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ABSTRACT 
Query Optimization is expected to produce good execution plans 
for complex queries while taking relatively small optimization 
time. Moreover, it is expected to pick the execution plans with 
rather limited knowledge of data and without any additional input 
from the application. We argue that it is worth rethinking this 
prevalent model of the optimizer. Specifically, we discuss how 
the optimizer may benefit from leveraging rich usage data and 
from application input. We conclude with a call to action to 
further advance query optimization technology.  

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Query Processing.  

General Terms 
Performance, Design, Experimentation 

Keywords 
Query optimizer, Cardinality Estimation. 

1. INTRODUCTION 
Query Optimization remains as relevant a problem as ever before, 
if not more. Modern day database workloads include On-line 
Transaction Processing Systems, Enterprise Resource Planning, 
Customer Relationship Management, On-line Analytical 
Processing and Data Analysis over Data-warehouses. The queries 
generated by these workloads are increasingly complex and the 
databases are larger than ever. Thus, the central role of query 
optimization that searches the space of different execution 
strategies and picks a good execution plan remains 
unquestionable.  
It has been thirty years since the publication of the System R 
paper on Query Optimization [1] that acted as the defining 
framework for query optimization. As we will review in the next 
section, significant progress has been made on several aspects of 
Query Optimization since the early days of relational databases. 
At the same time, certain fundamental difficulties remain. For 
example, cardinality estimation remains a difficult problem 
despite years of research activity, search algorithms in optimizers 
have significant ad-hoc elements to manage optimization time, 
and cost estimation is not able to take into account the current 
state of the server effectively.  

While there are no easy solutions to these problems, one line of 
thinking that has not been explored is revisiting the contract with 
the optimizer. The contract, as defined in [1], is well-intentioned 
as it imposed the least burden on applications: The optimizer will 
produce high-quality execution plans for all queries while taking 
relatively small optimization time with limited additional input 
such as histograms. But, by virtue of this contract, optimizers are 
also by design “closed” to additional information that can 
potentially help lessen the difficulties of the challenges mentioned 
above.  
In this paper, we share our initial thoughts on “opening up” the 
query optimizer so that each of its core modules (cardinality 
estimation, cost estimation and search) is capable of leveraging 
application input and past usage information. Such an approach 
also impacts how we build these components of the optimizer and 
we will discuss these consequences. The goal of this paper is to 
motivate the idea of opening up the optimizer rather than to 
present specifics of the interfaces we require of the optimizer.  
The first part of the paper is retrospective in nature. We begin by 
sketching the relevant history of query optimizers and we 
summarize the key technical challenges (Section 2). We then 
provide a broad overview of our proposal for enabling the 
optimizer to leverage additional input from the application or 
usage information (Section 3). The next two sections provide 
further elaboration of this approach for cardinality estimation and 
search components of the optimizer (Sections 4 and 5). We 
conclude with an outline of the a few steps that can help push the 
frontiers of query optimization (Section 6).  

2. The State of the Art in Query Optimization 
2.1 A Brief History 
The seminal System-R paper [1] provided a framework for query 
optimization that consisted of three pillars: (a) cardinality 
estimation for SQL expressions, (b) cost estimation for SQL 
execution plans (or partial plans) and (c) a dynamic programming 
based algorithm to search the space of execution plans. However, 
the paper also recognized that an ordering of tuples, even if 
locally suboptimal, may pay off globally. This was referred to as 
interesting orders. In many ways, this paper solved the query 
optimization problem quite well for the simple execution engines 
and relatively simple queries of that era.  
 
Over the next fifteen years since [1], the query execution engines 
became far more sophisticated with the addition of new logical 
and physical operators. Parallel database technology allowed 
relational systems to handle complex queries over very large data 
sets. The SQL engines started being used widely during this era 
for data warehousing and decision support systems. As a result, 
database systems started experiencing the need to handle more 
complex queries. Research on query optimization led to explosion 
of work on query rewrite rules [21]. Some of the rewrite rules, 
e.g., de-correlation and Magic sets, commuting Group By and join 
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operators were significant in terms of their potential effect on 
performance. The query optimization work during this period 
focused on building extensible query optimizer architectures to 
enable incorporation of new logical and physical operators as well 
as transformation rules. Two of the key research projects that 
addressed these challenges were Starburst [3] and 
Volcano/Cascades [2]. Around the same time, there was 
considerable amount of research on different types of histograms 
[17] that led to improved histogram structures.  

