, if there is an overwhelmingly better plan, then the
winner may be identified in a relatively short time. Another line
of work used sampling to estimate cardinality of query sub-
expression during query optimization [27]. This required
sampling and thus accessing data at optimization time. Despite
the appeal of accuracy, this technique was not adopted as it
violated the expectation that the optimization time must be small.
There was also related work on generation of dynamic plans
where the choice among them was resolved at runtime [19]. More
recent work on using execution feedback for cardinality can be
broken down in two categories:

• Offline: There are two offline usage scenarios. The first is
use of the feedback information from selection queries to
build self-tuning histograms over a single table [4][5]. The
other is to use the cardinality information from execution of
a more general class of multi-relational query expressions by
looking up an “execution feedback cache” [6]. The self-
tuning histogram approaches are narrower in scope but they
fold the execution feedback into the histogram structures
thus resulting in no additional overhead during optimization.
In contrast, the execution feedback cache based approach is
more general but has higher overhead of optimization as it
has to look for matches with query expressions from the
cache.

• During Query execution: One of the early examples of work
in this direction is [8][20]. The key idea is to do mid-flight
re-optimization with more accurate knowledge of cardinality,
e.g., when the query execution reaches a blocking operator at
that time the size of the intermediate result size is accurately
known. It can then be used to re-optimize the remainder of
the query. A degenerate version of such re-optimization was
implemented in Teradata. The query processor of Teradata
joined only two tables at a time, (with the results going to a
spool/pseudo table). Thus, optimization and execution were
interleaved as the optimizer needed to decide the next join at
every step.

A far more radical version of feedback-driven query execution is
Eddies and its variants [9][16] but they require changes to the
query execution engine. In this paper, we have focused only on

the query optimizer component without requiring significant
changes to the query execution engine. But, certainly in a broader
context of redesigning database systems, changes to the execution
engine can be considered and Eddies and its variants would be
relevant in that context. There have also been proposals to create
and maintain statistics on derived expressions [28][29]. However,
the technical challenges are in many respects similar to that of
leveraging execution feedback cache.

2.2 A Critique of Today’s Query Optimizers
Optimizers are able to handle amazingly complex queries often
with quite satisfactory solutions. Despite their remarkable
success, optimizers continue to have several significant
challenges. Some of these have been discussed below.

Cardinality Estimation: While single dimensional histograms
over a column works satisfactorily by and large, multi-
dimensional histograms have not caught on. No multi-
dimensional histogram has been shown to be particularly effective
given the inherent technical difficulty of finding appropriate
bucket boundaries for n-dimensional space. Also, the space of
multi-dimensional histograms is very large and the challenge of
determining on which combinations of columns multi-
dimensional histograms are to be built, is also nontrivial. In
contrast, sampling based techniques on single tables are
fundamentally more robust as they can support selectivity
estimation of arbitrary predicates on single tables but they require
execution of queries over the sample at optimization time.
Unfortunately, neither histograms nor sampling based scheme
provide any simple answer to the difficult problem of estimating
cardinality for expressions beyond the single table case. The
independence assumption is used for histograms and it leads to
very serious propagation of errors [22]. On the other hand,
sampling over results of a complex sub-expression requires pre-
computing the join [23][24]. Execution feedback based techniques
or statistics on query expressions (discussed in Section 2.1) allow
us to avoid relying exclusively on optimizer’s built-in statistics
estimators. However, to realize the benefit of such execution
feedback, we need to make much progress on the current state of
the art, as will be discussed in Sections 3 and 4.

Cost Estimation: In today’s optimizers, the cost model is largely
determined by the optimizer designer with possibilities of scaling
a few fixed parameters at installation time. The knowledge of
current system state information is not exploited while optimizing
ad-hoc queries (that are executed immediately upon optimization)
[30]. The inaccuracy in cost modeling, coupled with errors in
cardinality estimation, also leads to inappropriate tradeoff in the
time spent in optimization vs. its execution time, e.g., a long
running query is not optimized sufficiently while a large amount
of optimization time is spent on a much simpler query.

