
1

DBM S Internals
How does it all work?

M ay 3rd, 2004

Agenda

• Comments on phase 2 of the project

• HW 3 is out.

• Today: DBM S internals part 1 --
– Indexing

– Query execution

• Next week: query optimization.

W hat Should a DBM S Do?

• Store large am ounts of data

• Process queries efficiently

• Allow multiple users to access the database
concurrently and safely.

• Provide durability of the data.

•How will we do all this??

Generic Architecture

Query compiler/optim izer

Execution engine

Index/record m gr.

Buffer m anager

Storage m anager

storage

User/
Application

Query
update

Query execution
planRecord,

index
requests

Page
commands

Read/write
pages

Transaction m anager:
•Concurrency control
•Logging/recovery

Transaction
commands

M ain Points to Take Away

• I/O m odel of computation
– W e only count accesses to disk.

• Indexing:
– Basic techniques: B+-tree, hash indexes

– Secondary indexes.

• Efficient operator implementations: join

• Optimization: from what to how.

The M emory Hierarchy

M ain M em ory Disk Tape

•Volatile
•lim ited address
spaces
•expensive
•average access
tim e:
10-100 nanoseconds

•5-10 M B/S
transm ission rates
•Gigs of storage
•average tim e to
access a block:
10-15 m secs.
•Need to consider
seek, rotation,
transfer tim es.
•Keep records “close”
to each other.

•1.5 M B/S transfer rate
•280 GB typical
capacity

•Only sequential access
•Not for operational
data

Cache:
access tim e 10 nano’s

2

M ain M emory

• Fastest, m ost expensive

• Today: 512M B-2GB are comm on on PCs

• M any databases could fit in mem ory
– New industry trend: M ain M emory Database

– E.g TimesTen

• M ain issue is volatility

Secondary Storage

• Disks

• Slower, cheaper than main memory

• Persistent !!!

• Used with a main mem ory buffer

Buffer M anagement in a DBM S

• Data must be in RAM for DBM S to operate on it!

• Table of <frame#,pageid> pairs ismaintained.

• LRU is not always good.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Buffer M anager
M anages buffer pool:the pool provides space for a limited

number of pages from disk.

Needs to decide on page replacement policy.

Enables the higher levels of the DBM S to assume that the
needed data is in main memory.

W hy not use the Operating System for the task??

-DBM S may be able to anticipate access patterns
-Hence, may also be able to perform prefetching
-DBM S needs the ability to force pages to disk.

Tertiary Storage

• Tapes or optical disks

• Extremely slow: used for long term
archiving only

The M echanics of Disk

M echanical characteristics:

• Rotation speed (5400RPM)

• Number of platters (1-30)

• Number of tracks (<=10000)

• Number of bytes/track(105)

Platters

Spindle

Disk head

Arm m ovem ent

Arm assem bly

Tracks

Sector

Cylinder

3

Disk Access Characteristics

• Disk latency= tim e between when command is issued and
when data is in mem ory

• Is not following M oore’s Law!

• Disk latency = seek tim e + rotational latency
– Seek time = time for the head to reach cylinder

• 10ms –40ms

– Rotational latency = time for the sector to rotate
• Rotation time = 10ms
• Average latency = 10ms/2

• Transfer tim e = typically 10M B/s
• Disks read/write one block at a tim e (typically 4kB)

The I/O M odel of Computation

• In main mem ory algorithms we care about
CPU time

• In databases time is dominated by I/O cost

• Assumption: cost is given only by I/O

• Consequence: need to redesign certain
algorithm s

• W ill illustrate here with sorting

Sorting

• Illustrates the difference in algorithm design
when your data is not in main mem ory:
– Problem: sort 1Gb of data with 1M b of RAM .

• Arises in many places in database system s:
– Data requested in sorted order (ORDER BY)

– Needed for grouping operations

– First step in sort-merge join algorithm

– Duplicate removal

– Bulk loading of B+-tree indexes.

2-W ay M erge-sort:
Requires 3 Buffers

• Pass 1: Read a page, sort it, write it.
– only one buffer page is used

• Pass 2, 3, … , etc.:
– three buffer pages used.

Main memory
buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Two-W ay External M erge Sort

• Each pass we read + write each
page in file.

• N pages in the file => the number
of passes

• So total cost is:

• Improvement: start with larger runs

• Sort 1GB with 1M B memory in 10
passes

 = +log2 1N

 ()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

Can W e Do Better ?