After query optimizer architectures stabilized in late 80s and mid-
90s, the research in core search architecture, new transformation 
rules, and new operators have been relatively less compared to 
earlier years. The key research direction that received attention 
since then is leveraging cardinality information from execution. 
To the best of our knowledge, we believe that the first use of 
execution feedback was made in DEC Rdb/VMS system [18]. The 
application of execution information in that system focused on 
single table access path selection. The key observation was that a 
priori selectivity estimation for a Boolean Expression will always 
be uncertain. However, by running two access path plans in 
competition, if there is an overwhelmingly better plan, then the 
winner may be identified in a relatively short time. Another line 
of work used sampling to estimate cardinality of query sub-
expression during query optimization [27]. This required 
sampling and thus accessing data at optimization time. Despite 
the appeal of accuracy, this technique was not adopted as it 
violated the expectation that the optimization time must be small. 
There was also related work on generation of dynamic plans 
where the choice among them was resolved at runtime [19]. More 
recent work on using execution feedback for cardinality can be 
broken down in two categories: 

• Offline: There are two offline usage scenarios. The first is 
use of the feedback information from selection queries to 
build self-tuning histograms over a single table [4][5]. The 
other is to use the cardinality information from execution of 
a more general class of multi-relational query expressions by 
looking up an “execution feedback cache” [6]. The self-
tuning histogram approaches are narrower in scope but they 
fold the execution feedback into the histogram structures 
thus resulting in no additional overhead during optimization. 
In contrast, the execution feedback cache based approach is 
more general but has higher overhead of optimization as it 
has to look for matches with query expressions from the 
cache.  

• During Query execution: One of the early examples of work 
in this direction is [8][20]. The key idea is to do mid-flight 
re-optimization with more accurate knowledge of cardinality, 
e.g., when the query execution reaches a blocking operator at 
that time the size of the intermediate result size is accurately 
known. It can then be used to re-optimize the remainder of 
the query. A degenerate version of such re-optimization was 
implemented in Teradata. The query processor of Teradata 
joined only two tables at a time, (with the results going to a 
spool/pseudo table). Thus, optimization and execution were 
interleaved as the optimizer needed to decide the next join at 
every step.  

A far more radical version of feedback-driven query execution is 
Eddies and its variants [9][16] but they require changes to the 
query execution engine. In this paper, we have focused only on 

the query optimizer component without requiring significant 
changes to the query execution engine. But, certainly in a broader 
context of redesigning database systems, changes to the execution 
engine can be considered and Eddies and its variants would be 
relevant in that context. There have also been proposals to create 
and maintain statistics on derived expressions [28][29]. However, 
the technical challenges are in many respects similar to that of 
leveraging execution feedback cache. 

2.2 A Critique of Today’s Query Optimizers  
Optimizers are able to handle amazingly complex queries often 
with quite satisfactory solutions. Despite their remarkable 
success, optimizers continue to have several significant 
challenges. Some of these have been discussed below.  

Cardinality Estimation: While single dimensional histograms 
over a column works satisfactorily by and large, multi-
dimensional histograms have not caught on. No multi-
dimensional histogram has been shown to be particularly effective 
given the inherent technical difficulty of finding appropriate 
bucket boundaries for n-dimensional space. Also, the space of 
multi-dimensional histograms is very large and the challenge of 
determining on which combinations of columns multi-
dimensional histograms are to be built, is also nontrivial. In 
contrast, sampling based techniques on single tables are 
fundamentally more robust as they can support selectivity 
estimation of arbitrary predicates on single tables but they require 
execution of queries over the sample at optimization time. 
Unfortunately, neither histograms nor sampling based scheme 
provide any simple answer to the difficult problem of estimating 
cardinality for expressions beyond the single table case. The 
independence assumption is used for histograms and it leads to 
very serious propagation of errors [22]. On the other hand, 
sampling over results of a complex sub-expression requires pre-
computing the join [23][24]. Execution feedback based techniques 
or statistics on query expressions (discussed in Section 2.1) allow 
us to avoid relying exclusively on optimizer’s built-in statistics 
estimators. However, to realize the benefit of such execution 
feedback, we need to make much progress on the current state of 
the art, as will be discussed in Sections 3 and 4.  

