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Lecture 5:
Transactions in SQL

Tuesday, February 6, 2007
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Outline

• Transactions in SQL, the buffer manager

• Recovery
– Chapter 17 in Ullman’s book

• Concurrency control
– Chapter 18 in Ullman’s book
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Comments on the Textbook

• Ullman’s book: chapters 17,18
– Gentle introduction
– We follow mostly this text in class

• Ramakrishnan: chapters 16,17,18
– Describes quite accurately existing systems 

(e.g. Aries)
– Not recommended as first reading
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Transactions

• Major component of database systems
• Critical for most applications; arguably 

more so than SQL

• Turing awards to database researchers:
– Charles Bachman 1973
– Edgar Codd 1981 for inventing relational dbs
– Jim Gray 1998 for inventing transactions
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Why Do We Need Transactions

• Concurrency control

• Recovery
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Concurrency control:
Three Famous anomalies

• Dirty read
– T reads data written by T’ while T’ is running
– Then T’ aborts

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’
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Dirty Reads
Client 1:
/* transfer $100  from account 1 to account 2 */

UPDATE Accounts
SET balance = balance + 100
WHERE accountNo = ‘11111’

X = SELECT balance
FROM Accounts
WHERE accountNo = ‘2222’

If X < 100    /* abort . . . . */
then UPDATE Accounts

SET balance = balance - 100
WHERE accountNo = ‘11111’

Else UPDATE Accounts
SET balance = balance - 100
WHERE accountNo = ‘2222’

Client 1:
/* transfer $100  from account 1 to account 2 */

UPDATE Accounts
SETbalance = balance + 100
WHEREaccountNo = ‘11111’

X = SELECT balance
FROM Accounts
WHEREaccountNo = ‘2222’

If X < 100    /* abort . . . . */
then UPDATE Accounts

SETbalance = balance - 100
WHEREaccountNo = ‘11111’

Else UPDATE Accounts
SETbalance = balance - 100
WHEREaccountNo = ‘2222’

Client 2:

/* withdraw $100 from account 1 */

X = SELECT balance
FROM Accounts
WHERE accountNo = ‘1111’

If X > 100
then UPDATE Accounts

SET balance = balance - 100
WHERE accountNo = ‘11111’
. . . . . Dispense cash . . . .Cli

Client 2:

/* withdraw $100 from account 1 */

X = SELECT balance
FROM Accounts
WHEREaccountNo = ‘1111’

If X > 100
then UPDATE Accounts

SETbalance = balance - 100
WHEREaccountNo = ‘11111’
. . . . . Dispense cash . . . .Cli
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Lost Updates

Client 1:
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 1:
UPDATEProduct
SETPrice = Price – 1.99
WHEREpname = ‘Gizmo’

Two managers attempt to do a discount.
Will it work ?

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Client 2:
UPDATEProduct
SETPrice = Price*0.5
WHEREpname=‘Gizmo’
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Inconsistent Read

What’s wrong ?

Client 1:

UPDATE Products
SET quantity = quantity + 5
WHERE product = ‘gizmo’

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

Client 1:

UPDATE Products
SETquantity = quantity + 5
WHEREproduct = ‘gizmo’

UPDATE Products
SETquantity = quantity - 5
WHEREproduct = ‘gadget’

Client 2:

SELECT sum(quantity)
FROM Product

Client 2:

SELECT sum(quantity)
FROM Product
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Protection against crashes

What’s wrong ?

Client 1:

UPDATE Products
SET quantity = quantity + 5
WHERE product = ‘gizmo’

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

Client 1:

UPDATE Products
SETquantity = quantity + 5
WHEREproduct = ‘gizmo’

UPDATE Products
SETquantity = quantity - 5
WHEREproduct = ‘gadget’

Crash !
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Definition

• A transaction = one or more operations, which reflects a 
single real-world transition
– In the real world, this happened completely or not at all 

• Examples 
– Transfer money between accounts
– Purchase a group of products
– Register for a class (either waitlist or allocated)

• If grouped in transactions, all problems in previous slides 
disappear
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Transactions in SQL

• In “ad-hoc” SQL:
– Default: each statement = one transaction

• In a program:
START TRANSACTION

[SQL statements]

COMMIT    or     ROLLBACK (=ABORT)

May be omitted:
first SQL query

starts txn
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Revised Code

Client 1: START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’
COMMIT

Client 2: START TRANSACTION
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’
COMMIT