• W e have more main memory
• Should use it to improve performance

4

Cost M odel for Our Analysis

• B: Block size

• M : Size of main mem ory

• N: Number of records in the file

• R: Size of one record

External M erge-Sort

• Phase one: load M bytes in mem ory, sort
– Result: runs of length M /R records

M bytes of main memory
DiskDisk

.
M /R records

Phase Two

• M erge M /B –1 runs into a new run

• Result: runs have now M /R (M /B –1) records

M bytes of main memory
DiskDisk

.
Input M /B

Input 1

Input 2
. . . .

Output

Phase Three

• M erge M /B –1 runs into a new run

• Result: runs have now M /R (M /B –1)2 records

M bytes of main memory
DiskDisk

.
Input M /B

Input 1

Input 2
. . . .

Output

Cost of External M erge Sort

• Num ber of passes:

• Think differently
– Given B = 4KB, M = 64M B, R = 0.1KB

– Pass 1: runs of length M /R = 640000
•Have now sorted runs of 640000 records

– Pass 2: runs increase by a factor of M /B –1 = 16000
•Have now sorted runs of 10,240,000,000 = 1010 records

– Pass 3: runs increase by a factor of M /B –1 = 16000
•Have now sorted runs of 1014 records
•Nobody has so much data !

• Can sort everything in 2 or 3 passes !

  MNRBM /log1 1/ -+

B: number of fram es in the buffer pool; N: number of pages in relation.

Number of Passes of External
Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

5

Data Storage and Indexing

Representing Data Elements

• Relational database elements:

• A tuple is represented as a record

CREATE TABLE Product (

pid INT PRIM ARY KEY,
nam e CHAR(20),
description VARCHAR(200),
maker CHAR(10) REFERENCES Com pany(nam e)

)

Record Formats: Fixed Length

• Information about field types same for all
records in a file; stored in system catalogs.

• Findingi’th field requires scan of record.

• Note the im portance of schem a inform ation!

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Record Header

L1 L2 L3 L4

F1 F2 F3 F4

To schem a

length

tim estamp

Need the header because:
•The schema m ay change

for a while new+old m ay coexist
•Records from different relations m ay coexist

header

Variable Length Records

L1 L2 L3 L4

F1 F2 F3 F4

Other header information

length

Place the fixed fields first: F1, F2
Then the variable length fields: F3, F4
Null values take 2 bytes only
Som etimes they take 0 bytes (when at the end)

header

Records W ith Repeating Fields

L1 L2 L3

F1 F2 F3

Other header information

length

header

Needed e.g. in Object Relational system s,
or fancy representations of m any-m any relationships

6

Storing Records in Blocks

• Blocks have fixed size (typically 4k)

R1R2R3

BLOCK

R4

Storage and Indexing

• How do we store efficiently large amounts
of data?

• The appropriate storage depends on what
kind of accesses we expect to have to the
data.

• W e consider:
– primary storage of the data

– additional indexes (very very important).

Cost M odel for Our Analysis

As a good approximation, we ignore CPU
costs:
– B: The number of data pages

– R: Number of records per page

– D: (Average) time to read or write disk page

– M easuring number of page I/O’s ignores gains of
pre-fetching blocks of pages; thus, even I/O cost
is only approximated.

– Average-case analysis; based on several
simplistic assumptions.

*

File Organizations and
Assumptions

• Heap Files:
– Equality selection on key; exactly one m atch.
– Insert always at end of file.

• Sorted Files:
– Files com pacted after deletions.
– Selections on sort field(s).

• Hashed Files:
– No overflow buckets, 80% page occupancy.

• Single record insert and delete.

Cost of Operations

Heap
File

Sorted
 File

Hashed
File

Scan all recs

Equality Search

Range Search

Insert

Delete

Indexes

• An index on a file speeds up selections on the search key
fields for the index.
– Any subset of the fields of a relation can be the search key foran
index on the relation.

– Search key is notthe same as key(minimal set of fields that
uniquely identify a record in a relation).

• An index contains a collection of data entries, and
supports efficient retrieval of all data entries with a given
key value k.