Cost Estimation: In today’s optimizers, the cost model is largely 
determined by the optimizer designer with possibilities of scaling 
a few fixed parameters at installation time. The knowledge of 
current system state information is not exploited while optimizing 
ad-hoc queries (that are executed immediately upon optimization) 
[30]. The inaccuracy in cost modeling, coupled with errors in 
cardinality estimation, also leads to inappropriate tradeoff in the 
time spent in optimization vs. its execution time, e.g., a long 
running query is not optimized sufficiently while a large amount 
of optimization time is spent on a much simpler query.  

Search Algorithm:  Extensible optimizers are significantly more 
capable compared to [1]. But, in their quest to enable optimization 
of complex queries without excessive optimization time, several 
pragmatic but ad-hoc elements have been introduced in search 
algorithms of all optimizers. It is fair to say that while optimizers 
tend to project the image that their search is “exhaustive”, in 
reality none are. For example, optimizers offer different “levels” 
of optimization where higher levels of setting promise more 
thorough exploration of the search space. However, beyond that 
description, the application or the user is left with little 
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understanding on how the optimization level will impact the 
quality of the plan and the optimization time. While the powerful 
set of rewrite rules have expanded the search space considered by 
the optimizers, they have also made the optimizer’s logic more 
complex. Coupled with the lack of accuracy in cardinality and 
cost estimation for queries, this has had undesirable effect on the 
quality of the plans chosen by the optimizer. Plan diagrams [25] 
have revealed that there are surprisingly many optimal plans as 
the selectivity is varied even when the value of the cost function 
changes very little. Figure 1 (borrowed from [25]) illustrates that 
for TPC-H Query 8 there are a large number of distinct optimal 
plans at different selectivities of the predicates on Lineitem and 
Supplier relations. Such Plan diagrams seem undesirable as 
changes in optimal plans are triggered by relatively little changes 
in the cost. For parameterized queries, it can result in many plan 
changes as the data evolves. Most DBAs view such a 
phenomenon warily. This is because frequent changes in plans 
coupled with the inaccuracies in cardinality and cost estimation, 
can lead to significant variance in the execution times of the 
parameterized query. The study of plan diagrams also showed that 
such changes of the optimal plans can potentially be reduced 
significantly if we settle for slightly suboptimal plans [26]. 
However, today’s optimizers provide us with no way for DBAs to 
leverage such a tradeoff.  

 
Figure 1: Plan diagram for TPC-H Query 8 

To be provocative, one can say that though the optimizers of 
today’s relational databases are able to do surprisingly 
sophisticated optimization because of the power of transformation 
rules and their extensible framework; yet they have significant 
weaknesses that lead to unexpectedly poor selection of execution 
plans at times.  

3. The Case for Rethinking the Contract 
The charter of the optimizer is to produce a high-quality 
execution plan while taking relatively small optimization time 
with limited additional input such as histograms. From the 
application development perspective, such a contract is 
convenient as optimizers require no knowledge of the application 
or data characteristics (beyond histograms). However, as 
discussed in the last section, there remain fundamental long-
standing challenges that don’t seem to have any satisfactory 
solution. Therefore, it may be worthwhile to critically reexamine 
the optimizer’s contract. 
While the above is a broad issue, we will look at one specific 
aspect. We suggest that the optimizer is made much more open to 
additional information beyond using only histograms that can 
potentially guide and aid its task.  In the rest of this section, we 