Search Algorithm: Extensible optimizers are significantly more
capable compared to [1]. But, in their quest to enable optimization
of complex queries without excessive optimization time, several
pragmatic but ad-hoc elements have been introduced in search
algorithms of all optimizers. It is fair to say that while optimizers
tend to project the image that their search is “exhaustive”, in
reality none are. For example, optimizers offer different “levels”
of optimization where higher levels of setting promise more
thorough exploration of the search space. However, beyond that
description, the application or the user is left with little

962

understanding on how the optimization level will impact the
quality of the plan and the optimization time. While the powerful
set of rewrite rules have expanded the search space considered by
the optimizers, they have also made the optimizer’s logic more
complex. Coupled with the lack of accuracy in cardinality and
cost estimation for queries, this has had undesirable effect on the
quality of the plans chosen by the optimizer. Plan diagrams [25]
have revealed that there are surprisingly many optimal plans as
the selectivity is varied even when the value of the cost function
changes very little. Figure 1 (borrowed from [25]) illustrates that
for TPC-H Query 8 there are a large number of distinct optimal
plans at different selectivities of the predicates on Lineitem and
Supplier relations. Such Plan diagrams seem undesirable as
changes in optimal plans are triggered by relatively little changes
in the cost. For parameterized queries, it can result in many plan
changes as the data evolves. Most DBAs view such a
phenomenon warily. This is because frequent changes in plans
coupled with the inaccuracies in cardinality and cost estimation,
can lead to significant variance in the execution times of the
parameterized query. The study of plan diagrams also showed that
such changes of the optimal plans can potentially be reduced
significantly if we settle for slightly suboptimal plans [26].
However, today’s optimizers provide us with no way for DBAs to
leverage such a tradeoff.

Figure 1: Plan diagram for TPC-H Query 8

To be provocative, one can say that though the optimizers of
today’s relational databases are able to do surprisingly
sophisticated optimization because of the power of transformation
rules and their extensible framework; yet they have significant
weaknesses that lead to unexpectedly poor selection of execution
plans at times.

3. The Case for Rethinking the Contract
The charter of the optimizer is to produce a high-quality
execution plan while taking relatively small optimization time
with limited additional input such as histograms. From the
application development perspective, such a contract is
convenient as optimizers require no knowledge of the application
or data characteristics (beyond histograms). However, as
discussed in the last section, there remain fundamental long-
standing challenges that don’t seem to have any satisfactory
solution. Therefore, it may be worthwhile to critically reexamine
the optimizer’s contract.
While the above is a broad issue, we will look at one specific
aspect. We suggest that the optimizer is made much more open to
additional information beyond using only histograms that can
potentially guide and aid its task. In the rest of this section, we

elaborate this idea in more detail and also outline some of the
open challenges that we must solve if we are to leverage the
ability of the optimizer to be more open to additional input from
the application developer, DBA or the user. We should note that
there are already several related initiatives in research and
industry. Our proposal should be viewed as a call to accelerate
further work in those directions (see also Section 2).
Monitoring and Collection of Usage Information: Compared to
database systems a decade ago, today’s database systems provide
much more capabilities for monitoring the state of the database
server and logging such information. For example, in Microsoft
SQL Server, dynamic management views can provide snapshots
of many facets of the state of the server and such information can
be collected in SQL Server’s Performance Studio. Oracle, IBM
DB2 and other DBMS vendors also provide infrastructure to
capture their monitored system state. Such infrastructure allows
us to capture SQL workload, their execution plans and observed
cardinality of sub-expressions that are part of the final execution
plans. However, the above information alone is not rich enough
to improve the optimizer’s behavior. For example, tracking
cardinality of selected query sub-expressions that are not part of
the final execution plan [15] can help optimizer improve the plan
of a compiled query. Beyond cardinality estimation, another cost
model parameter that can significantly affect plan quality is the
number of distinct pages of a table accessed using an index
lookup. Monitoring this parameter at low overhead during query
execution can potentially help correct poor plan choices [33].
Monitoring need not be limited to query execution. There is
potential to use monitoring of the query optimization phase to
influence the search module. Furthermore, optimizers could also
expose information that summarizes its progress when
optimization time becomes significant (See Section 5).
Understanding the space of low-overhead monitoring that the
optimizer can leverage to improve itself deserves more work.
Analysis of Monitored Information: Effective analysis of the data,
either during optimization or in background mode, is what makes
monitored information valuable. So far, we have made rather
shallow use of such analysis. For example, leveraging multi-
relation execution feedback for cardinality, as in [6], requires us
to use view matching like technology at optimization time which
can introduce significant overhead if the feedback cache is large.
There is an opportunity to bring to bear statistical inference
techniques to the above problem (See Section 4). Oracle’s
Automatic Tuning Optimizer [31] is an example of an
optimization mode that uses execution information to create a
SQL Profile for queries. There is a need to expand such work on
analysis significantly. This is particularly important as such
analysis cannot be done easily by the application developer or
DBAs.
Application and Contextual Knowledge: While monitored and
usage data can be very valuable, this is not the only source of
additional input that the optimizer could leverage. Influencing
behavior of the optimizers are of direct interest specifically to
performance-sensitive Enterprise Resource Planning (ERP) or
Customer Relationship Management (CRM) applications since
they have business incentives to optimize performance
characteristics of their applications. Often, these applications have
a model for their code generation that has implication for
characteristics of their queries. Such application knowledge can