Client 1: START TRANSACTION
UPDATEProduct
SETPrice = Price – 1.99
WHEREpname = ‘Gizmo’
COMMIT

Client 2: START TRANSACTION
UPDATEProduct
SETPrice = Price*0.5
WHEREpname=‘Gizmo’
COMMIT

Now it works like a charm
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Transaction Properties
ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a state where integrity holds, to 

another where integrity holds
• Isolated

– Effect of txns is the same as txns running one after 
another (ie looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the 

database
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ROLLBACK

• If the app gets to a place where it can’t 
complete the transaction successfully, it can 
execute ROLLBACK

• This causes the system to “abort” the 
transaction
– The database returns to the state without any of 

the previous changes made by activity of the 
transaction
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Reasons for Rollback

• User changes their mind (“ctl-C”/cancel)
• Explicit in program, when app program 

finds a problem 
– e.g. when qty on hand < qty being sold

• System-initiated abort
– System crash
– Housekeeping

• e.g. due to timeouts
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Theory of
Transaction Management

Two parts:

• Recovery from crashes:  ACID

• Concurrency control:      ACID

Both operate on the buffer pool
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Recovery

PreventionType of Crash

DATABASE
RECOVERY

System failures:
e.g. power

Buy insurance, 
Change jobs…

Fire, theft, 
bankruptcy…

Redundancy: 
e.g. RAID, archive

Disk crashes

Constraints and
Data cleaning

Wrong data entry

Most
frequent
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The Mechanics of Disk

Mechanical characteristics:

• Rotation speed (5400RPM)

• Number of platters (1-30)

• Number of tracks (<=10000)

• Number of bytes/track(105)

Platters

Spindle

Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Unit of read or write:
disk block

Once in memory:
page

Typically: 4k or 8k or 16k
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Disk Access Characteristics

• Disk latency= time between when command is issued and 
when data is in memory

• Disk latency = seek time + rotational latency
– Seek time = time for the head to reach cylinder

• 10ms – 40ms

– Rotational latency = time for the sector to rotate
• Rotation time = 10ms
• Average latency = 10ms/2

• Transfer time = typically 40MB/s
• Disks read/write one block at a time
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RAID:
Protect against HW Failure

Several disks that work in parallel
• Redundancy: use parity to recover from disk failure
• Speed: read from several disks at once

Various configurations (called levels):
• RAID 1 = mirror
• RAID 4 = n disks + 1 parity disk
• RAID 5 = n+1 disks, assign parity blocks round robin
• RAID 6 = “Hamming codes”
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Buffer Management in a DBMS

• Data must be in RAM for DBMS to operate on it!

• Table of <frame#, pageid> pairs ismaintained

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

READ
WRITE

INPUT
OUTUPT
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Buffer Manager

Needs to decide on page replacement policy

• LRU
• Clock algorithm

Both work well in OS, but not always in DB

Enables the higher levels of the DBMS to assume that the
needed data is in main memory.
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Least Recently Used (LRU)

• Order pages by the time of last accessed

• Always replace the least recently accessed

P5, P2, P8, P4, P1, P9, P6, P3, P7P5, P2, P8, P4, P1, P9, P6, P3, P7

Access P6

P6, P5, P2, P8, P4, P1, P9, P3, P7P6, P5, P2, P8, P4, P1, P9, P3, P7

LRU is expensive (why ?); the clock algorithm is good approx
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Buffer Manager
Why not use the Operating System for the task??

Two reasons:

• May improve performance by knowing the 
access pattern

• Need fined-grained access to the operations 
to ensure ACID semantics
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Transaction Manager

Operates on the buffer pool

• Recovery:
– ‘log-file write-ahead’,

– policy about which pages to force to disk

• Concurrency:
– locks at the page level,

– Or multiversion concurrency control
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Transactions

• Assumption: the database is composed of 
elements
– Usually 1 element = 1 block
– Can be smaller (=1 record) or larger (=1 

relation)

• Assumption: each transaction reads/writes 
some elements
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Primitive Operations of 
Transactions

• READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• INPUT(X)
– read element X to memory buffer

• OUTPUT(X)
– write element X to disk



29

Example

START TRANSACTION

READ(A,t); 

t := t*2;

WRITE(A,t); 

READ(B,t); 

t := t*2;

WRITE(B,t)

COMMIT;

START TRANSACTION

READ(A,t); 

t := t*2;

WRITE(A,t); 

READ(B,t); 

t := t*2;

WRITE(B,t)

COMMIT;

Atomicity:
BOTH A and B
are multiplied by 2
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8881616INPUT(B)

888INPUT(A)

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t)

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t)
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8881616INPUT(B)

888INPUT(A)

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Crash !