elaborate this idea in more detail and also outline some of the 
open challenges that we must solve if we are to leverage the 
ability of the optimizer to be more open to additional input from 
the application developer, DBA or the user. We should note that 
there are already several related initiatives in research and 
industry. Our proposal should be viewed as a call to accelerate 
further work in those directions (see also Section 2). 
Monitoring and Collection of Usage Information: Compared to 
database systems a decade ago, today’s database systems provide 
much more capabilities for monitoring the state of the database 
server and logging such information. For example, in Microsoft 
SQL Server, dynamic management views can provide snapshots 
of many facets of the state of the server and such information can 
be collected in SQL Server’s Performance Studio. Oracle, IBM 
DB2 and other DBMS vendors also provide infrastructure to 
capture their monitored system state. Such infrastructure allows 
us to capture SQL workload, their execution plans and observed 
cardinality of sub-expressions that are part of the final execution 
plans.  However, the above information alone is not rich enough 
to improve the optimizer’s behavior. For example, tracking 
cardinality of selected query sub-expressions that are not part of 
the final execution plan [15] can help optimizer improve the plan 
of a compiled query. Beyond cardinality estimation, another cost 
model parameter that can significantly affect plan quality is the 
number of distinct pages of a table accessed using an index 
lookup. Monitoring this parameter at low overhead during query 
execution can potentially help correct poor plan choices [33]. 
Monitoring need not be limited to query execution. There is 
potential to use monitoring of the query optimization phase to 
influence the search module.  Furthermore, optimizers could also 
expose information that summarizes its progress when 
optimization time becomes significant (See Section 5). 
Understanding the space of low-overhead monitoring that the 
optimizer can leverage to improve itself deserves more work.  
Analysis of Monitored Information: Effective analysis of the data, 
either during optimization or in background mode, is what makes 
monitored information valuable. So far, we have made rather 
shallow use of such analysis. For example, leveraging multi-
relation execution feedback for cardinality, as in [6], requires us 
to use view matching like technology at optimization time which 
can introduce significant overhead if the feedback cache is large. 
There is an opportunity to bring to bear statistical inference 
techniques to the above problem (See Section 4). Oracle’s 
Automatic Tuning Optimizer [31] is an example of an 
optimization mode that uses execution information to create a 
SQL Profile for queries. There is a need to expand such work on 
analysis significantly. This is particularly important as such 
analysis cannot be done easily by the application developer or 
DBAs.  
Application and Contextual Knowledge: While monitored and 
usage data can be very valuable, this is not the only source of 
additional input that the optimizer could leverage. Influencing 
behavior of the optimizers are of direct interest specifically to 
performance-sensitive Enterprise Resource Planning (ERP) or 
Customer Relationship Management (CRM) applications since 
they have business incentives to optimize performance 
characteristics of their applications. Often, these applications have 
a model for their code generation that has implication for 
characteristics of their queries. Such application knowledge can 
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be used to guide the optimizer’s search space. Section 5 provides 
more details of such opportunities. 

 
  Figure 2: A Core Optimizer that accepts Directives 
 
Need for Injecting Directives: As discussed above, monitored 
information (appropriately analyzed), application knowledge or a 
combination of the above two can be sources of additional 
information for the optimizer. Such information may be related to 
cardinality or can provide guidance for its search module. 
Therefore, it is important that the optimizer has appropriate APIs 
that can be used to influence its behavior using such additional 
information. In Sections 4 and 5 we discuss the directives related 
to cardinality estimation and the search module respectively.  
A conceptual view of our proposed optimization framework has 
been captured in Figure 2. Its key characteristics are using 
monitoring, doing analysis leveraging collected information (in a 
background mode as well as during optimization) and using APIs 
for directives to influence the behavior of the optimizer. This 
paper would primarily focus on directives and some limited 
aspect of the analysis problem.  
The directives may target cardinality estimation, cost estimation 
or the search module. As discussed above, directives can be 
obtained via analysis of monitored information (by the optimizer 
itself) or from application or DBA knowledge. One other aspect 
of the framework that is worth highlighting is that the optimizer 
does not communicate back only the choice of an execution plan. 
Rather, we expect the optimizer to provide additional meta-
information to the application. 
Although the diagram shows the directives to be attached to 
queries, they can also have broader scope of a session and 
beyond. We expect this architecture to be of more immediate 
interest to compiled queries rather than ad-hoc queries although 
monitored information can also potentially aid the ad-hoc queries.  
It may appear that our proposal will increase the cost of building 
applications by requiring that the applications judiciously pick 
directives to influence the optimizer. While some sophisticated 
applications will certainly build custom directive generators that 
integrate deep application knowledge, the default directive 
generators may be entirely driven by the optimizer itself through 

its analysis of monitored information. In such cases, the query 
directive generation is a component of the query optimizer itself, 
invoked in a special mode.  
Making an optimizer open to additional information has other 
implications. We need to be thoughtful about what we need to do 
as a background activity vs. what needs to be done during 
optimization. Also, we need not assume that the optimizer must 
have today’s simple “query in, execution plan out” model. Rather, 
for compiled queries (e.g., stored procedures in Microsoft SQL 
Server) it makes perfect sense to produce an initial plan and then 
potentially continue additional monitoring to improve the quality 
of the plan.  
The next two sections motivate the use of directives for 
cardinality and search modules and study the technical challenges 
for a directive-aware optimizer. Note that such an approach also 
affects the cost estimation module but we do not include a 
discussion of that in this paper. 

