Lecture 5: Transactions in SQL

Tuesday, February 6, 2007

Outline

- Transactions in SQL, the buffer manager
- Recovery

– Chapter 17 in Ullman's book

- Concurrency control
 - Chapter 18 in Ullman's book

Comments on the Textbook

- Ullman's book: chapters 17,18
 - Gentle introduction
 - We follow mostly this text in class
- Ramakrishnan: chapters 16,17,18
 - Describes quite accurately existing systems (e.g. Aries)
 - Not recommended as first reading

Transactions

- Major component of database systems
- Critical for most applications; arguably more so than SQL
- Turing awards to database researchers:
 - Charles Bachman 1973
 - Edgar Codd 1981 for inventing relational dbs
 - Jim Gray 1998 for inventing transactions

Why Do We Need Transactions

- Concurrency control
- Recovery

Concurrency control: Three Famous anomalies

- Dirty read
 - T reads data written by T' while T' is running
 - Then T' aborts
- Lost update
 - Two tasks T and T' both modify the same data
 - T and T' both commit
 - Final state shows effects of only T, but not of T'
- Inconsistent read
 - One task T sees some but not all changes made by T'

Dirty Reads

Client 1:

/* transfer \$100 from account 1 to account 2 */

UPDATE Accounts SET balance = balance + 100 WHERE accountNo = '11111'

X = SELECT balance FROM Accounts WHERE accountNo = '2222'

If X < 100 /* abort */ then UPDATE Accounts SET balance = balance - 100 WHERE accountNo = '11111'

Else UPDATE Accounts SET balance = balance - 100 WHERE accountNo = '2222' Client 2:

/* withdraw \$100 from account 1 */

X = SELECT balance FROM Accounts WHERE accountNo = '1111'

If X > 100 then UPDATE Accounts SET balance = balance - 100 WHERE accountNo = '11111' Dispense cashCli

Lost Updates

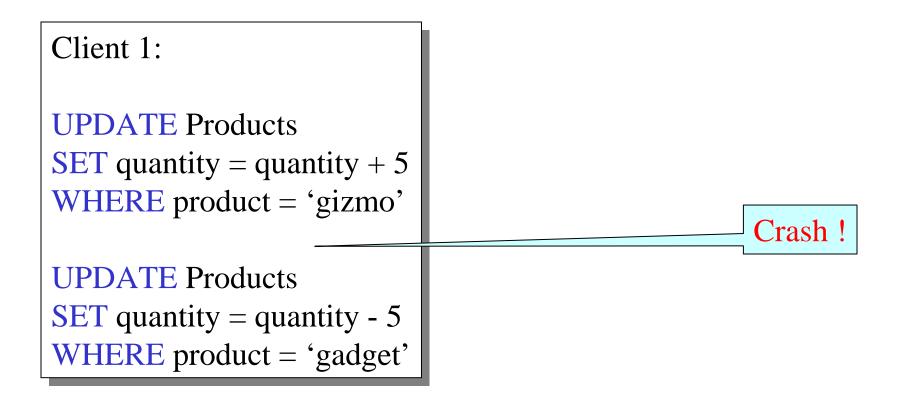
Client 1:

UPDATE Product SET Price = Price – 1.99 WHERE pname = 'Gizmo' Client 2: UPDATE Product SET Price = Price*0.5 WHERE pname='Gizmo'

Two managers attempt to do a discount. Will it work ?

Inconsistent Read

```
Client 1:
```


```
UPDATE Products
SET quantity = quantity + 5
WHERE product = 'gizmo'
```

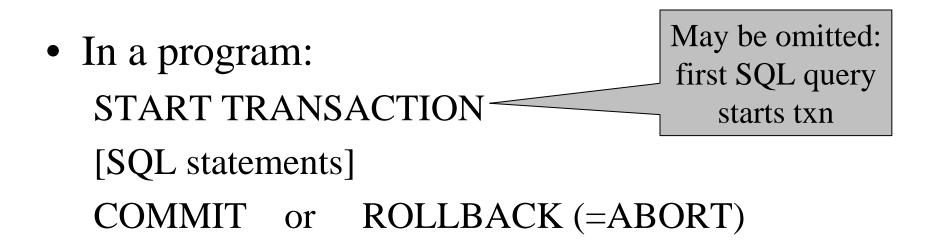
UPDATE Products SET quantity = quantity - 5 WHERE product = 'gadget' Client 2:

SELECT sum(quantity) FROM Product

What's wrong ?

Protection against crashes

What's wrong ?


Definition

- A transaction = one or more operations, which reflects a single real-world transition
 - In the real world, this happened completely or not at all
- Examples
 - Transfer money between accounts
 - Purchase a group of products
 - Register for a class (either waitlist or allocated)
- If grouped in transactions, all problems in previous slides disappear

Transactions in SQL

• In "ad-hoc" SQL:

– Default: each statement = one transaction

Revised Code

Client 1: START TRANSACTION UPDATE Product SET Price = Price – 1.99 WHERE pname = 'Gizmo' COMMIT

Client 2: START TRANSACTION UPDATE Product SET Price = Price*0.5 WHERE pname='Gizmo' COMMIT

Now it works like a charm

Transaction Properties ACID

- Atomic
 - State shows either all the effects of txn, or none of them
- Consistent
 - Txn moves from a state where integrity holds, to another where integrity holds
- Isolated
 - Effect of txns is the same as txns running one after another (ie looks like batch mode)
- Durable
 - Once a txn has committed, its effects remain in the database

ROLLBACK

- If the app gets to a place where it can't complete the transaction successfully, it can execute ROLLBACK
- This causes the system to "abort" the transaction
 - The database returns to the state without any of the previous changes made by activity of the transaction

