
1

Lecture 6:
Data Storage and Indexes

Tuesday, February 13, 2007

2

Outline

• Storage and indexing: Chapter 8

• B+ trees: Chapter 10

• Hash-based indexes: Chapter 11

3

Disks and Files

• DBMS stores information on (hard) disks.

• This has major implications for DBMS design!
– READ: transfer data from disk to main memory

– WRITE: transfer data from RAM to disk.

• Both are high-cost operations, relative to in-
memory operations, so must be planned carefully!

4

Why Not Store Everything in
Main Memory?

• Costs too much. $1000 will buy you either
128MB of RAM or 7.5GB of disk today.

• Main memory is volatile. We want data to be
saved between runs. (Obviously!)

• Typical storage hierarchy:
– Main memory (RAM) for currently used data.

– Disk for the main database (secondary storage).

– Tapes for archiving older versions of the data (tertiary
storage).

5

Arranging Pages on Disk

• Block concept:
– blocks on same track, followed by
– blocks on same cylinder, followed by
– blocks on adjacent cylinder

• Blocks in a file should be arranged sequentially on
disk (by `next’), to minimize seek and rotational
delay.

• For a sequential scan, pre-fetching several pages at
a time is a big win!

6

Representing Data Elements

• Relational database elements:

• A tuple is represented as a record
• The table is a sequence of records

CREATE TABLE Product (

pid INT PRIMARY KEY,
name CHAR(20),
description VARCHAR(200),
maker CHAR(10) REFERENCES Company(name)

)

CREATE TABLEProduct (

pid INT PRIMARY KEY,
name CHAR(20),
description VARCHAR(200),
maker CHAR(10) REFERENCES Company(name)

)

7

Issues

• Managing free blocks

• Represent the records inside the blocks

• Represent attributes inside the records

8

Managing Free Blocks

• By the OS

• By the RDBMS (typical: why ?)
– Linked list of free blocks

– Bit map

9

Managing Free Blocks

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:
Data
page

Data
page

Full pages

Pages with some free space

10

Managing Free Blocks

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header

11

Page Formats

Issues to consider

• 1 page = fixed size (e.g. 8KB)

• Records:
– Fixed length

– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)

Why do we need RID’s in a relational DBMS ?

12

Page Formats

Fixed-length records: packed representation

Free space N

Rec NRec 2Rec 1

Problems ?

13

Page Formats

Free space

Slot directory

Variable-length records

14

Record Formats: Fixed Length

• Information about field types same for all
records in a file; stored in system catalogs.

• Finding i’th field requires scan of record.
• Note the importance of schema information!

Base address (B)

L1 L2 L3 L4

pid name descr maker

Address = B+L1+L2

Product (pid, name, descr, maker)Product (pid, name, descr, maker)

15

Record Header

L1 L2 L3 L4

To schema

length

timestamp

Need the header because:
•The schema may change

for a while new+old may coexist
•Records from different relations may coexist

header

pid name descr maker

16

Variable Length Records

L1 L2 L3 L4

Other header information

length

Place the fixed fields first: F1
Then the variable length fields: F2, F3, F4
Null values take 2 bytes only
Sometimes they take 0 bytes (when at the end)

header pid name descr maker

17

BLOB

• Binary large objects

• Supported by modern database systems

• E.g. images, sounds, etc.

• Storage: attempt to cluster blocks together

CLOB = character large object

• Supports only restricted operations

18

File Organizations

• Heap (random order) files: Suitable when typical
access is a file scan retrieving all records.

• Sorted Files: Best if records must be retrieved in
some order, or only a `range’ of records is needed.

• Indexes: Data structures to organize records via
trees or hashing.
– Like sorted files, they speed up searches for a subset of

records, based on values in certain (“search key”) fields

– Updates are much faster than in sorted files.

19

Modifications: Insertion

• File is unsorted: add it to the end (easy ☺)

• File is sorted:
– Is there space in the right block ?