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity
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The Log

• An append-only file containing log records

• Note: multiple transactions run 
concurrently, log records are interleaved

• After a system crash, use log to:
– Redo some transaction that didn’t commit

– Undo other transactions that didn’t commit

• Three kinds of logs: undo, redo, undo/redo
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Undo Logging
Log records
• <START T> 

– transaction T has begun

• <COMMIT T> 
– T has committed

• <ABORT T>
– T has aborted

• <T,X,v>
– T has updated element X, and its old value was v
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8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction



35

8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

Crash !

WHAT DO WE DO ?
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8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

Crash !
WHAT DO WE DO ?
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After Crash

• In the first example:
– We UNDO both changes: A=8, B=8

– The transaction is atomic, since none of its actions has 
been executed

• In the second example
– We don’t undo anything

– The transaction is atomic, since both it’s actions have 
been executed
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Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be 
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be 
written to disk before <COMMIT T>

• Hence: OUTPUTs are done early, before 
the transaction commits
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8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction
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Recovery with Undo Log

After system’s crash, run recovery manager 
• Idea 1. Decide for each transaction T 

whether it is completed or not
– <START T>….<COMMIT T>….    = yes
– <START T>….<ABORT T>…….   = yes
– <START T>……………………… = no

• Idea 2. Undo all modifications by 
incomplete transactions
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Recovery with Undo Log

Recovery manager:

• Read log from the end; cases:
<COMMIT T>:  mark T as completed

<ABORT T>: mark T as completed

<T,X,v>: if T is not completed
then write X=v to disk

else ignore

<START T>: ignore
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Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1 in class:
Which updates are
undone ?

Question 2 in class:
How far back
do we need to
read in the log ?

crash
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Recovery with Undo Log

• Note: all undo commands are 
idempotent
– If we perform them a second time, no 

harm is done

– E.g. if there is a system crash during 
recovery, simply restart recovery from 
scratch
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Recovery with Undo Log

When do we stop reading the log ?

• We cannot stop until we reach the 
beginning of the log file

• This is impractical

Instead: use checkpointing
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Checkpointing

Checkpoint the database periodically

• Stop accepting new transactions

• Wait until all current transactions complete

• Flush log to disk

• Write a <CKPT> log record, flush

• Resume transactions
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Undo Recovery with 
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

transactions T2,T3,T4,T5

other transactions
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Nonquiescent Checkpointing

• Problem with checkpointing: database 
freezes during checkpoint

• Would like to checkpoint while database is 
operational

• Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active
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Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

• Continue normal operation

• When all of T1,…,Tk have completed, write 
<END CKPT>
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Undo Recovery with 
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T6

later transactions

Q: do we really need 
<END CKPT> ?

Q: do we really need 
<END CKPT> ?



50

Redo Logging

Log records

• <START T> = transaction T has begun

• <COMMIT T> = T has committed

• <ABORT T>= T has aborted

• <T,X,v>= T has updated element X, and its 
new value is v
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1616161616OUTPUT(B)

816161616OUTPUT(A)

<COMMIT T>

<START T>

<T,B,16>

<T,A,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction
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Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and 
<COMMIT T> must be written to disk 
before OUTPUT(X)

• Hence: OUTPUTs are done late
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1616161616OUTPUT(B)

816161616OUTPUT(A)

<COMMIT T>

<START T>

<T,B,16>

<T,A,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction
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Recovery with Redo Log

After system’s crash, run recovery manager 
• Step 1. Decide for each transaction T 

whether it is completed or not
– <START T>….<COMMIT T>….    = yes
– <START T>….<ABORT T>…….    = yes
– <START T>……………………… = no

• Step 2. Read log from the beginning, redo 
all updates of committed transactions
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Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…
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Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

• Flush to disk all blocks of committed 
transactions (dirty blocks), while continuing 
normal operation

• When all blocks have been written, write 
<END CKPT>
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Redo Recovery with 
Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are
known to be on disk

Cannot
use
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Comparison Undo/Redo