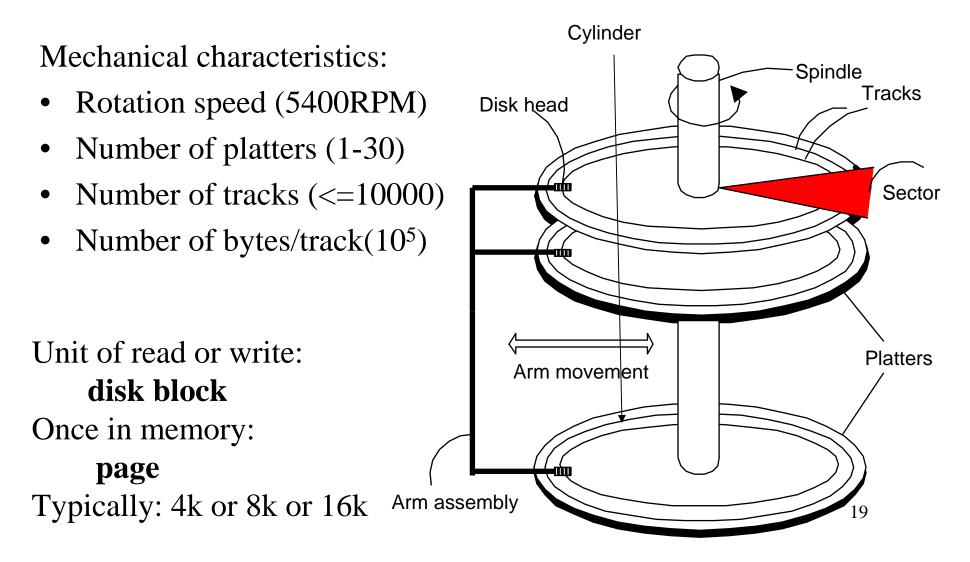
Reasons for Rollback

- User changes their mind ("ctl-C"/cancel)
- Explicit in program, when app program finds a problem
 - e.g. when qty on hand < qty being sold</p>
- System-initiated abort
 - System crash
 - Housekeeping
 - e.g. due to timeouts

Theory of Transaction Management

Two parts:

- Recovery from crashes: <u>A</u>CID
- Concurrency control: ACID


Both operate on the buffer pool

Recovery

_		
	Type of Crash	Prevention
	Wrong data entry	Constraints and Data cleaning
	Disk crashes	Redundancy: e.g. RAID, archive
	Fire, theft, bankruptcy	Buy insurance, Change jobs
Most frequent	System failures: e.g. power	DATABASE RECOVERY

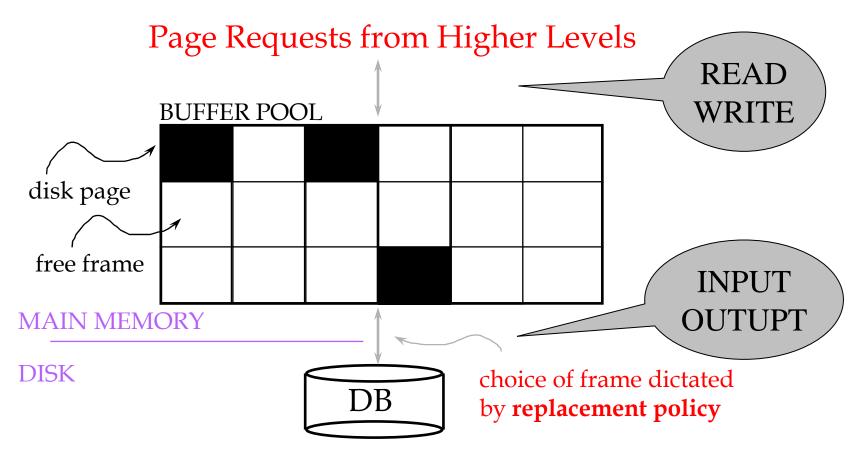
18

The Mechanics of Disk

Disk Access Characteristics

- Disk latency = time between when command is issued and when data is in memory
- Disk latency = seek time + rotational latency
 - Seek time = time for the head to reach cylinder
 - 10ms 40ms
 - Rotational latency = time for the sector to rotate
 - Rotation time = 10ms
 - Average latency = 10 ms/2
- Transfer time = typically 40MB/s
- Disks read/write one block at a time

RAID: Protect against HW Failure


Several disks that work in parallel

- Redundancy: use parity to recover from disk failure
- Speed: read from several disks at once

Various configurations (called *levels*):

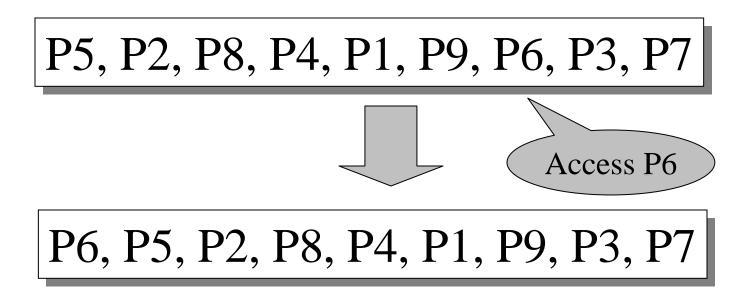
- RAID 1 = mirror
- RAID 4 = n disks + 1 parity disk
- RAID 5 = n+1 disks, assign parity blocks round robin
- RAID 6 = "Hamming codes"

Buffer Management in a DBMS

- Data must be in RAM for DBMS to operate on it!
- Table of <frame#, pageid> pairs is maintained

Buffer Manager

Needs to decide on page replacement policy


- LRU
- Clock algorithm

Both work well in OS, but not always in DB

Enables the higher levels of the DBMS to assume that the needed data is in main memory.