963

be used to guide the optimizer’s search space. Section 5 provides
more details of such opportunities.

 Figure 2: A Core Optimizer that accepts Directives

Need for Injecting Directives: As discussed above, monitored
information (appropriately analyzed), application knowledge or a
combination of the above two can be sources of additional
information for the optimizer. Such information may be related to
cardinality or can provide guidance for its search module.
Therefore, it is important that the optimizer has appropriate APIs
that can be used to influence its behavior using such additional
information. In Sections 4 and 5 we discuss the directives related
to cardinality estimation and the search module respectively.
A conceptual view of our proposed optimization framework has
been captured in Figure 2. Its key characteristics are using
monitoring, doing analysis leveraging collected information (in a
background mode as well as during optimization) and using APIs
for directives to influence the behavior of the optimizer. This
paper would primarily focus on directives and some limited
aspect of the analysis problem.
The directives may target cardinality estimation, cost estimation
or the search module. As discussed above, directives can be
obtained via analysis of monitored information (by the optimizer
itself) or from application or DBA knowledge. One other aspect
of the framework that is worth highlighting is that the optimizer
does not communicate back only the choice of an execution plan.
Rather, we expect the optimizer to provide additional meta-
information to the application.
Although the diagram shows the directives to be attached to
queries, they can also have broader scope of a session and
beyond. We expect this architecture to be of more immediate
interest to compiled queries rather than ad-hoc queries although
monitored information can also potentially aid the ad-hoc queries.
It may appear that our proposal will increase the cost of building
applications by requiring that the applications judiciously pick
directives to influence the optimizer. While some sophisticated
applications will certainly build custom directive generators that
integrate deep application knowledge, the default directive
generators may be entirely driven by the optimizer itself through

its analysis of monitored information. In such cases, the query
directive generation is a component of the query optimizer itself,
invoked in a special mode.
Making an optimizer open to additional information has other
implications. We need to be thoughtful about what we need to do
as a background activity vs. what needs to be done during
optimization. Also, we need not assume that the optimizer must
have today’s simple “query in, execution plan out” model. Rather,
for compiled queries (e.g., stored procedures in Microsoft SQL
Server) it makes perfect sense to produce an initial plan and then
potentially continue additional monitoring to improve the quality
of the plan.
The next two sections motivate the use of directives for
cardinality and search modules and study the technical challenges
for a directive-aware optimizer. Note that such an approach also
affects the cost estimation module but we do not include a
discussion of that in this paper.

4. Cardinality Estimation Revisited
Our goal is to bring architectural openness to the statistical
module, i.e., make the statistics module amenable to richer set of
statistical directives. Examples of richer directives include:

• Cardinality Injection: Explicit sources for cardinality
injection can be either from execution feedback [4][6], or
from direct application input. Examples of the latter are
validation predicates that are expected to have a selectivity
close to one, e.g., while reporting total sales for winter
jackets over the third quarter that is kept in a stored table, a
redundant data validation predicate (filter) may be added to
the query which checks that the date of the transaction is
indeed in the third quarter. In this case, in the absence of a
histogram on the transaction date column, we would like the
optimizer to assume that the validation predicate has
selectivity = 1, instead of using a default magic number to
estimate the selectivity.