• Undo logging:
– OUTPUT must be done early
– If <COMMIT T> is seen, T definitely has written all its data to 

disk (hence, don’t need to redo) – inefficient

• Redo logging
– OUTPUT must be done late
– If <COMMIT T> is not seen, T definitely has not written any of its 

data to disk (hence there is not dirty data on disk, no need to undo) 
– inflexible

• Would like more flexibility on when to OUTPUT: 
undo/redo logging (next)
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Undo/Redo Logging

Log records, only one change

• <T,X,u,v>= T has updated element X, its 
old value was u, and its new value is v
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Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must 
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late 
relative to <COMMIT T>



61

1616161616OUTPUT(B)

<COMMIT T>

816161616OUTPUT(A)

<START T>

<T,B,8,16>

<T,A,8,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888REAT(A,t)

Disk AMem BMem ATAction

Can OUTPUT whenever we want: before/after COMMIT
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Recovery with Undo/Redo Log

After system’s crash, run recovery manager 

• Redo all committed transaction, top-down

• Undo all uncommitted transactions, bottom-up
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Recovery with Undo/Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…
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Concurrency Control

• Multiple transactions are running concurrently
T1, T2, …

• They read/write some common elements
A1, A2, …

• How can we prevent unwanted interference ?

The SCHEDULER is responsible for that
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Three Famous Anomalies

What can go wrong if we didn’t have 
concurrency control:

• Dirty reads

• Lost updates

• Inconsistent reads

Many other things may go wrong, but have no names
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Dirty Reads

T1: WRITE(A) 

T1:  ABORT

T1: WRITE(A) 

T1:  ABORT

T2: READ(A)T2: READ(A)
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Lost Update

T1: READ(A) 

T1: A := A+5

T1: WRITE(A) 

T1: READ(A) 

T1: A := A+5

T1: WRITE(A) 

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);
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Inconsistent Read

T1:  A := 20;  B := 20;
T1: WRITE(A) 

T1:  WRITE(B) 

T1:  A := 20;  B := 20;
T1: WRITE(A) 

T1:  WRITE(B) 

T2: READ(A);
T2:  READ(B); 
T2: READ(A);
T2:  READ(B); 
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Schedules

• Given multiple transactions

• A schedule is a sequence of interleaved 
actions from all transactions
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Example

WRITE(B,s)WRITE(B,t)

s := s*2t := t+100

READ(B,s)READ(B, t)

WRITE(A,s)WRITE(A, t)

s := s*2t := t+100

READ(A, s)READ(A, t)

T2T1
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A Serial Schedule

WRITE(B,s)
s := s*2
READ(B,s)
WRITE(A,s)
s := s*2
READ(A,s)

WRITE(B,t)
t := t+100
READ(B, t)
WRITE(A, t)
t := t+100
READ(A, t)

T2T1
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Serializable Schedule

• A schedule is serializable if it is equivalent 
to a serial schedule
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A Serializable Schedule

WRITE(B,s)
s := s*2
READ(B,s)

WRITE(B,t)
t := t+100
READ(B, t)

WRITE(A,s)
s := s*2
READ(A,s)

WRITE(A, t)
t := t+100
READ(A, t)

T2T1

Notice: this is NOT a serial schedule
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A Non-Serializable Schedule

WRITE(B,t)
t := t+100
READ(B, t)

WRITE(B,s)
s := s*2
READ(B,s)
WRITE(A,s)
s := s*2
READ(A,s)

WRITE(A, t)
t := t+100
READ(A, t)

T2T1
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Ignoring Details

• Sometimes transactions’ actions may 
commute accidentally because of specific 
updates
– Serializability is undecidable !

• The scheduler shouldn’t look at the 
transactions’ details

• Assume worst case updates, only care about 
reads r(A) and writes w(A)
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Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)
T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)
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Conflict Serializability

Conflicts:

ri(X); wi(Y)ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)wi(X); rj(X)Read/write by Ti, Tj to same element

ri(X); wj(X)ri(X); wj(X)
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Conflict Serializability

• A schedule is conflict serializable if it can 
be transformed into a serial schedule by a 
series of swappings of adjacent non-
conflicting actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)
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Conflict Serializability

• Any conflict serializable schedule is also a 
serializable schedule  (why ?)