Least Recently Used (LRU)

- Order pages by the time of last accessed
- Always replace the least recently accessed

LRU is expensive (why ?); the clock algorithm is good approx²⁴

Buffer Manager

Why not use the Operating System for the task??

Two reasons:

- May improve performance by knowing the access pattern
- Need fined-grained access to the operations to ensure ACID semantics

Transaction Manager

Operates on the buffer pool

- Recovery:
 - 'log-file write-ahead',
 - policy about which pages to force to disk
- Concurrency:
 - locks at the page level,
 - Or multiversion concurrency control

Transactions

- Assumption: the database is composed of <u>elements</u>
 - Usually 1 element = 1 block
 - Can be smaller (=1 record) or larger (=1 relation)
- Assumption: each transaction reads/writes some elements

Primitive Operations of Transactions

- $\operatorname{READ}(X,t)$
 - copy element X to transaction local variable t
- WRITE(X,t)
 - copy transaction local variable t to element X
- INPUT(X)
 - read element X to memory buffer
- OUTPUT(X)
 - write element X to disk

Example

```
START TRANSACTION
READ(A,t);
t := t^{*}2;
WRITE(A,t);
READ(B,t);
t := t^{*}2;
WRITE(B,t)
COMMIT;
```

Atomicity: BOTH A and B are multiplied by 2

READ(A,t); t := t*2; WRITE(A,t); READ(B,t); t := t*2; WRITE(B,t)

Transaction	Buffer pool	Disk	
			$\overline{}$

Action	t	Mem A	Mem B	Disk A	Disk B
INPUT(A)		8		8	8
READ(A,t)	8	8		8	8
t:=t*2	16	8		8	8
WRITE(A,t)	16	16		8	8
INPUT(B)	16	16	8	8	8
READ(B,t)	8	16	8	8	8
t:=t*2	16	16	8	8	8
WRITE(B,t)	16	16	16	8	8
OUTPUT(A)	16	16	16	16	8
OUTPUT(B)	16	16	16	16	16 3

Action	t	Mem A	Mem B	Disk A	Disk B
INPUT(A)		8		8	8
READ(A,t)	8	8		8	8
t:=t*2	16	8		8	8
WRITE(A,t)	16	16		8	8
INPUT(B)	16	16	8	8	8
READ(B,t)	8	16	8	8	8
t:=t*2	16	16	8	8	8
WRITE(B,t)	16	16	16	8	8
OUTPUT(A)	16	16	16	16 -	Crash !
OUTPUT(B)	16	16	16	16	

Crash occurs after OUTPUT(A), before OUTPUT(B) We lose atomicity

The Log

- An append-only file containing log records
- Note: multiple transactions run concurrently, log records are interleaved
- After a system crash, use log to:
 - Redo some transaction that didn't commit
 - Undo other transactions that didn't commit
- Three kinds of logs: undo, redo, undo/redo

Undo Logging

Log records

- <START T>
 - transaction T has begun
- <COMMIT T>
 - T has committed
- <ABORT T>
 - T has aborted
- <T,X,v>
 - T has updated element X, and its <u>old</u> value was v

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
INPUT(A)		8		8	8	
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,8></t,a,8>
INPUT(B)	16	16	8	8	8	
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,8></t,b,8>
OUTPUT(A)	16	16	16	16	8	
OUTPUT(B)	16	16	16	16	16	
COMMIT						<commit t=""></commit>

WHAT DO WE DO ?

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
INPUT(A)		8		8	8	
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,8></t,a,8>
INPUT(B)	16	16	8	8	8	
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,8></t,b,8>
OUTPUT(A)	16	16	16	16	8	
OUTPUT(B)	16	16	16	16	16	Crash !
COMMIT						<commit t=""></commit>

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
INPUT(A)		8		8	8	
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,8></t,a,8>
INPUT(B)	16	16	8	8	8	
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,8></t,b,8>
OUTPUT(A)	16	16	16	16	8	
OUTPUT(B)	16	16	16	16	16	
COMMIT						<commit t=""></commit>

WHAT DO WE DO ?

Crash!

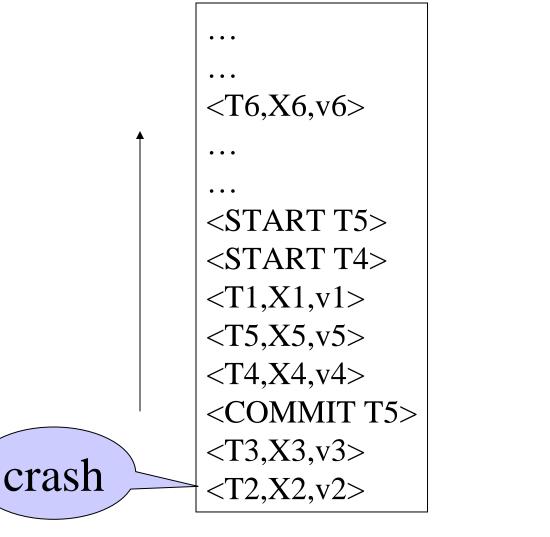
After Crash

- In the first example:
 - We UNDO both changes: A=8, B=8
 - The transaction is atomic, since none of its actions has been executed
- In the second example
 - We don't undo anything
 - The transaction is atomic, since both it's actions have been executed

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be written to disk before OUTPUT(X)