• Yes: we are lucky, store it there

– Is there space in a neighboring block ?
• Look 1-2 blocks to the left/right, shift records

– If anything else fails, create overflow block

20

Modifications: Deletions

• Free space in block, shift records

• Maybe be able to eliminate an overflow
block

• Can never really eliminate the record,
because others may point to it
– Place a tombstone instead (a NULL record)

How can we point to a record in an RDBMS ?

21

Modifications: Updates

• If new record is shorter than previous, easy ☺

• If it is longer, need to shift records, create
overflow blocks

Indexes

• An index on a file speeds up selections on the
search key fields for the index.
– Any subset of the fields of a relation can be the search

key for an index on the relation.

– Search key is not the same as key(minimal set of fields
that uniquely identify a record in a relation).

• An index contains a collection of data entries, and
supports efficient retrieval of all data entries k*
with a given key value k.

23

Index Classification

• Clustered/unclustered
– Clustered = records close in the index are close in the data
– Unclustered = records close in the index may be far in the data

• Primary/secondary
– Sometimes means this:

• Primary = includes primary key
• Secondary = otherwise

– Sometimes means clustered/unclustered

• Dense/sparse
– Dense = every key in the data appears in the index
– Sparse = the index contains only some keys

• B+ tree / Hash table / …

Clustered vs. Unclustered Index

Data entries
(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

25

Clustered Index

• File is sorted on the index attribute

• Denseindex: sequence of (key,pointer) pairs

40

30

20

10

80

70

60

50

20

10

40

30

60

50

80

70

26

Clustered Index

• Sparseindex

70

50

30

10

150

130

110

90

20

10

40

30

60

50

80

70

27

Unclustered Indexes

• To index other attributes than primary key

• Always dense (why ?)

20

20

10

10

30

30

30

20

30

20

20

30

20

10

30

10

28

Alternatives for Data Entry k* in
Index

• Three alternatives for k*:
– Data record with key value k

– <k, rid of data record with key = k>

– <k, list of rids of data records with key = k>

• Last two choices are orthogonal to the
indexing technique used to locate data
entries with a given key value k.

29

Alternatives 2 and 3

20

20

10

10

30

30

30

20

…

30

20

10

30

Using an Index

• The scan operation:
– Read index entries in order

• Clustered index:
– Index scan = Table scan

• Unclustered index:
– Scan much more expensive

31

Using an Index

• Exact key values:
– Scan index, lookup relation

– B+ trees or hash tables

• Range queries:
– B+ trees

• Use index exclusively

Select name
From people
Where salary = 25

Selectname
Frompeople
Wheresalary = 25

Select name
From people
Where 20 <= age and age <= 30

Selectname
Frompeople
Where20 <= age and age <= 30

Select distinct age
From people

Selectdistinct age
Frompeople

DEMO (see notes)

32

B+ Trees

• Search trees

• Idea in B Trees:
– make 1 node = 1 block

• Idea in B+ Trees:
– Make leaves into a linked list (range queries are

easier)

33

• Parameter d = the degree

• Each node has >= d and <= 2d keys (except root)

• Each leaf has >=d and <= 2d keys:

B+ Trees Basics

24012030

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

605040

40 50 60

Next leaf

34

B+ Tree Example

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

35

B+ Tree Design

• How large d ?

• Example:
– Key size = 4 bytes

– Pointer size = 8 bytes

– Block size = 4096 byes

• 2d x 4 + (2d+1) x 8 <= 4096

• d = 170

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

37

Insertion in a B+ Tree

Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, keep K3 too in right node
• When root splits, new root has 1 key only

p5

K5

P4P3P2P1

K4K2 K3

P0

K1

P2P1

K2

P0

K1

p5P4

K5

P3

K4

parent
K3

parent

38

Insertion in a B+ Tree

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

39

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

40

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

41

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

42

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

43

Insertion in a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

40 5030

44

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

40 5030

45

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

5040

May change to
40, or not

46

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

5040

47

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 20 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

5040

48

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

5040

49

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to mergenodes

50

50

50

Deletion from a B+ Tree

80

6019 120 140100

15 1810 20 5019 6560 85 9080

10 15 18 20 60 65 80 85 9019

Final tree

50

51

Summary on B+ Trees

• Default index structure on most DBMS

• Very effective at answering ‘point’ queries:
productName = ‘gizmo’