• Query-Driven Cardinality Injection: This represents the class
of cardinality information that is obtained by querying at
optimization time. All sampling based cardinality estimation
techniques fall in this category. For example, cardinality for
Join (S, R) may be estimated by size of Join (sample(S), R)
when the foreign key of S is the key of R.

• Cardinality Constraints: An application may be aware of
correlations in the data that are not explicitly declared or
modeled at the database level. The simplest example of a
cardinality constraint driven by application input is a key-
foreign key constraint specified to help optimizer find a
better estimate of join cardinality. Such a constraint might
not be declared at a schema level, since enforcing such
constraints at the database layer increase the cost of update
queries. As another example of application specified input,
consider a query containing the predicates (shipdate > @p
AND receiptdate > @p + 7). Since the application knows
the meaning of these attributes and that about 99% of all the
shipments reach within a week of from the shipdate, it may
issue a directive to ignore the second predicate for selectivity
estimation whenever the first predicate is present. This
example is reminiscent of semantic query optimization but
used narrowly here in the context of cardinality estimation

964

instead of query equivalence. Cardinality constraints can also
be guided by monitored usage information. For example, if
p1 is a predicate on column c1 and p2 is a predicate on
column c2, generalization from many instances of execution
feedback may lead to simple heuristics such as selectivity (p1
& p2) = (selectivity(p1) * selectivity (p2))/c12, where c12
captures the correlation of columns.

Note that cardinality injection is the simplest of the directives,
with an expression on the left hand side and a constant cardinality
value on its right. Query-driven cardinality injection is similar but
instead of a constant on the right, it specifies a computation that
would provide the cardinality information. Finally, cardinality
constraints represent the most general case with potentially
expressions on both sides. In this paper, we have not attempted to
define a language for cardinality constraints. Rather, our objective
is to motivate the need and utility for such directives.
It is important to reflect on computational implications of such
statistical directives. For example, leveraging an execution
feedback cache [6] for cardinality injection can be quite
expensive as this may sharply increase the overhead of query
expression matching at optimization time. The cost of query-
driven cardinality injection depends on the complexity of the
query expression and whether part (or all) of the query expression
has been pre-computed, e.g., if there is a materialized sample that
can be used. The above discussion brings home the point that
while statistical directives can greatly improve estimation quality,
it is necessary to be mindful of the cost-accuracy tradeoffs. As an
extreme example, one can pre-compute statistics on each query
expression that the optimizer needs to optimize the query, but this
is infeasible. Therefore, statistical directives need to be specified
judiciously as they impact performance.
As mentioned in Section 2.2, computing cardinality for
expressions for which no cardinality information has been
computed explicitly is a known challenge. In traditional histogram
based estimators, use of independence and containment
assumptions are leveraged to derive such estimation. But, the
problem changes as we start leveraging cardinality injection as in
[6]. Unlike the traditional framework that uses base table
histograms only, now there could be many cardinality expressions
whose value may be known via execution feedback. What should
be the principle for inferring cardinality of derived expressions?
Explicitly matching past cardinality observations (like view
matching) to help derive a new cardinality makes minimal use of
observed information as it can only answer queries for which an
exact match is found among the observations. Recent papers have
begun exploring using maximum entropy [5][13] principle to
obtain derived cardinality assumption. However, extending such
an approach when cardinality is known for complex query
expressions (not just selection queries) is not easy. Although a
general solution to this problem may not be feasible, exploring the
technical problem of inferring cardinality using probabilistic
techniques is important (see also [34]). Of course, the problem
only gets more difficult for cardinality constraints as they strictly
generalize the class of cardinality injection.
Beyond the challenge of estimating cardinality using statistical
inference, it is also important to identify what kind of pre-
computed structures can be built so that during optimization time
the inference of derived expressions is an efficient process. As an
example, consider self-tuning histograms. Such histograms

integrate past cardinality observations in a histogram structure (in
an offline way). This enables the future cardinality expressions to
be derived from the histogram during optimization time without
any additional overhead for computing cardinality. We need to
understand what would be appropriate summary structures in the
presence of general statistical directives so that impact on
optimization time is reduced. It may be necessary to investigate
more general summary structures (e.g., see [32]).