7

Index Classification

• Primary/secondary

• Clustered/unclustered

• Dense/sparse

• B+ tree / Hash table / …

Primary Index

• File is sorted on the index attribute

• Denseindex: sequence of (key,pointer) pairs

40

30

20

10

80

70

60

50

20

10

40

30

60

50

80

70

Primary Index

• Sparseindex

70

50

30

10

150

130

110

90

20

10

40

30

60

50

80

70

Primary Index with Duplicate
Keys

• Dense index:

40

30

20

10

80

70

60

50

10

10

20

10

20

20

40

30

Primary Index with Duplicate
Keys

• Sparse index: pointer to lowest search key
in each block:

• Search for 20

30

20

10

10

10

10

20

10

20

20

40

30

20 is
here...

...but
need to
search
here too

• Better: pointer to lowest new search keyin
each block:

• Search for 20

• Search for 15 ? 35 ?

Primary Index with Duplicate
Keys

40

30

20

10

80

70

60

50

10

10

20

10

30

30

50

40

20 is
here...

...ok to
search

from here

30

30

8

Secondary Indexes

• To index other attributes than primary key

• Always dense (why ?)

20

20

10

10

30

30

30

20

30

20

20

30

20

10

30

10

Clustered/Unclustered

• Primary indexes = usually clustered

• Secondary indexes = usually unclustered

Clustered vs.Unclustered Index

Dataentries
(Index File)
(Data file)

DataRecords

Data entries

Data Records

CLUSTERED UNCLUSTERED

Secondary Indexes

• Applications:
– index other attributes than primary key

– index unsorted files (heap files)

– index clustered data

Applications of Secondary Indexes

• Clustered data

Company(name, city), Product(pid, maker)

Selectcity
From Company, Product
W herenam e=maker

and pid=“p045”

Selectpid
From Company, Product
W herenam e=maker

and city=“Seattle”

Company 1 Company 2 Company 3

Products of company 1 Products of company 2 Products of company 3

Composite Search Keys

• Composite Search Keys: Search
on a combination of fields.
– Equality query: Every field
value is equal to a constant
value. E.g.wrt <sal,age>
index:
•age=20 andsal =75

– Range query: Som e field
value is not a constant. E.g.:

•age =20; or age=20 and
sal > 10

sue 13 75

bob

cal

joe 12

10

20

8011

12

nam eage sal

<sal, age>

<age,sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

9

B+ Trees

• Search trees

• Idea in B Trees:
– make 1 node = 1 block

• Idea in B+ Trees:
– M ake leaves into a linked list (range queries are
easier)

• Parameter d = the degree

• Each node has >= d and <= 2d keys (except root)

• Each leaf has >=d and <= 2d keys:

B+ Trees Basics

24012030

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

605040

40 50 60

Next leaf

B+ Tree Example

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 £ 80

20 < 40 £ 60

30 < 40 £ 40

B+ Tree Design

• How large d ?

• Example:
– Key size = 4 bytes

– Pointer size = 8 bytes

– Block size = 4096 byes

• 2d x 4 + (2d+1) x 8 <= 4096

• d = 170

Searching a B+ Tree

• Exact key values:
– Start at the root

– Proceed down, to the leaf

• Range queries:
– As above

– Then sequential traversal

Selectnam e
From people
W hereage = 25

Selectnam e
From people
W here20 <= age
and age <= 30

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67% .
– averagefanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes

– Level 2 = 133 pages = 1M byte
– Level 3 = 17,689 pages = 133M Bytes

10

Hash Tables

• Secondary storage hash tables are much like
main mem ory ones

• Recall basics:
– There are n buckets

– A hash function f(k) maps a key k to {0, 1, … , n-1}

– Store in bucket f(k) a pointer to record with key k

• Secondary storage: bucket = block, use
overflow blocks when needed

• Assume 1 bucket (block) stores 2 keys +
pointers

• h(e)=0

• h(b)=h(f)=1

• h(g)=2

• h(a)=h(c)=3

Hash Table Example

c

a

g

f

b

e
0

1

2

3

• Search for a:

• Compute h(a)=3

• Read bucket 3

• 1 disk access

Searching in a Hash Table

c

a

g

f

b

e
0

1

2

3

• Place in right bucket, if space

• E.g. h(d)=2

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

• Create overflow block, if no space

• E.g. h(k)=1

• M ore over-
flow blocks
may be needed

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

k

Hash Table Performance

• Excellent, if no overflow blocks

• Degrades considerably when number of
keys exceeds the number of buckets (I.e.
many overflow blocks).

• Typically, we assume that a hash-lookup
takes 1.2 I/Os.