• Effective for range queries:
50 < price AND price < 100

• Less effective for multirange:
50 < price < 100 AND 2 < quant < 20

52

Hash Tables

• Secondary storage hash tables are much like
main memory ones

• Recall basics:
– There are n buckets
– A hash function f(k) maps a key k to {0, 1, …, n-1}
– Store in bucket f(k) a pointer to record with key k

• Secondary storage: bucket = block, use
overflow blocks when needed

53

• Assume 1 bucket (block) stores 2 keys +
pointers

• h(e)=0

• h(b)=h(f)=1

• h(g)=2

• h(a)=h(c)=3

Hash Table Example

c

a

g

f

b

e
0

1

2

3

54

• Search for a:

• Compute h(a)=3

• Read bucket 3

• 1 disk access

Searching in a Hash Table

c

a

g

f

b

e
0

1

2

3

55

• Place in right bucket, if space

• E.g. h(d)=2

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

56

• Create overflow block, if no space
• E.g. h(k)=1

• More over-
flow blocks
may be needed

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

k

57

Hash Table Performance

• Excellent, if no overflow blocks

• Degrades considerably when number of
keys exceeds the number of buckets (I.e.
many overflow blocks).

58

Extensible Hash Table

• Allows has table to grow, to avoid
performance degradation

• Assume a hash function h that returns
numbers in {0, …, 2k – 1}

• Start with n = 2i << 2k , only look at i least
significant bits

59

Extensible Hash Table

• E.g. i=1, n=2i=2, k=4

• Keys:
– 4 (=0100)
– 7 (=0111)

• Note: we only look at the last bit (0 or 1)

(010)0

(011)1

i=1 1

1

0
1

60

Insertion in Extensible Hash
Table

• Insert 13 (=1101)
(010)0

(110)1

(011)1

i=1 1

1

0
1

61

Insertion in Extensible Hash
Table

• Now insert 0101

• Need to extend table, split blocks

• i becomes 2

(010)0

(110)1, (010)1

(011)1

i=1 1

1

0
1

62

Insertion in Extensible Hash
Table

(010)0

(01)01

(11)01

i=2 1

2

00
01
10
11

(01)11 2

(010)0

(110)1, (010)1

(011)1

i=1
1

1

0
1

63

Insertion in Extensible Hash
Table

• Now insert 0000, 1110

• Need to split block

(000)0, (111)0

(010)0

(01)01

(11)01

i=2 1

2

00
01
10
11

(01)11 2

64

Insertion in Extensible Hash
Table

• After splitting the block

(00)00

(01)00

(01)01

(11)01

i=2 2

2
00
01
10
11

(01)11 2

(11)10 2

1 became 2

65

Extensible Hash Table

• How many buckets (blocks) do we need to
touch after an insertion ?

• How many entries in the hash table do we
need to touch after an insertion ?

66

Performance Extensible Hash
Table

• No overflow blocks: access always one read

• BUT:
– Extensions can be costly and disruptive

– After an extension table may no longer fit in
memory

67

Linear Hash Table

• Idea: extend only one entry at a time
• Problem: n= no longer a power of 2
• Let i be such that 2i <= n < 2i+1

• After computing h(k), use last i bits:
– If last i bits represent a number > n, change msb

from 1 to 0 (get a number <= n)

68

Linear Hash Table Example

• n=3

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11 BIT FLIP

69

Linear Hash Table Example

• Insert 1000: overflow blocks…

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11

(10)00

70

Linear Hash Tables

• Extension: independent on overflow blocks

• Extend n:=n+1 when average number of
records per block exceeds (say) 80%

71

Linear Hash Table Extension

• From n=3 to n=4

• Only need to touch
one block (which one ?)

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11
(01)11

(01)11

i=2

00
01
10

(10)10

(11)00

(01)00

n=11

72

Linear Hash Table Extension

• From n=3 to n=4 finished

• Extension from n=4
to n=5 (new bit)

• Need to touch every
single block (why ?) (01)11

i=2

00
01
10

(10)10

(11)00

(01)00

11