• The converse is not true, even under the 
“worst case update” assumption

w1(Y); w1(X); w2(Y); w2(X); w3(X);w1(Y); w1(X); w2(Y); w2(X); w3(X);

w1(Y); w2(Y); w2(X); w1(X); w3(X);w1(Y); w2(Y); w2(X); w1(X); w3(X);

Lost
write

Equivalent,
but can’t swap
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The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
• Build a graph of all transactions Ti

• Edge from Ti to Tj if T i makes an action that 
conflicts with one of Tj and comes first

• The test: if the graph has no cycles, then it 
is conflict serializable !
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB
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Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A
B

B
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Scheduler

• The scheduler is the module that schedules 
the transaction’s actions, ensuring 
serializability

• How ?  Three techniques:
– Locks

– Time stamps

– Validation
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Locking Scheduler

Simple idea:

• Each element has a unique lock

• Each transaction must first acquire the lock 
before reading/writing that element

• If the lock is taken by another transaction, 
then wait

• The transaction must release the lock(s)
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Notation

l i(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A
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Example

L2(B); DENIED…

WRITE(B,s); U2(B); 
s := s*2
…GRANTED; READ(B,s)

WRITE(B,t); U1(B); 
t := t+100
READ(B, t)

WRITE(A,s); U2(A); 
s := s*2
L2(A); READ(A,s)

WRITE(A, t); U1(A); L1(B)
t := t+100
L1(A); READ(A, t)

T2T1

The scheduler has ensured a conflict-serializable schedule
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Example

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)

WRITE(B,t); U1(B); 
t := t+100
L1(B); READ(B, t)

WRITE(B,s); U2(B);
s := s*2

WRITE(A, t); U1(A);
t := t+100
L1(A); READ(A, t)

T2T1

Locks did not enforce conflict-serializability !!!



88

Two Phase Locking (2PL)

The 2PL rule:

• In every transaction, all lock requests must
preceed all unlock requests

• This ensures conflict serializability !  
(why?)
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Example: 2PL transactcions

L2(B); DENIED…

WRITE(B,s); U2(A); U2(B); 
s := s*2
…GRANTED; READ(B,s)

WRITE(B,t); U1(B); 
t := t+100
READ(B, t)

WRITE(A,s); 
s := s*2
L2(A); READ(A,s)

WRITE(A, t); U1(A) 
t := t+100
L1(A); L1(B); READ(A, t)

T2T1

Now it is conflict-serializable
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Deadlock

• Trasaction T1 waits for a lock held by T2;

• But T2 waits for a lock held by T3;

• While T3 waits for . . . .

• . . .

• . . .and T73 waits for a lock held by T1 !!

Could be avoided, by ordering all elements (see book); or 
deadlock detection plus rollback
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Lock Modes

• S = Shared lock (for READ)
• X = exclusive lock (for WRITE)
• U = update lock

– Initially like S
– Later may be upgraded to X

• I = increment lock (for A := A + something)
– Increment operations commute

• READ CHAPTER 17 in Ramakrishnan or 18.4 in 
Ullman !
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The Locking Scheduler

Taks 1:
add lock/unlock requests to transactions

• Examine all READ(A) or WRITE(A) 
actions

• Add appropriate lock requests

• Ensure 2PL !
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The Locking Scheduler

Task 2: 
execute the locks accordingly

• Lock table: a big, critical data structure in a DBMS !

• When a lock is requested, check the lock table
– Grant, or add the transaction to the element’s wait list

• When a lock is released, re-activate a transaction from its wait list

• When a transaction aborts, release all its locks

• Check for deadlocks occasionally
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The Tree Protocol

• An alternative to 2PL, for tree structures

• E.g. B-trees (the indexes of choice in 
databases)
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The Tree Protocol

Rules:
• The first lock may be any node of the tree
• Subsequently, a lock on a node A may only be acquired if 

the transaction holds a lock on its parent B
• Nodes can be unlocked in any order (no 2PL necessary)

The tree protocol is NOT 2PL, yet ensures conflict-
serializability !
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Performance of locking

• Few transactions
– No lock contention
– High throughput

• More transactions
– Some lock contention
– Higher throughput (because more transactions)

• Even more transactions
– A lot of lock contention
– Lower throughput (thrashing)

See Ramakrishnan, page 534
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Other Concurrency Control 
Methods

• Timestamps
– Variation: snapshot isolation (Oracle)

• Validation
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Timestamps

Every transaction receives a unique timestamp
TS(T)

Could be:

• The system’s clock
• A unique counter, incremented by the 

scheduler



99

Timestaps

The timestamp order defines
the searialization order of the transaction

The timestamp order defines
the searialization order of the transaction

Main invariant:
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Timestamps

Associate to each element X:
• RT(X) = the highest timestamp of any 

transaction that read X
• WT(X) = the highest timestamp of any 

transaction that wrote X
• C(X) = the commit bit: says if the 

transaction with highest timestamp that 
wrote X commited

These are associated to each page X in the buffer pool
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Main Idea
For any two conflicting actions, ensure that 

their order is the serialized order:

In each of these cases

• wU(X) . . . rT(X)

• rU(X) . . . wT(X)

• wU(X) . . . wT(X)

Check that TS(U) < TS(T)

When T wants to read X, rT(X), how do we 
know U, and TS(U) ?
When T wants to read X, rT(X), how do we 
know U, and TS(U) ?