5. Search Framework Revisited
In contrast to statistical directives, providing guidance on search
requires a higher degree of sophistication. But, for experienced
DBAs, and ERP or CRM applications, search directives provide
an avenue to constrain the optimizer’s search behavior with fine-
grained intervention based on the knowledge of the application
and data. Given the heuristic nature of search algorithms in an
optimizer, search directives are useful in focusing the optimizer’s
enumeration on a subspace of possible execution plans. Of course,
it is very important that the system provides an interactive
experience for the application programmer to experiment with
appropriate search directives as we expect such directives to be
edited and revised before they are finalized.
We distinguish two kinds of search directives. The simpler class
of search directives consists of those that constrain the nature of
the execution plan chosen by the optimizer. We refer to them as
Execution Plan Directives. The other class of search directives,
called PlanSpace Directives makes it possible for the application
developer or the database administrator to constrain the way the
search algorithm explores the space of potential plans. We discuss
each of these now.
Execution Plan Directives: Such directives may be identified
based on knowledge from past experience, e.g., certain plans or
sub-plans that have traditionally worked well for the application.
They may also be based on knowledge of the execution
environment that the optimizer traditionally doesn’t model, such
as other queries that run concurrently and their impact on memory
contention or contention of physical structures. For example, we
may require a query to use a specific index to avoid creating
contention with the access plan for another query (that has already
been compiled) over the same relation. All commercial optimizers
provide the ability to specify optimizer hints that act as execution
plan directives, e.g., hints on access methods, join orders, choice
of physical operators for joins. However, the languages for such
hints have been ad-hoc. Although execution engines differ from
one another in the space of operators they support, for a core set
of logical and physical operators, we can have a uniform way to
represent and reason about execution plan constraints. One
possible direction is outlined in [14], which suggests defining
hints as structural patterns that must be present as a sub-
expression in the selected execution plan. Thus, the pattern [(R,S),
*, *] indicates that the join among four tables should start with a
join between R and S, without having to specify any constraints
on other details of the execution plan. Figure 3 shows another
example of a tree pattern in the Phints language in [14] that can
express a more sophisticated constraint. The query is a join of
three tables Customer, Orders and Lineitem. The pattern specifies
that there should be an early aggregation on Lineitem using a
Stream Aggregate operator, which allows preserving the order of
tuples in the Lineitem relation. The constraints in Figure 3
enforces that there should be a Hash Join between Customer and

965

Orders, where the Customer relation is the build side. Finally, the
pattern specifies that the last join should be a Merge Join (e.g.
because both inputs will be arriving in sorted order of the join
columns). Note also that unlike the join between Customer and
Orders, in this case the optimizer is free to choose the ordering for
the Merge Join (i.e. the Lineitem relation could be the Outer or
Inner).

Figure 3: An execution plan constraint for a query
PlanSpace Directives: These directives help influence how the
optimizer enumerates the search space. A few motivating
examples are given below:

• Expression Inclusion: Such a directive ensures that the
enumeration algorithm considers the given sub-expression as
part of its exploration of alternatives; e.g., expression
inclusion for a sub-expression Join (Sales, Product) of a
query Q requires that an optimal execution plan for the sub-
expression Join(Sales, Product) be generated as part of
enumeration of alternatives for Q. This ensures that the
optimal plan for Join(Sales, Product) is at hand when
optimization of Q is considered. Such a directive may be
motivated by the fact that the above sub-plan has been found
to have efficient execution and is considered a potentially
attractive subplan by the DBA for consideration by the
optimizer. Note that unlike Execution Plan directives, an
Expression Inclusion directive does not require the final plan
to include the subplan mentioned in the directive.

• Materialized Sub-expressions: If an expression inclusion
directive for an expression E has already been specified, we
can further strengthen it by requiring that the search
algorithm enumerate a sub-plan that materializes the result of
the expression E.

• Initial Plan Specification: This directive would enable DBA
or applications to provide an initial plan for seeding the
optimization process. A motivating scenario is plan stability.
Consider a case where the current plan for a query is
performing adequately. The DBA would like to ensure that
in case a recompilation is triggered, the current plan is
considered as an alternative by the optimizer as part of its
enumeration (if the optimizer determines that the initial plan
is still viable).