- U2: If T commits, then OUTPUT(X) must be written to disk before <COMMIT T>
- Hence: OUTPUTs are done *early*, before the transaction commits


Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
INPUT(A)		8		8	8	
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	-(<t,a,8>)</t,a,8>
INPUT(B)	16	16	8	8	8	
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	(<t,b,8>)</t,b,8>
OUTPUT(A)	16	16	16	16	8	
OUTPUT(B)	16	16	16	16	16	
COMMIT						• COMMIT T
						39

After system's crash, run recovery manager

- Idea 1. Decide for each transaction T whether it is completed or not
 - <START T>....<COMMIT T>.... = yes
 - <START T>..... = yes
 - $\langle START T \rangle = no$
- Idea 2. Undo all modifications by incomplete transactions

Recovery manager:

Read log from the end; cases:
 <COMMIT T>: mark T as completed
 <ABORT T>: mark T as completed
 <T,X,v>: if T is not completed
 then write X=v to disk
 else ignore
 <START T>: ignore

Question1 in class: Which updates are undone ?

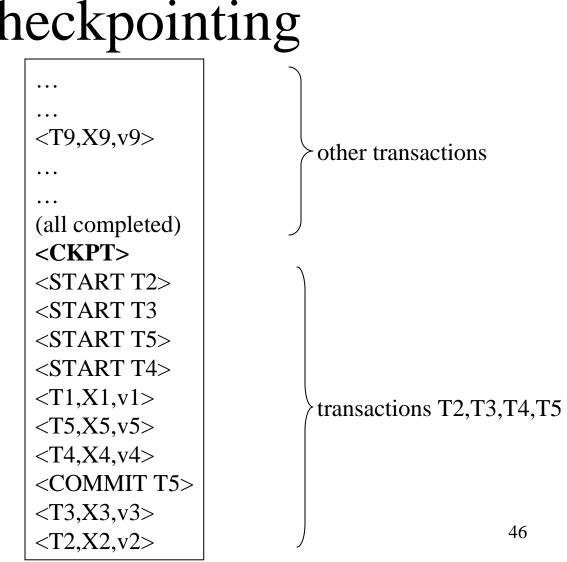
Question 2 in class: How far back do we need to read in the log ?

- Note: all undo commands are <u>idempotent</u>
 - If we perform them a second time, no harm is done
 - E.g. if there is a system crash during recovery, simply restart recovery from scratch

When do we stop reading the log?

- We cannot stop until we reach the beginning of the log file
- This is impractical

Instead: use checkpointing


Checkpointing

Checkpoint the database periodically

- Stop accepting new transactions
- Wait until all current transactions complete
- Flush log to disk
- Write a <CKPT> log record, flush
- Resume transactions

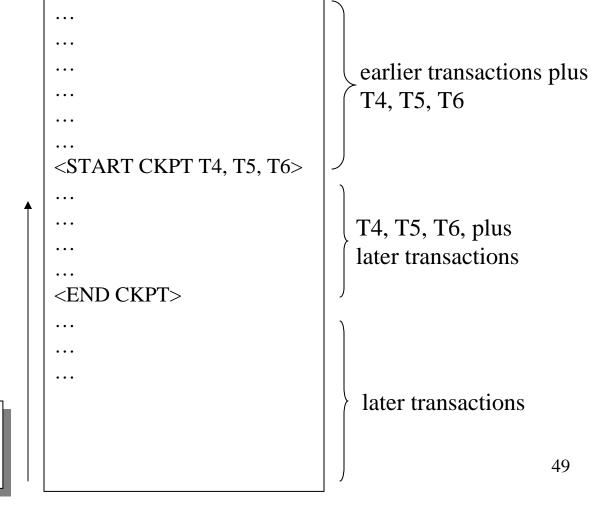
Undo Recovery with Checkpointing

During recovery, Can stop at first <CKPT>

Nonquiescent Checkpointing

- Problem with checkpointing: database freezes during checkpoint
- Would like to checkpoint while database is operational
- Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive Non-quiescent = allowing transactions to be active


Nonquiescent Checkpointing

- Write a <START CKPT(T1,...,Tk)> where T1,...,Tk are all active transactions
- Continue normal operation
- When all of T1,...,Tk have completed, write <END CKPT>

Undo Recovery with Nonquiescent Checkpointing

During recovery, Can stop at first <CKPT>

Q: do we really need <END CKPT> ?

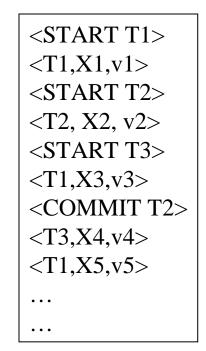
Redo Logging

Log records

- \langle START T \rangle = transaction T has begun
- <COMMIT T> = T has committed
- <ABORT T>= T has aborted
- <T,X,v>= T has updated element X, and its <u>new</u> value is v

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,16></t,a,16>
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,16></t,b,16>
						<commit t=""></commit>
OUTPUT(A)	16	16	16	16	8	
OUTPUT(B)	16	16	16	16	16	