4. Cardinality Estimation Revisited 
Our goal is to bring architectural openness to the statistical 
module, i.e., make the statistics module amenable to richer set of 
statistical directives. Examples of richer directives include:  

• Cardinality Injection: Explicit sources for cardinality 
injection can be either from execution feedback [4][6], or 
from direct application input. Examples of the latter are 
validation predicates that are expected to have a selectivity 
close to one, e.g., while reporting total sales for winter 
jackets over the third quarter that is kept in a stored table, a 
redundant data validation predicate (filter) may be added to 
the query which checks that the date of the transaction is 
indeed in the third quarter. In this case, in the absence of a 
histogram on the transaction date column, we would like the 
optimizer to assume that the validation predicate has 
selectivity = 1, instead of using a default magic number to 
estimate the selectivity.   

• Query-Driven Cardinality Injection: This represents the class 
of cardinality information that is obtained by querying at 
optimization time. All sampling based cardinality estimation 
techniques fall in this category. For example, cardinality for 
Join (S, R) may be estimated by size of Join (sample(S), R) 
when the foreign key of S is the key of R. 

• Cardinality Constraints: An application may be aware of 
correlations in the data that are not explicitly declared or 
modeled at the database level. The simplest example of a 
cardinality constraint driven by application input is a key-
foreign key constraint specified to help optimizer find a 
better estimate of join cardinality. Such a constraint might 
not be declared at a schema level, since enforcing such 
constraints at the database layer increase the cost of update 
queries. As another example of application specified input, 
consider a query containing the predicates (shipdate > @p 
AND receiptdate > @p + 7). Since the application knows 
the meaning of these attributes and that about 99% of all the 
shipments reach within a week of from the shipdate, it may 
issue a directive to ignore the second predicate for selectivity 
estimation whenever the first predicate is present. This 
example is reminiscent of semantic query optimization but 
used narrowly here in the context of cardinality estimation 
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instead of query equivalence. Cardinality constraints can also 
be guided by monitored usage information. For example, if 
p1 is a predicate on column c1 and p2 is a predicate on 
column c2, generalization from many instances of execution 
feedback may lead to simple heuristics such as selectivity (p1 
& p2) = (selectivity(p1) * selectivity (p2))/c12, where c12 
captures the correlation of columns. 

Note that cardinality injection is the simplest of the directives, 
with an expression on the left hand side and a constant cardinality 
value on its right. Query-driven cardinality injection is similar but 
instead of a constant on the right, it specifies a computation that 
would provide the cardinality information. Finally, cardinality 
constraints represent the most general case with potentially 
expressions on both sides.  In this paper, we have not attempted to 
define a language for cardinality constraints. Rather, our objective 
is to motivate the need and utility for such directives. 
It is important to reflect on computational implications of such 
statistical directives. For example, leveraging an execution 
feedback cache [6] for cardinality injection can be quite 
expensive as this may sharply increase the overhead of query 
expression matching at optimization time. The cost of query-
driven cardinality injection depends on the complexity of the 
query expression and whether part (or all) of the query expression 
has been pre-computed, e.g., if there is a materialized sample that 
can be used. The above discussion brings home the point that 
while statistical directives can greatly improve estimation quality, 
it is necessary to be mindful of the cost-accuracy tradeoffs. As an 
extreme example, one can pre-compute statistics on each query 
expression that the optimizer needs to optimize the query, but this 
is infeasible. Therefore, statistical directives need to be specified 
judiciously as they impact performance. 
As mentioned in Section 2.2, computing cardinality for 
expressions for which no cardinality information has been 
computed explicitly is a known challenge. In traditional histogram 
based estimators, use of independence and containment 
assumptions are leveraged to derive such estimation. But, the 
problem changes as we start leveraging cardinality injection as in 
[6]. Unlike the traditional framework that uses base table 
histograms only, now there could be many cardinality expressions 
whose value may be known via execution feedback. What should 
be the principle for inferring cardinality of derived expressions? 
Explicitly matching past cardinality observations (like view 
matching) to help derive a new cardinality makes minimal use of 
observed information as it can only answer queries for which an 
exact match is found among the observations. Recent papers have 
begun exploring using maximum entropy [5][13] principle to 
obtain derived cardinality assumption. However, extending such 
an approach when cardinality is known for complex query 
expressions (not just selection queries) is not easy. Although a 
general solution to this problem may not be feasible, exploring the 
technical problem of inferring cardinality using probabilistic 
techniques is important (see also [34]). Of course, the problem 
only gets more difficult for cardinality constraints as they strictly 
generalize the class of cardinality injection.  
Beyond the challenge of estimating cardinality using statistical 
inference, it is also important to identify what kind of pre-
computed structures can be built so that during optimization time 
the inference of derived expressions is an efficient process. As an 
example, consider self-tuning histograms. Such histograms 