11

W here are we?

• File organizations: sorted, hashed, heaps.

• Indexes: hash index, B+-tree

• Indexes can be clustered or not.

• Data can be stored in the index or not.

• Hence, when we access a relation, we can
either scan or go through an index:
– Called an access path.

Current Issues in Indexing

• M ulti-dimensional indexing:
– how do we index regions in space?

– Document collections?

– M ulti-dimensional sales data

– How do we support nearest neighbor queries?

• Indexing is still a hot and unsolved
problem!

M ultidimensional Indexes

• Applications: geographical databases, data cubes.

• Types of queries:
– partial m atch (give only a subset of the dimensions)

– range queries

– nearest neighbor

– W here am I? (DB or not DB?)

• Conventional indexes don’t work well here.

Indexing Techniques

• Hash like structures:
– Grid files

– Partitioned indexing functions

• Tree like structures:
– M ultiple key indexes

– kd-trees

– Quad trees

– R-trees

Grid Files

*

* *

*

*

** *

*

*

*

*

*

Salary

Age
0 15 20 35 102

10K

90K
200K

250K

500K •Each region in the
corresponds to a
bucket.

•W orks well even if
we only have partial
matches

•Som e buckets may
be empty.

•Reorganization requires
m oving grid lines.

•Number of buckets
grows exponentially
with the dim ensions.

Partitioned Hash Functions

• A hash function produces kbits identifying the
bucket.

• The bits are partitioned among the different
attributes.

• Example:
– Age produces the first 3 bits of the bucket number.
– Salary produces the last 3 bits.

• Supports partial matches, but is useless for range
queries.

12

Tree Based Indexing Techniques
Salary, 150

Age, 60 Age, 47

Salary, 300
70, 110

85, 140

*

**

*
*

*

*

*

*

*

* *
*

M ultiple Key Indexes

Index on
first

attribute

Index on
second
attribute

•Each level as an index for one
of the attributes.

•W orks well for partial m atches
if the match includes the first
attributes.

KD Trees

Salary, 150

Age, 60 Age, 47

Salary, 80 Salary, 300

Age, 38

50, 275

60, 260

30, 260 25, 400

45, 350

70, 110

85, 140

50, 100

50, 120

45, 60

50, 75

25, 60

•Allow multiway branches
at the nodes, or

•Group interior nodes
into blocks.

Adaptation to secondary storage:

Quad Trees

*

**

*
*

*

*

*

*

*

* *
*

•Each interior node corresponds
to a square region (or k-dimen)

•W hen there are too many points
in the region to fit into a block,
split it in 4.

•Access algorithms similar to those
of KD-trees.

0 100

400K

Age

Salary

R-Trees
•Interior nodes contain sets
of regions.
•Regions can overlap and not
cover all parent’s region.

•Typical query:
•W here am I?

•Can be used to store regions
as well as data points.

•Inserting a new region may
involve extending one of the
existing regions (minimally).

•Splitting leaves is also tricky.

Query Execution

Query compiler

Execution engine

Index/record m gr.

Buffer m anager

Storage m anager

storage

User/
Application

Query
update

Query execution
plan

Record, index
requests

Page
commands

Read/write
pages

13

Query Execution Plans

Purchase Person

Buyer=nam e

City=‘seattle’ phone>’5430000’

buyer

(Sim ple Nested Loops)

SELECT S.sname
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘seattle’ AND
Q.phone > ‘5430000’

s

Query Plan:
•logical tree
•implementation
choice at every
node
•scheduling of
operations.

(Table scan) (Index scan)

Som e operators are from relational
algebra, and others (e.g., scan, group)
are not.

The Leaves of the Plan: Scans

• Table scan:iterate through the records of
the relation.

• Index scan:go to the index, from there get
the records in the file (when would this be
better?)

• Sorted scan:produce the relation in order.
Implementation depends on relation size.

How do we combine Operations?
• The iterator m odel.Each operation is implemented by 3
functions:
– Open: sets up the data structures and performs initializations
– GetNext: returns the the next tuple of the result.

– Close: ends the operations. Cleans up the data structures.

• Enables pipelining!
• Contrast with data-driven materialize m odel.

• Som etimes it’s the same (e.g., sorted scan).

Implementing Relational
Operations

• W e will consider how to im plement:
– Selection () Selects a subset of rows from relation.

– Projection () Deletes unwanted columns from
relation.