• Fixed Plan Set Specification: This directive constrains the
optimizer to pick the lowest cost plan from among a
specified set of plans. Observe that in this case the
optimizer’s search step is considerably simplified – indeed
the optimizer needs only to check that the specified plans are
valid, and compute their optimizer estimated costs. Such a

directive can be useful for parameterized queries when the
DBA already knows a set of good plans to choose from.
Consider the problem revealed by plan diagrams [25] that
there are too many optimal plans as selectivity is varied even
when the value of the cost function changes very little
(discussed in Section 2.2). Therefore, for a parameterized
query, it may be useful to identify first a set of plans through
optimizer invocations with different parameters that can
approximately have the same effect as that of the “reduced”
plan diagrams [26]. Once such plans are identified, the DBA
can use the Fixed Plan Set Specification directive to
constrain the optimizer to always pick the lowest cost plan
among these plans for any instance of that parameterized
query.

• Physical Implementation Preference: This constraint would
enable user/applications to specify trade-off between choice
of one physical operator over another, e.g., we can specify
that sequential scan on a particular relation is the default
access plan unless the gain by using an index seek is 20% or
more.

Despite their appeal in providing higher degree of customization
for experienced application developers, the key technical
challenge in implementing Execution and PlanSpace directives is
to make sure that these constraints can be “pushed down” and
integrated with the optimizer’s enumeration algorithm. This is
important not only to leverage the constraints to gain efficiency of
enumeration, but also to ensure that we maximize the chances of
satisfying the constraints. Unlike statistical directives, search
directives also have the added complication that these directives
potentially involve physical operators in the engine (e.g., physical
implementation) making it hard to standardize such directives
across multiple database systems. Therefore, a first step could be
to restrict ourselves to search directives that can be specified
using elements in the query language (i.e., using logical
operators).
Beyond supporting search directives, the optimizer can provide
additional information back to the application instead of returning
only the final execution plan. Specifically, the optimizer can
provide feedback on its progress of optimization when
optimization time is significant, e.g., for complex decision-
support queries. If the optimizer was to provide update on its
progress, it can help applications make explicit trade-offs between
optimization time and plan quality. To enable such an API,
optimizers should have the ability to produce a plan that
represents the “current best” execution plan based on its
exploration of the space of alternatives so far (perhaps after an
initial start-up time). This enables the DBA or the developer to
use a more rational basis to make an explicit tradeoff between the
optimization time and the quality of plans, e.g., the application
may decide to terminate the optimization if there has been a
significant reduction from the cost of the initial plan but the
average change in the cost of the “current best” plan has been less
than 3% over a recent time window. Along with the current best
plan, the optimizer can also provide feedback on which of the
search directives have been satisfied in the “current best” plan.
The effect of making explicit this concept of progress of
optimization also leads to an evaluation framework for the search
module of the optimizer. For a given query (with the same
statistical input and directives over the same execution engine),

966

the relative quality of two search strategies may be measured in
terms of (a) Time taken to produce an initial plan and its quality
and (b) Rate of improvement in the quality of plan with increasing
optimization time. Thus, a convenient conceptual framework to
evaluate the quality is that of anytime algorithms [10]. Such a
framework clearly explicates the trade-off between the time to
optimize the query and the quality of the plan independent of
internal knobs (e.g., optimization level) of optimizers. As an
example, consider Figure 4 which contrasts the “ideal” and a
“good” search strategy that reach a high quality plan relatively
quickly compared to a “bad” search strategy that takes a
prolonged time to find a plan with good quality. One impact of
adopting such an evaluation framework will be to discourage
optimizer designers from adopting less principled features such as
“time outs” or “optimizer levels”. Such an evaluation framework
and specifically the need to support an anytime model along with
directives can also impact the choice of the search algorithms
deeply. If we are to shift our focus from trying to identify the
globally best plan to the paradigm of getting a “current best” plan
and improving the selection over time, a fresh look at the search
algorithms may be appropriate, e.g., we may revisit randomized
combinatorial optimization techniques [11][12].

Figure 4: Anytime Framework for Search: Ideal, Good
(Optimizer 1) and Bad (Optimizer 2).