integrate past cardinality observations in a histogram structure (in 
an offline way). This enables the future cardinality expressions to 
be derived from the histogram during optimization time without 
any additional overhead for computing cardinality. We need to 
understand what would be appropriate summary structures in the 
presence of general statistical directives so that impact on 
optimization time is reduced. It may be necessary to investigate 
more general summary structures (e.g., see [32]).  

5. Search Framework Revisited  
In contrast to statistical directives, providing guidance on search 
requires a higher degree of sophistication. But, for experienced 
DBAs, and ERP or CRM applications, search directives provide 
an avenue to constrain the optimizer’s search behavior with fine-
grained intervention based on the knowledge of the application 
and data. Given the heuristic nature of search algorithms in an 
optimizer, search directives are useful in focusing the optimizer’s 
enumeration on a subspace of possible execution plans. Of course, 
it is very important that the system provides an interactive 
experience for the application programmer to experiment with 
appropriate search directives as we expect such directives to be 
edited and revised before they are finalized.  
We distinguish two kinds of search directives. The simpler class 
of search directives consists of those that constrain the nature of 
the execution plan chosen by the optimizer. We refer to them as 
Execution Plan Directives. The other class of search directives, 
called PlanSpace Directives makes it possible for the application 
developer or the database administrator to constrain the way the 
search algorithm explores the space of potential plans. We discuss 
each of these now. 
Execution Plan Directives: Such directives may be identified 
based on knowledge from past experience, e.g., certain plans or 
sub-plans that have traditionally worked well for the application. 
They may also be based on knowledge of the execution 
environment that the optimizer traditionally doesn’t model, such 
as other queries that run concurrently and their impact on memory 
contention or contention of physical structures. For example, we 
may require a query to use a specific index to avoid creating 
contention with the access plan for another query (that has already 
been compiled) over the same relation. All commercial optimizers 
provide the ability to specify optimizer hints that act as execution 
plan directives, e.g., hints on access methods, join orders, choice 
of physical operators for joins. However, the languages for such 
hints have been ad-hoc. Although execution engines differ from 
one another in the space of operators they support, for a core set 
of logical and physical operators, we can have a uniform way to 
represent and reason about execution plan constraints. One 
possible direction is outlined in [14], which suggests defining 
hints as structural patterns that must be present as a sub-
expression in the selected execution plan. Thus, the pattern [(R,S), 
*, *] indicates that the join among four tables should start with a 
join between R and S, without having to specify any constraints 
on other details of the execution plan. Figure 3 shows another 
example of a tree pattern in the Phints language in [14] that can 
express a more sophisticated constraint. The query is a join of 
three tables Customer, Orders and Lineitem. The pattern specifies 
that there should be an early aggregation on Lineitem using a 
Stream Aggregate operator, which allows preserving the order of 
tuples in the Lineitem relation. The constraints in Figure 3 
enforces that there should be a Hash Join between Customer and 
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Orders, where the Customer relation is the build side. Finally, the 
pattern specifies that the last join should be a Merge Join (e.g. 
because both inputs will be arriving in sorted order of the join 
columns). Note also that unlike the join between Customer and 
Orders, in this case the optimizer is free to choose the ordering for 
the Merge Join (i.e. the Lineitem relation could be the Outer or 
Inner).  