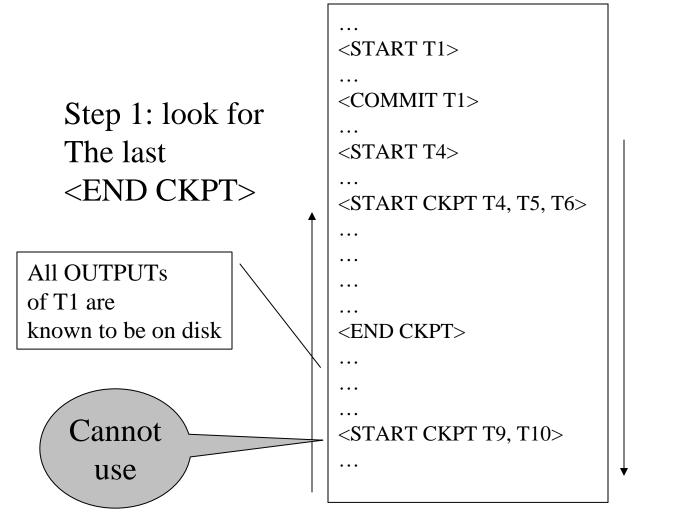
Redo-Logging Rules


R1: If T modifies X, then both <T,X,v> and <COMMIT T> must be written to disk before OUTPUT(X)

• Hence: OUTPUTs are done *late*

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,16></t,a,16>
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,16></t,b,16>
						- COMMIT T
OUTPUT(A)) 16	16	16		8	
OUTPUT(B)	16	16	16	16	16	

After system's crash, run recovery manager


- Step 1. Decide for each transaction T whether it is completed or not
 - <START T>....<COMMIT T>.... = yes
 - <START T>....<ABORT T>.... = yes
 - $\langle START T \rangle = no$
- Step 2. Read log from the beginning, redo all updates of *committed* transactions

Nonquiescent Checkpointing

- Write a <START CKPT(T1,...,Tk)> where T1,...,Tk are all active transactions
- Flush to disk all blocks of committed transactions (*dirty blocks*), while continuing normal operation
- When all blocks have been written, write <END CKPT>

Redo Recovery with Nonquiescent Checkpointing

Step 2: redo from the earliest start of T4, T5, T6 ignoring transactions committed earlier

Comparison Undo/Redo

- Undo logging:
 - OUTPUT must be done early
 - If <COMMIT T> is seen, T definitely has written all its data to disk (hence, don't need to redo) – inefficient
- Redo logging
 - OUTPUT must be done late
 - If <COMMIT T> is not seen, T definitely has not written any of its data to disk (hence there is not dirty data on disk, no need to undo)
 inflexible
- Would like more flexibility on when to OUTPUT: undo/redo logging (next)

Undo/Redo Logging

Log records, only one change

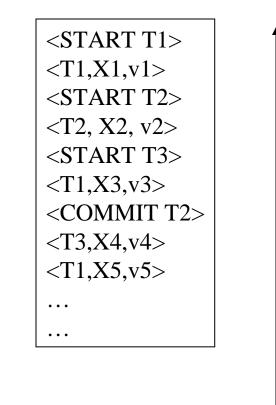
 <T,X,u,v>= T has updated element X, its <u>old</u> value was u, and its <u>new</u> value is v

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late relative to <COMMIT T>

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
REAT(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,8,16></t,a,8,16>
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,8,16></t,b,8,16>
OUTPUT(A)	16	16	16	16	8	
						<commit t=""></commit>
OUTPUT(B)	16	16	16	16	16	


Can OUTPUT whenever we want: before/after COMMIT⁶¹

Recovery with Undo/Redo Log

After system's crash, run recovery manager

- Redo all committed transaction, top-down
- Undo all uncommitted transactions, bottom-up

Recovery with Undo/Redo Log

Concurrency Control

- Multiple transactions are running concurrently T₁, T₂, ...
- They read/write some common elements A₁, A₂, ...
- How can we prevent unwanted interference ?

The SCHEDULER is responsible for that

Three Famous Anomalies

What can go wrong if we didn't have concurrency control:

- Dirty reads
- Lost updates
- Inconsistent reads

Many other things may go wrong, but have no names

Dirty Reads

T₁: ABORT

Lost Update

$$T_{1}: READ(A)$$

$$T_{2}$$

$$T_{1}: A := A+5$$

$$T_{2}$$

$$T_{2}$$

$$T_{2}$$

$$T_{2}$$

$$T_{3}: WRITE(A)$$

$$T_{2}$$

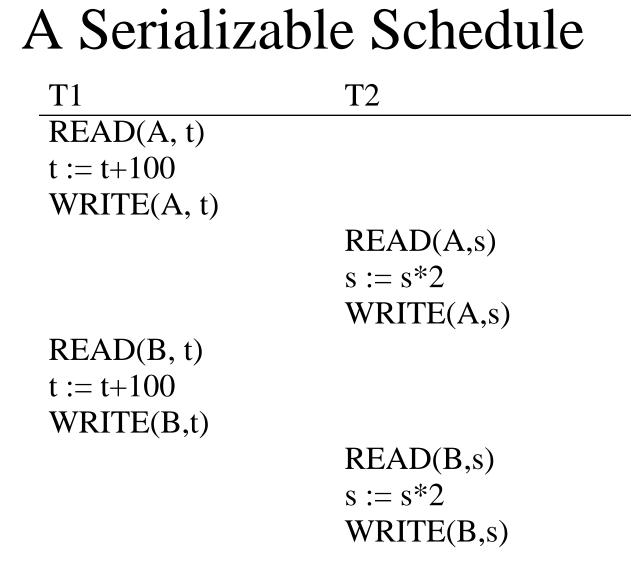
$$\Gamma_2$$
: READ(A);
 Γ_2 : A := A*1.3
 Γ_2 : WRITE(A);

Inconsistent Read

Schedules

- Given multiple transactions
- A <u>schedule</u> is a sequence of interleaved actions from all transactions

Example


T1	T2
READ(A, t)	READ(A, s)
t := t + 100	s := s*2
WRITE(A, t)	WRITE(A,s)
READ(B, t)	READ(B,s)
t := t + 100	s := s*2
WRITE(B,t)	WRITE(B,s)