6. A Few Next Steps
In order for us to make today’s optimizer much more amenable to
application and monitored usage information, we see the
following as some of the key steps:

1. Collecting Empirical Information on Optimization: As
discussed in Section 3, we can gather significant information
for a database installation on execution as well as the
optimization step by wiring the optimization and execution
engines appropriately for detailed monitoring. The usage
information so obtained can help us understand many facets
of optimization such as relative effectiveness of new
transformations (or changes in the set of transformations),
effect of search space enumeration strategies on search
quality (based on time-outs and optimizer levels). Another
aspect that is poorly understood at this point is separating the
role of inaccurate statistics and search strategy in producing
lower quality plans. Overall, these kinds of studies will give
us a lot richer information to guide the specifics of redesign
of the query optimization architecture.

2. Developing Analysis Techniques for Usage Information:
This task is directly related to collection of usage
information. The raw usage information is not of value
unless we can use statistical means to identify patterns. The
first step in developing this analytic engine will be to use this
to identify statistical directives such as cardinality
constraints. There is an opportunity to use statistical machine
learning to derive such statistics directives.

3. Supporting statistical directives and execution plan
constraints: The above two steps provide the necessary
infrastructure to help generate directives. The key challenge
of course is to be able to leverage the directives for each of
optimizer’s core modules. Specifically, we need to be able to
integrate statistical directives as they can help provide
critical input for improving plan quality significantly.
Accomplishing this step will need reworking the core of
statistics estimation module as discussed in Section 4. After
we are able to tackle statistical directives, handling execution
plan directives (see Section 5) should be the next goal.
Execution plan directives generalize the class of ad-hoc
optimizer hints that are supported in today’s optimizers.

7. Conclusion
In this article, we briefly reviewed the state of the art in query
optimization. We suggested revisiting the contract we have with
the optimizer - they should be able to leverage significant
additional information from the application developer and usage
based analysis such as cardinality and search directives. Ideally,
the optimizer should also be able to support an anytime model of
query optimization that improves quality of plan as it continues
optimization. Finally for compiled parameterized queries, we
expect optimizers to improve selection of plans over time rather
than be restricted to “query in, plan out” model. There has been
work in research as well as in the industry on some facets of the
above challenges and we feel work along these directions needs to
be further accelerated.
Beyond what we have discussed in this paper, the usage
information can be leveraged even more deeply. Just as other
software (e.g., Microsoft Windows and Office) aggregate
information from large user bases to improve the products, there
is a similar opportunity for database vendors to aggregate usage
information from its large customer bases to potentially enhance
their respective database products.
More than any other time in recent history, database engines and
the software platforms today are at the cusp of significant
changes. This includes emergence of data analysis infrastructure
such as Map-Reduce, Cloud Data Services, Database Appliances
and Column-Oriented storage. While all our discussions in this
article focused on a traditional SQL query engine, we believe that
rethinking query optimization technology can have broad
implications for these new platforms as well. In fact, one may
argue that the opportunities for rethinking are even more in these
emerging platforms as they do not carry legacy of the past.

Acknowledgements
This paper has benefited from input from our colleagues at
Microsoft Research and Microsoft SQL Server. We would like to
specially thank Vivek Narasayya who gave much critical
feedback. Nico Bruno, Christian König, David Maier, Ravi

967

Ramamurthy, and Anil Nori provided much insightful comments.
We also thank David Dewitt, Mike Franklin, Goetz Graefe,
Waqar Hasan, James Hamilton, David Lomet, and Jennifer
Widom for their thoughtful review.

8. REFERENCES
[1] Selinger, P. et.al.: Access Path Selection in a Relational

Database Management System. SIGMOD 1979: 23-34
[2] Graefe, G.: The Cascades Framework for Query

Optimization. IEEE Data Eng. Bull. 18(3): 19-29 (1995)
[3] Pirahesh, H., Hellerstein, J.M., Hasan, W.: Extensible/Rule

Based Query Rewrite Optimization in Starburst. SIGMOD
Conference 1992: 39-48

[4] Aboulnaga, A., Chaudhuri, S.: Self-tuning Histograms:
Building Histograms Without Looking at Data. SIGMOD
1999: 181-192