 
 

Figure 3: An execution plan constraint for a query  
PlanSpace Directives: These directives help influence how the 
optimizer enumerates the search space. A few motivating 
examples are given below: 

• Expression Inclusion: Such a directive ensures that the 
enumeration algorithm considers the given sub-expression as 
part of its exploration of alternatives; e.g., expression 
inclusion for a sub-expression Join (Sales, Product) of a 
query Q requires that an optimal execution plan for the sub-
expression Join(Sales, Product) be generated as part of 
enumeration of alternatives for Q. This ensures that the 
optimal plan for Join(Sales, Product) is at hand when 
optimization of Q  is considered. Such a directive may be 
motivated by the fact that the above sub-plan has been found 
to have efficient execution and is considered a potentially 
attractive subplan by the DBA for consideration by the 
optimizer. Note that unlike Execution Plan directives, an 
Expression Inclusion directive does not require the final plan 
to include the subplan mentioned in the directive. 

• Materialized Sub-expressions: If an expression inclusion 
directive for an expression E has already been specified, we 
can further strengthen it by requiring that the search 
algorithm enumerate a sub-plan that materializes the result of 
the expression E.  

• Initial Plan Specification: This directive would enable DBA 
or applications to provide an initial plan for seeding the 
optimization process. A motivating scenario is plan stability. 
Consider a case where the current plan for a query is 
performing adequately. The DBA would like to ensure that 
in case a recompilation is triggered, the current plan is 
considered as an alternative by the optimizer as part of its 
enumeration (if the optimizer determines that the initial plan 
is still viable).   

• Fixed Plan Set Specification: This directive constrains the 
optimizer to pick the lowest cost plan from among a 
specified set of plans. Observe that in this case the 
optimizer’s search step is considerably simplified – indeed 
the optimizer needs only to check that the specified plans are 
valid, and compute their optimizer estimated costs. Such a 

directive can be useful for parameterized queries when the 
DBA already knows a set of good plans to choose from. 
Consider the problem revealed by plan diagrams [25] that 
there are too many optimal plans as selectivity is varied even 
when the value of the cost function changes very little 
(discussed in Section 2.2). Therefore, for a parameterized 
query, it may be useful to identify first a set of plans through 
optimizer invocations with different parameters that can 
approximately have the same effect as that of the “reduced” 
plan diagrams [26]. Once such plans are identified, the DBA 
can use the Fixed Plan Set Specification directive to 
constrain the optimizer to always pick the lowest cost plan 
among these plans for any instance of that parameterized 
query.  

• Physical Implementation Preference: This constraint would 
enable user/applications to specify trade-off between choice 
of one physical operator over another, e.g., we can specify 
that sequential scan on a particular relation is the default 
access plan unless the gain by using an index seek is 20% or 
more.  

Despite their appeal in providing higher degree of customization 
for experienced application developers, the key technical 
challenge in implementing Execution and PlanSpace directives is 
to make sure that these constraints can be “pushed down” and 
integrated with the optimizer’s enumeration algorithm. This is 
important not only to leverage the constraints to gain efficiency of 
enumeration, but also to ensure that we maximize the chances of 
satisfying the constraints. Unlike statistical directives, search 
directives also have the added complication that these directives 
potentially involve physical operators in the engine (e.g., physical 
implementation) making it hard to standardize such directives 
across multiple database systems. Therefore, a first step could be 
to restrict ourselves to search directives that can be specified 
using elements in the query language (i.e., using logical 
operators). 
Beyond supporting search directives, the optimizer can provide 
additional information back to the application instead of returning 
only the final execution plan. Specifically, the optimizer can 
provide feedback on its progress of optimization when 
optimization time is significant, e.g., for complex decision-
support queries. If the optimizer was to provide update on its 
progress, it can help applications make explicit trade-offs between 
optimization time and plan quality. To enable such an API, 
optimizers should have the ability to produce a plan that 
represents the “current best” execution plan based on its 
exploration of the space of alternatives so far (perhaps after an 
initial start-up time).  This enables the DBA or the developer to 
use a more rational basis to make an explicit tradeoff between the 
optimization time and the quality of plans, e.g., the application 
may decide to terminate the optimization if there has been a 
significant reduction from the cost of the initial plan but the 
average change in the cost of the “current best” plan has been less 
than 3% over a recent time window. Along with the current best 
plan, the optimizer can also provide feedback on which of the 
search directives have been satisfied in the “current best” plan. 
The effect of making explicit this concept of progress of 
optimization also leads to an evaluation framework for the search 
module of the optimizer. For a given query ( with the same 
statistical input and directives over the same execution engine), 
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the relative quality of two search strategies may be measured in 
terms of (a) Time taken to produce an initial plan and its quality 
and (b) Rate of improvement in the quality of plan with increasing 
optimization time. Thus, a convenient conceptual framework to 
evaluate the quality is that of anytime algorithms [10]. Such a 
framework clearly explicates the trade-off between the time to 
optimize the query and the quality of the plan independent of 
internal knobs (e.g., optimization level) of optimizers. As an 
example, consider Figure 4 which contrasts the “ideal” and a 
“good” search strategy that reach a high quality plan relatively 
quickly compared to a “bad” search strategy that takes a 
prolonged time to find a plan with good quality. One impact of 
adopting such an evaluation framework will be to discourage 
optimizer designers from adopting less principled features such as 
“time outs” or “optimizer levels”. Such an evaluation framework 
and specifically the need to support an anytime model along with 
directives can also impact the choice of the search algorithms 
deeply. If we are to shift our focus from trying to identify the 
globally best plan to the paradigm of getting a “current best” plan 
and improving the selection over time, a fresh look at the search 
algorithms may be appropriate, e.g., we may revisit randomized 
combinatorial optimization techniques [11][12]. 