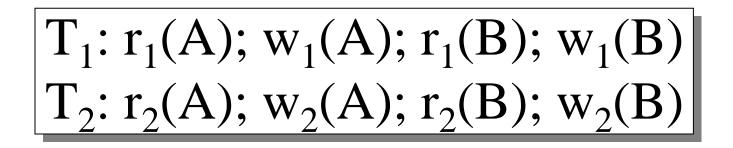
A Serial Schedule

T1	T2
READ(A, t)	
t := t + 100	
WRITE(A, t)	
READ(B, t)	
t := t + 100	
WRITE(B,t)	
	READ(A,s)
	s := s*2
	WRITE(A,s)
	READ(B,s)
	s := s*2
	WRITE(B,s)

Serializable Schedule

• A schedule is *serializable* if it is equivalent to a serial schedule

Notice: this is NOT a serial schedule

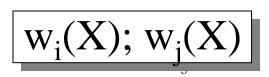

A Non-Serializable Schedule

T 1	T2
READ(A, t)	
t := t + 100	
WRITE(A, t)	
	READ(A,s)
	s := s*2
	WRITE(A,s)
	READ(B,s)
	s := s*2
	WRITE(B,s)
READ(B, t)	
t := t + 100	
WRITE(B,t)	

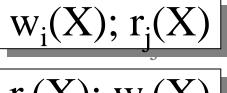
Ignoring Details

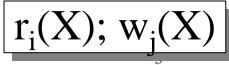
- Sometimes transactions' actions may commute accidentally because of specific updates
 - Serializability is undecidable !
- The scheduler shouldn't look at the transactions' details
- Assume worst case updates, only care about reads r(A) and writes w(A)

Notation



Conflict Serializability


Conflicts:


Two actions by same transaction T_i : $r_i(X); w_i(Y)$

Two writes by T_i , T_j to same element

Read/write by T_i , T_j to same element

Conflict Serializability

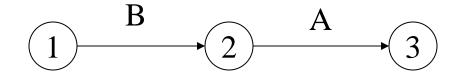
• A schedule is *conflict serializable* if it can be transformed into a serial schedule by a series of swappings of adjacent nonconflicting actions

Example:

$$\label{eq:r1} \begin{bmatrix} r_1(A); w_1(A); r_2(A); w_2(A); r_1(B); w_1(B); r_2(B); w_2(B) \end{bmatrix}$$

Conflict Serializability

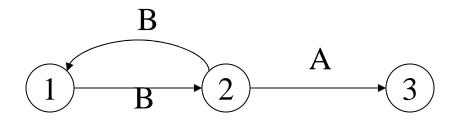
- Any conflict serializable schedule is also a serializable schedule (why ?)
- The converse is not true, even under the Lost "worst case update" assumption $w_1(Y); w_2(Y); w_2(X); w_1(X); w_3(X);$ Equivalent, but can't swap $w_1(Y); w_1(X); w_2(Y); w_2(X); w_3(X);$


The Precedence Graph Test

Is a schedule conflict-serializable ? Simple test:

- Build a graph of all transactions T_i
- Edge from T_i to T_j if T_i makes an action that conflicts with one of T_j and comes first
- The test: if the graph has no cycles, then it is conflict serializable !