Read too
late ?

Write too
late ?

No problem
(WHY ??)
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Details

Read too late:

• T wants to read X, and TS(T) < WT(X)

START(T) … START(U) … wU(X) . . . rT(X)START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !
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Details

Write too late:

• T wants to write X, and 
WT(X) < TS(T) < RT(X)

START(T) … START(U) … rU(X) . . . wT(X)START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

Why do we check WT(X) < TS(T)  ????
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Details

Write too late, but we can still handle it:

• T wants to write X, and 
TS(T) < RT(X)  but WT(X) > TS(T)

START(T) … START(V) … wV(X) . . . wT(X)START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(but see later…)



105

More Problems

Read dirty data:

• T wants to read X, and WT(X) < TS(T)

• Seems OK, but…

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=1, then T needs to wait for it to become 0
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More Problems

Write dirty data:

• T wants to write X, and WT(X) > TS(T)

• Seems OK not to write at all, but …

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=1, then T needs to wait for it to become 0
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Timestamp-based Scheduling

When a transaction T requests r(X) or w(X),
the scheduler examines RT(X), WT(X), 
C(X), and decides one of:

• To grant the request, or
• To rollback T (and restart with later 

timestamp)
• To delay T until C(X) = 0
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Timestamp-based Scheduling

RULES:

• There are 4 long rules in the textbook, on 
page 974

• You should be able to understand them, or 
even derive them yourself, based on the 
previous slides

• Make sure you understand them !

READING ASSIGNMENT: 18.8.4READING ASSIGNMENT: 18.8.4
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Multiversion Timestamp

• When transaction T requests r(X)
but WT(X) > TS(T),
then T must rollback

• Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

• Let T read an older version, with appropriate 
timestamp

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .
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Details

• When wT(X) occurs create a new version, denoted  
Xt where t = TS(T)

• When rT(X) occurs, find a version Xt such that t < 
TS(T) and t is the largest such 

• WT(Xt)  = t and it never chanes
• RD(Xt) must also be maintained, to reject certain 

writes (why ?)
• When can we delete Xt: if we have a later version 

Xt1 and all active transactions T have TS(T) > t1
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Tradeoffs

• Locks:
– Great when there are many conflicts
– Poor when there are few conflicts

• Timestamps
– Poor when there are many conflicts (rollbacks)
– Great when there are few conflicts

• Compromise
– READ ONLY transactions → timestamps
– READ/WRITE transactions → locks
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Concurrency Control by 
Validation

• Each transaction T defines a read set RS(T) and a write set
WS(T)

• Each transaction proceeds in three phases:
– Read all elements in RS(T).  Time = START(T)

– Validate (may need to rollback).  Time = VAL(T)

– Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)Main invariant: the serialization order is VAL(T)
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Avoid rT(X) - wU(X) Conflicts

Write phaseValidateRead phaseU:

START(U) VAL(U) FIN(U)

Validate ?Read phaseT:

START(T)

IF RS(T) ∩ WS(U) and FIN(U) > START(T) 
(U has validated and U has not finished before T begun)

Then ROLLBACK(T)

IF RS(T) ∩ WS(U) and FIN(U) > START(T) 
(U has validated and U has not finished before T begun)

Then ROLLBACK(T)

conflicts
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Avoid wT(X) - wU(X) Conflicts

Write phaseValidateRead phaseU:

START(U) VAL(U) FIN(U)

Write phase ?ValidateRead phaseT:

START(T)
VAL(T)

IF  WS(T) ∩ WS(U) and FIN(U) > VAL(T) 
(U has validated and U has not finished before T validates)

Then ROLLBACK(T)

IF  WS(T) ∩ WS(U) and FIN(U) > VAL(T) 
(U has validated and U has not finished before T validates)

Then ROLLBACK(T)

conflicts