[5] Srivastava, U. et.al. ISOMER: Consistent Histogram
Construction Using Query Feedback. ICDE 2006: 39

[6] Stillger, M. et.al.: LEO - DB2's LEarning Optimizer. VLDB
2001: 19-28

[7] Haas, P. J. et al.: Selectivity and Cost Estimation for Joins
Based on Random Sampling. JCSS. 52(3): 550-569 (1996)

[8] Kabra, N., DeWitt, D.: Efficient Mid-Query Re-Optimization
of Sub-Optimal Query Execution Plans. SIGMOD 1998

[9] Avnur, R., Hellerstein, J. M.: Eddies: Continuously Adaptive
Query Processing SIGMOD Conference 2000: 261-272

[10] Zilberstein, S.: Using Anytime Algorithms in Intelligent
Systems. AI Magazine 17(3): 73-83 (1996)

[11] Ioannidis, Y.E., Kang, Y. C.: Randomized Algorithms for
Optimizing Large Join Queries. SIGMOD Conference 1990

[12] Mayrhofer, R.: Generic Heuristics for Combinatorial
Optimization Problems. Proc. of the 9th International
Conference on Operational Research 2002

[13] Markl, V. et.al. Consistently Estimating the Selectivity of
Conjuncts of Predicates. VLDB 2005: 373-384

[14] Bruno, N., Chaudhuri, S., Ramamurthy, R.: Power Hints for
Query Optimization. IEEE ICDE 2009

[15] Chaudhuri, S., Narasayya V.R., Ramamurthy R.: A Pay-As-
You-Go framework for Query Execution Feedback. VLDB
2008

[16] Deshpande, A., Ives, Z. G., Raman, V.: Adaptive Query
Processing. Foundations and Trends in Databases, 2007

[17] Ioannidis, Y.E.: The History of Histograms (abridged).
VLDB 2003: 19-30

[18] Antoshenkov, G. Dynamic Query Optimization in
Rdb/VMS, IEEE ICDE 1993

[19] Cole, R.L., Graefe, G.: Optimization of Dynamic Query
Evaluation Plans. SIGMOD Conference 1994: 150-160

[20] Urhan, T. Franklin, M.J., Amsaleg, L.: Cost Based Query
Scrambling for Initial Delays. SIGMOD Conference 1998

[21] Chaudhuri, S.: An Overview of Query Optimization in
Relational Systems. PODS 1998: 34-43

[22] Ioannidis, Y.E., Christodoulakis, S.: On the Propagation of
Errors in the Size of Join Results. SIGMOD 1991: 268-277

[23] Acharya, S. et.al. : Join Synopses for Approximate Query
Answering. SIGMOD Conference 1999: 275-286

[24] Chaudhuri, S., Motwani, R., Narasayya, V.R.: On Random
Sampling over Joins. SIGMOD Conference 1999: 263-274

[25] Reddy, N., Haritsa, J.: Analyzing Plan Diagrams of Database
Query Optimizers. VLDB 2005: 1228-1240

[26] Harish D., Darera, P.N., Haritsa, J: On the Production of
Anorexic Plan Diagrams. VLDB 2007: 1081-1092

[27] Olken F., Rotem D.: Random Sampling from Database Files:
A Survey. SSDBM 1990: 92-111

[28] Galindo-Legaria C., et.al.: Statistics on Views. VLDB 2003
[29] Bruno N., Chaudhuri S.: Exploiting statistics on query

expressions for optimization. SIGMOD 2002: 263-274
[30] Lothar F. Mackert, Guy M. Lohman: R* Optimizer

Validation and Performance Evaluation for Local Queries.
SIGMOD 86

[31] Dageville B. et.al.: Automatic SQL Tuning in Oracle 10g.
VLDB 2004

[32] Getoor L., Taskar B., and Koller D.: (2001). Using
Probabilistic Models for Selectivity Estimation. SIGMOD
2001

[33] Chaudhuri S., Narasayya V.R., Ramamurthy R.: Diagnosing
Estimation Errors in Page Counts Using Execution
Feedback. ICDE 2008.

[34] Babcock B., Chaudhuri S.: Towards a Robust Query
Optimizer: A Principled and Practical Approach. SIGMOD
2005.

968

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