Example 1


$r_2(A); r_1(B); w_2(A); r_3(A); w_1(B); w_3(A); r_2(B); w_2(B)$

This schedule is conflict-serializable

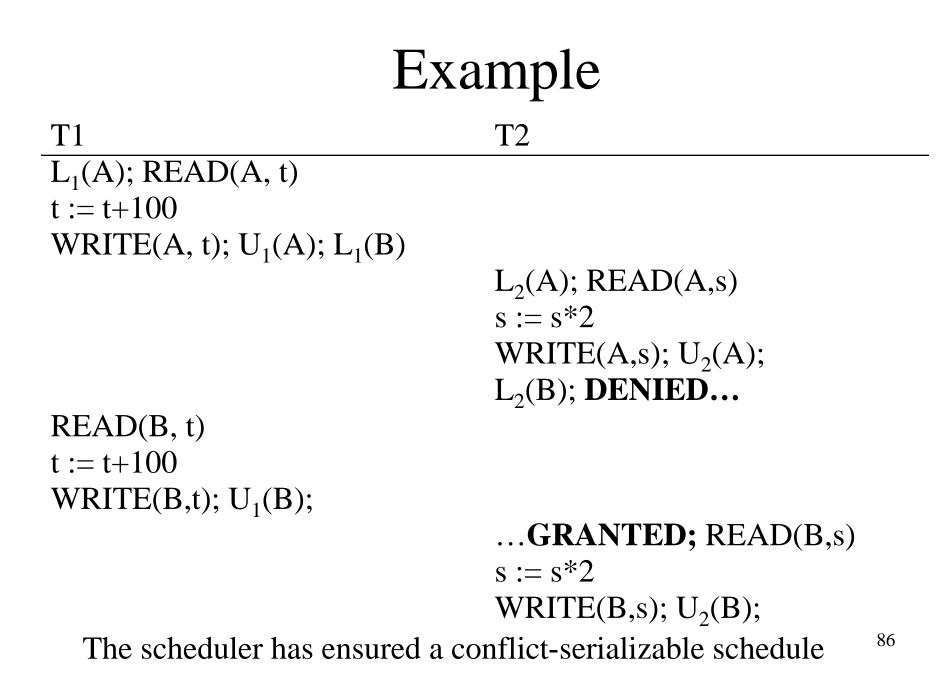
Example 2

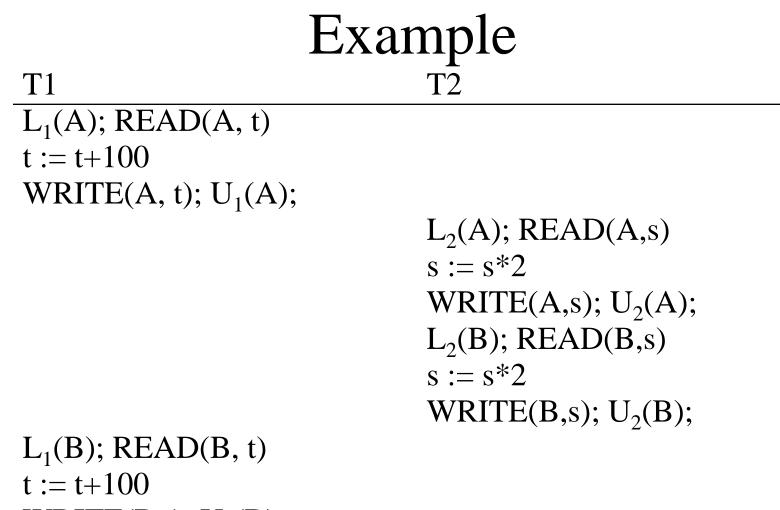
$r_2(A); r_1(B); w_2(A); r_2(B); r_3(A); w_1(B); w_3(A); w_2(B)$

This schedule is NOT conflict-serializable

Scheduler

- The scheduler is the module that schedules the transaction's actions, ensuring serializability
- How ? Three techniques:
 - Locks
 - Time stamps
 - Validation


Locking Scheduler


Simple idea:

- Each element has a unique lock
- Each transaction must first acquire the lock before reading/writing that element
- If the lock is taken by another transaction, then wait
- The transaction must release the lock(s)

Notation

 $l_i(A) = \text{transaction } T_i \text{ acquires lock for element } A$ $u_i(A) = \text{transaction } T_i \text{ releases lock for element } A$

WRITE(B,t); $U_1(B)$;

Locks did not enforce conflict-serializability !!!

Two Phase Locking (2PL)

The 2PL rule:

- In every transaction, all lock requests must preceed all unlock requests
- This ensures conflict serializability ! (why?)

```
Example: 2PL transactcions
  T1
  L_1(A); L_1(B); READ(A, t)
  t := t + 100
  WRITE(A, t); U_1(A)
                                  L_2(A); READ(A,s)
                                  s := s * 2
                                  WRITE(A,s);
                                  L<sub>2</sub>(B); DENIED...
  READ(B, t)
  t := t + 100
  WRITE(B,t); U_1(B);
                                  ...GRANTED; READ(B,s)
                                  s := s * 2
                                  WRITE(B,s); U_{2}(A); U_{2}(B);
Now it is conflict-serializable
```

89

Deadlock

- Trasaction T_1 waits for a lock held by T_2 ;
- But T₂ waits for a lock held by T₃;
- While T₃ waits for . . .
- . . .
- . . .and T_{73} waits for a lock held by T_1 !!

Could be avoided, by ordering all elements (see book); or deadlock detection plus rollback

Lock Modes

- S = Shared lock (for READ)
- X = exclusive lock (for WRITE)
- U = update lock
 - Initially like S
 - Later may be upgraded to X
- I = increment lock (for A := A + something)
 - Increment operations commute
- READ CHAPTER 17 in Ramakrishnan or 18.4 in Ullman !

The Locking Scheduler

Taks 1:

add lock/unlock requests to transactions

- Examine all READ(A) or WRITE(A) actions
- Add appropriate lock requests
- Ensure 2PL !

The Locking Scheduler

Task 2:

execute the locks accordingly

- Lock table: a big, critical data structure in a DBMS !
- When a lock is requested, check the lock table
 - Grant, or add the transaction to the element's wait list
- When a lock is released, re-activate a transaction from its wait list
- When a transaction aborts, release all its locks
- Check for deadlocks occasionally

The Tree Protocol

- An alternative to 2PL, for tree structures
- E.g. B-trees (the indexes of choice in databases)

The Tree Protocol

Rules:

- The first lock may be any node of the tree
- Subsequently, a lock on a node A may only be acquired if the transaction holds a lock on its parent B
- Nodes can be unlocked in any order (no 2PL necessary)

The tree protocol is NOT 2PL, yet ensures conflictserializability !

Performance of locking

- Few transactions
 - No lock contention
 - High throughput
- More transactions
 - Some lock contention
 - Higher throughput (because more transactions)
- Even more transactions
 - A lot of lock contention
 - Lower throughput (thrashing)

See Ramakrishnan, page 534

Other Concurrency Control Methods

• Timestamps

– Variation: snapshot isolation (Oracle)

• Validation

Timestamps

Every transaction receives a unique timestamp TS(T)

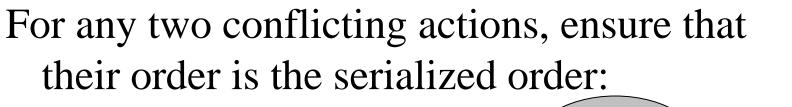
Could be:

- The system's clock
- A unique counter, incremented by the scheduler

Timestaps

Main invariant:

The timestamp order defines the searialization order of the transaction


Timestamps

Associate to each element X:

- RT(X) = the highest timestamp of any transaction that read X
- WT(X) = the highest timestamp of any transaction that wrote X
- C(X) = the commit bit: says if the transaction with highest timestamp that wrote X commited

These are associated to each page X in the buffer pool 100

Main Idea

Read too late:

• T wants to read X, and TS(T) < WT(X)

$START(T) \dots START(U) \dots w_U(X) \dots r_T(X)$

Need to rollback T !

