Lecture 10: Sampling from Databases Final Review Tuesday, June 2nd, 2009

1

Outline

- Sampling from databases
 Not on the final, but useful anyway…
- Final review

Bernoulli Distribution

Consider the following random variable X

- X = 0 with probability 1-p
- X = 1 with probability p

What are the atomic events ?

What is the expected value of X?

Bernoulli Distribution

Consider the following random variable X

- X = 0 with probability 1-p
- X = 1 with probability p

What are the atomic events ?

A: {0, 1}, p₀ = 1-p, p₁ = p
 What is the expected value of X ?

Binomial Distribution

- Let n independent and identically distributed (iid) Bernoulli variables X₁, ..., X_n
- Define the random variable $X = X_1 + ... + X_n$
- Or their average: $Y = (X_1 + \dots + X_n)/n$

Binomial Distribution

 $X = X_1 + ... + X_n$ What are the atomic events ?

What is the expected value of X?

Binomial Distribution

 $X = X_1 + \dots + X_n$

What are the atomic events ?

- A: set of atomic events is {0,1}ⁿ
 What is the expected value of X ?
- E[X] = np, assuming X₁ ... X_n are identical and E[X₁] = ... = E[X_n] = p

Example: Binomial Distribution

A compute the *density* of $X = X_1 + ... + X_n$:

- $P[X=0] = \binom{n}{0}(1-p)^n$
- $P[X=1] = \binom{n}{1}p(1-p)^{n-1}$
- •
- $P[X=k] = \binom{n}{k}p^{k}(1-p)^{n-k}$
- •
- P[X=n] = (ⁿ_n)pⁿ

Density of Y = (X1 + ... + Xn) / n, when p=0.8

Random Sampling from Databases

- Given a relation R = $\{t_1, ..., t_n\}$
- Compute a sample S of R

- Given a relation $R = \{t_1, ..., t_n\}$
- Compute random element s of R

Q: What is the probability space ?

- Given a relation R = $\{t_1, ..., t_n\}$
- Compute random element s of R

Q: What is the probability space ?
A: Atomic events: t₁, ..., t_n, Probabilities: 1/n, 1/n, ..., 1/n

```
Sample(R) {
  r = random_number(0..2<sup>32</sup>-1);
  n = |R|;
  s = "the (r % n)'th element of R"
  return s;
}
```

Sequential scan

Sample(R) {
 forall x in R do {
 r = random_number[0..1];
 if (r ≤ ???) s = x;
 }
 return s;
}

Fill in the ??? Note the challenge: we don't use the size of R

Sequential scan

Sample(R) { k = 1; forall x in R do { r = random_number[0..1]; if (r ≤ 1/k++) s = x; } return s;

Note: need to scan R fully. How can we stop early ?

Sequential scan: use the size of R

Sample(R) { k = 0; forall x in R do { k++; r = random_number[0..1]; if (r ≤ 1/(n - k +1) return x; } return s; }

Binomial Sample

In practice we want a sample > 1

Sample(R) { S = emptyset; forall x in R do { $r = random_number[0..1];$ if (r \leq p) insert(S,x); return S; }

What is the problem with binomial sample ?

Binomial Sample

- The size of the sample S is not fixed
- Instead it is a random binomial variable of expected size pn
- In practice we want a guarantee on the sample size, i.e. we want the sample size = m

Fixed Size Sample

Problem:

- Given relation R with n elements
- Given m > 0
- Sample m distinct values from R

What is the probability space ?

Fixed Size Sample

Problem:

- Given relation R with n elements
- Given m > 0
- Sample m distinct values from R

What is the probability space ?

A: all subsets of R of size m, each has probability 1/(ⁿ_m)

Reservoir Sampling: known population size

Here we want a sample S of fixed size m from a set R of known size n

Sample(R) { S = emptyset; k = 0; forall x in R do { k++; p = (m-|S|)/(n-k+1) $r = random_number[0..1];$ if (r $\leq p$) insert(S,x); return S;

Reservoir Sampling: unknown population size

```
Sample(R) { S = emptyset; k = 0;
 forall x in R do
     p = |S|/k++
     r = random number[0..1];
     if (r \le p) if (|S|=m) remove a random
                            element from S;
                 insert(S,x);
  return S;
```

Question

• What is the disadvantage of not knowing the population size ?

Sampling from a B+ Tree

- Sample a single record s from the leaves of the B+ tree
 - Make sure each record has the same probability !
- Sample a set of records S from the leaves of the B+ tree
 - Same idea, but more complicated
 - Omitted in class

Sampling from a B+ Tree

- Start from the root node x₁
- If x_i has fanout f_i, choose one child at random
 - Each child has probability 1/f_i
- If x_h is a leaf with f_h records, choose a record at random
 - Each record has probability 1/f_h

A Problem...

A Problem...

- Consider a record s in a leaf, and let f₁, f₂, ..., f_h be the fanouts from the root to that record
- The probability that this leaf record is selected is:

$$p(s) = 1/f_1f_2...f_h$$

We want this probability to be independent on the path !

A Solution !

- Use rejection sampling !
- Let f_{max} = maximum fanout
- At each node x_i:
 - With probability f_i/f_{max} accept the choice of the child, and continue
 - With remaining probability reject, and start all over

Why This Works

The probability that a record s is selected is:

$$p(s) = 1/f_1f_2...f_h$$

• The probability that this path is accepted (not rejected) is:

$$accept(s) = f_1/f_{max} \times f_2/f_{max} \times ... \times f_h/f_{max}$$

After multiplying them \rightarrow independent on the path

Sampling from a B+ Tree

- Rejection sampling needs multiple trials to return one sample
 - The expected number of trials:
 1/accept(s) ≈ f_{max}/f₁ × f_{max}/f₂ ×...× f_{max}/f_h
- Improvements: if we knew the number of records in each subtree then we could use weighted sampling
 - Why don't we store the number of records in each subtree of a B+ tree ?

Summary of this Course

Roles we played:

- Data manager / administrator:
 - SQL, database design, tuning
- Application writer
 JDBC, Transactions
- Systems developer
 - Implementation, query processing
- General-purpose data user:
 - XML, sampling

What We Have Not Covered

- Parallel databases
 - Old stuff: parallel operators (joins, groupby)
 - Hot stuff: map/reduce, Scope, Dryad...
- Database as a service
 - Bottom line: less functionality for less cost
- Lots of adjacent topics:
 - Data mining, data privacy, uncertain/ probabilistic data

The Final

- Open books, open notes, access to the computer.
- No communication/collaborations allowed with your colleagues.
- Questions ? Send email

The Final

- Posted: Tuesday, June 2nd, 9:30pm.
- Turn in by: Thursday, June 4th, 11:59pm.
- <u>https://catalysttools.washington.edu/</u> <u>collectit/dropbox/bhushan/5598</u>
- What to turn in: text file, or Word file.
- WRITE YOUR NAME !

Problem 1: Relational Model

- SQL ! Both schema design and queries
- Same level of difficulty as homework
- Note: you don't need to test your SQL queries

Problem 2: FDs and DB Design

- Review the theory of FDs
- Lecture notes should suffice here

Problem 3: Transactions

Concurrency control

- Use lecture notes and/or book

- Recovery
 - Note: the book has an excellent description of ARIES

Problem 4: Indexes

• A little, fun question on a clever use of an index...

Problem 5: Query Execution/ Optimization

- From SQL \rightarrow Relational Algebra
- Make sure you understand how to compute the cost of a plan
 - Lecture notes are helpful here
- Algebraic identities

Problem 6: XML/XPath/XQuery

 You will have to write some simple XPath, XQuery expressions

The End