  
 
Figure 4: Anytime Framework for Search: Ideal, Good 
(Optimizer 1) and Bad (Optimizer 2). 

6. A Few Next Steps 
In order for us to make today’s optimizer much more amenable to 
application and monitored usage information, we see the 
following as some of the key steps: 

1. Collecting Empirical Information on Optimization: As 
discussed in Section 3, we can gather significant information 
for a database installation on execution as well as the 
optimization step by wiring the optimization and execution 
engines appropriately for detailed monitoring. The usage 
information so obtained can help us understand many facets 
of optimization such as relative effectiveness of new 
transformations (or changes in the set of transformations), 
effect of search space enumeration strategies on search 
quality (based on time-outs and optimizer levels). Another 
aspect that is poorly understood at this point is separating the 
role of inaccurate statistics and search strategy in producing 
lower quality plans. Overall, these kinds of studies will give 
us a lot richer information to guide the specifics of redesign 
of the query optimization architecture.   

2. Developing Analysis Techniques for Usage Information: 
This task is directly related to collection of usage 
information. The raw usage information is not of value 
unless we can use statistical means to identify patterns. The 
first step in developing this analytic engine will be to use this 
to identify statistical directives such as cardinality 
constraints. There is an opportunity to use statistical machine 
learning to derive such statistics directives.  

3. Supporting statistical directives and execution plan 
constraints: The above two steps provide the necessary 
infrastructure to help generate directives. The key challenge 
of course is to be able to leverage the directives for each of 
optimizer’s core modules. Specifically, we need to be able to 
integrate statistical directives as they can help provide 
critical input for improving plan quality significantly. 
Accomplishing this step will need reworking the core of 
statistics estimation module as discussed in Section 4. After 
we are able to tackle statistical directives, handling execution 
plan directives (see Section 5) should be the next goal. 
Execution plan directives generalize the class of ad-hoc 
optimizer hints that are supported in today’s optimizers.  

7. Conclusion 
In this article, we briefly reviewed the state of the art in query 
optimization. We suggested revisiting the contract we have with 
the optimizer - they should be able to leverage significant 
additional information from the application developer and usage 
based analysis such as cardinality and search directives.  Ideally, 
the optimizer should also be able to support an anytime model of 
query optimization that improves quality of plan as it continues 
optimization. Finally for compiled parameterized queries, we 
expect optimizers to improve selection of plans over time rather 
than be restricted to “query in, plan out” model. There has been 
work in research as well as in the industry on some facets of the 
above challenges and we feel work along these directions needs to 
be further accelerated. 
Beyond what we have discussed in this paper, the usage 
information can be leveraged even more deeply. Just as other 
software (e.g., Microsoft Windows and Office) aggregate 
information from large user bases to improve the products, there 
is a similar opportunity for database vendors to aggregate usage 
information from its large customer bases to potentially enhance 
their respective database products.  
More than any other time in recent history, database engines and 
the software platforms today are at the cusp of significant 
changes. This includes emergence of data analysis infrastructure 
such as Map-Reduce, Cloud Data Services, Database Appliances 
and Column-Oriented storage. While all our discussions in this 
article focused on a traditional SQL query engine, we believe that 
rethinking query optimization technology can have broad 
implications for these new platforms as well. In fact, one may 
argue that the opportunities for rethinking are even more in these 
emerging platforms as they do not carry legacy of the past. 
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