Write too late:

• T wants to write X, and WT(X) < TS(T) < RT(X)

 $START(T) \dots START(U) \dots r_{U}(X) \dots w_{T}(X)$

Need to rollback T !

Why do we check WT(X) < TS(T) ????

Write too late, but we can still handle it:

• T wants to write X, and TS(T) < RT(X) but WT(X) > TS(T)

START(T) ... START(V) ... $w_V(X) \dots w_T(X)$

Don't write X at all ! (but see later...)

More Problems

Read dirty data:

- T wants to read X, and WT(X) < TS(T)
- Seems OK, but...

START(U) ... START(T) ... $w_U(X)$... $(r_T(X))$.. ABORT(U)

If C(X)=1, then T needs to wait for it to become 0

More Problems

Write dirty data:

- T wants to write X, and WT(X) > TS(T)
- Seems OK not to write at all, but ...

START(T) ... START(U)... $w_U(X)$... $w_T(X)$... ABORT(U)

If C(X)=1, then T needs to wait for it to become 0

Timestamp-based Scheduling

When a transaction T requests r(X) or w(X), the scheduler examines RT(X), WT(X), C(X), and decides one of:

- To grant the request, or
- To rollback T (and restart with later timestamp)
- To delay T until C(X) = 0

Timestamp-based Scheduling

RULES:

- There are 4 long rules in the textbook, on page 974
- You should be able to understand them, or even derive them yourself, based on the previous slides
- Make sure you understand them !

READING ASSIGNMENT: 18.8.4

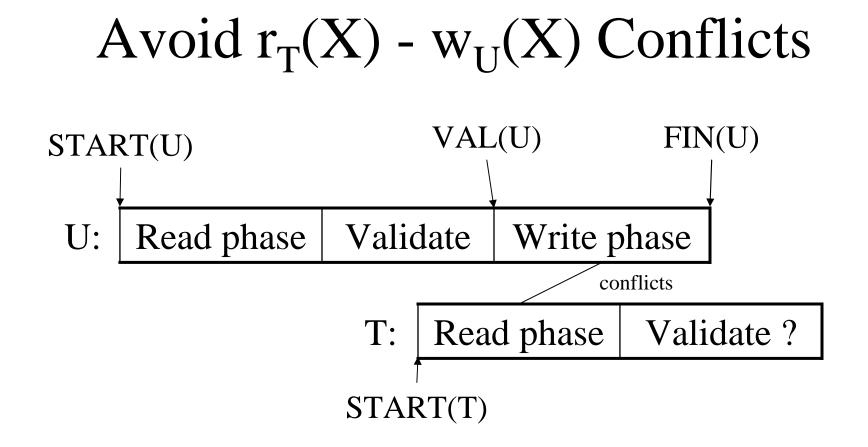
Multiversion Timestamp

- When transaction T requests r(X) but WT(X) > TS(T), then T must rollback
- Idea: keep multiple versions of X: X_t, X_{t-1}, X_{t-2}, . . .

$$TS(X_t) > TS(X_{t-1}) > TS(X_{t-2}) > \dots$$

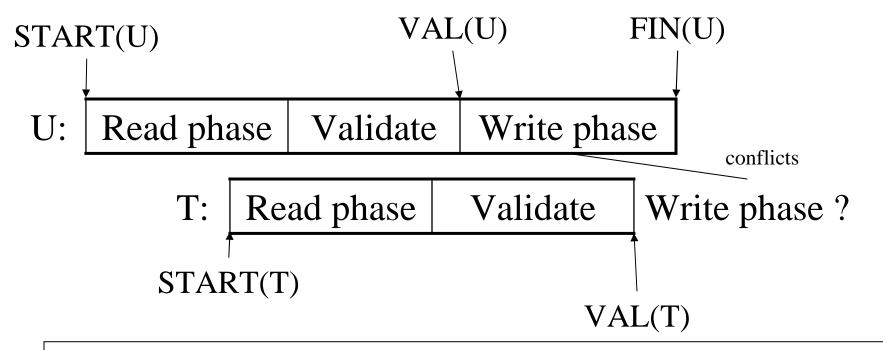
• Let T read an older version, with appropriate timestamp

- When w_T(X) occurs create a new version, denoted X_t where t = TS(T)
- When r_T(X) occurs, find a version X_t such that t < TS(T) and t is the largest such
- $WT(X_t) = t$ and it never chanes
- RD(X_t) must also be maintained, to reject certain writes (why ?)
- When can we delete X_t : if we have a later version X_{t1} and all active transactions T have TS(T) > t1


Tradeoffs

- Locks:
 - Great when there are many conflicts
 - Poor when there are few conflicts
- Timestamps
 - Poor when there are many conflicts (rollbacks)
 - Great when there are few conflicts
- Compromise
 - READ ONLY transactions \rightarrow timestamps
 - READ/WRITE transactions \rightarrow locks

Concurrency Control by Validation


- Each transaction T defines a <u>read set</u> RS(T) and a <u>write set</u> WS(T)
- Each transaction proceeds in three phases:
 - Read all elements in RS(T). Time = START(T)
 - Validate (may need to rollback). Time = VAL(T)
 - Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

IF $RS(T) \cap WS(U)$ and FIN(U) > START(T)(U has validated and U has not finished before T begun) Then ROLLBACK(T)

IF $WS(T) \cap WS(U)$ and FIN(U) > VAL(T)(U has validated and U has not finished before T validates) Then ROLLBACK(T)