– Join () Allows us to combine two relations.

– Set-difference Tuples in reln. 1, but not inreln. 2.

– Union Tuples in reln. 1 and inreln. 2.

– Aggregation (SUM , M IN, etc.) and GROUP BY

s
p

><

Schema for Examples

• Purchase:
– Each tuple is 40 bytes long, 100 tuples per page, 1000
pages (i.e., 100,000 tuples, 4M B for the entire relation).

• Person:
– Each tuple is 50 bytes long, 80 tuples per page, 500
pages (i.e, 40,000 tuples, 2M B for the entire relation).

Purchase (buyer:string, seller: string, product: integer),

Person (name:string, city:string, phone: integer)

Simple Selections

• Of the form

• W ith no index, unsorted: M ust essentially scan the whole relation;
cost is M (#pages in R).

• W ith an index on selection attribute: Use index to find qualifying
data entries, then retrieve corresponding data records. (Hash index
useful only for equality selections.)

• Result size estim ation:

(Size of R) * reduction factor.

M ore on this later.

SELECT *
FROM Person R
WHERE R.phone < ‘543%’

s R attr valueop R. ()

14

Using an Index for Selections
• Cost depends on #qualifying tuples, and clustering.

– Cost of finding qualifying data entries (typically sm all) plus cost
of retrieving records.

– In exam ple, assum ing uniform distribution of phones, about 54%
of tuples qualify (500 pages, 50000 tuples). W ith a clustered
index, cost is little m ore than 500 I/Os; ifunclustered, up to 50000
I/Os!

• Important refinement forunclustered indexes:
1. Find sort the rid’s of the qualifying data entries.
2. Fetch rids in order. This ensures that each data page is looked at
just once (though # of such pages likely to be higher than with
clustering).

Two Approaches to General
Selections

• First approach:Find the most selective access path,
retrieve tuples using it, and apply any remaining
terms that don’t matchthe index:
– M ost selective access path: An index or file scan that
we estimate will require the fewest page I/Os.

– Consider city=“seattle AND phone<“543% ” :

• A hash index on city can be used; then,
phone<“543% ” must be checked for each retrieved
tuple.

• Similarly, a b-tree index on phonecould be used;
city=“seattle” must then be checked.

Intersection of Rids
• Second approach

– Get sets of rids of data records using each matching
index.

– Then intersectthese sets of rids.

– Retrieve the records and apply any remaining terms.

Implementing Projection

• Two parts:

(1) remove unwanted attributes,

(2) remove duplicates from the result.

• Refinements to duplicate removal:
– If an index on a relation contains all wanted
attributes, then we can do an index-onlyscan.

– If the index contains a subset of the wanted
attributes, you can remove duplicates locally.

SELECT DISTINCT
R.name,
R.phone

FROM Person R

Equality Joins W ith One Join Column

• R S is a common operation. The cross product is too large.Hence,
perform ing R S and then a selection is too inefficient.

• Assum e: M pages in R,pR tuples per page, N pages in S,pS tuples per
page.
– In our examples, R is Person and S is Purchase.

• Cost metric: # of I/Os. W e will ignore output costs.

SELECT *
FROM Person R, Purchase S
WHERE R.name=S.buyer

><
·

JOIN

Discussion

• How would you implement join?

15

Simple Nested Loops Join

• For each tuple in the outerrelation R, we scan the entireinner
relation S.
– Cost: M + (pR * M) * N = 1000 + 100*1000*500 I/Os: 140 hours!

• Page-oriented Nested Loops join: For each pageof R, get each page
of S, and write out m atching pairs of tuples <r, s>, where r is in R-
page and S is in S-page.
– Cost: M + M *N = 1000 + 1000*500 (1.4 hours)

For each tuple r in R do
for each tuple s in S do

if ri == sj then add <r, s> to result

Index Nested Loops Join

• If there is an index on the join column of one relation (say S),can
make it the inner.
– Cost: M + ((M *pR) * cost of finding matching S tuples)

• For each R tuple, cost of probing S index is about 1.2 for hash
index, 2-4 for B+ tree. Cost of then finding S tuples depends on
clustering.
– Clustered index: 1 I/O (typical),unclustered: up to 1 I/O per matching S
tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Examples of Index Nested Loops
• Hash-index on nameof Person (as inner):

– Scan Purchase: 1000 page I/Os, 100*1000 tuples.

– For each Person tuple: 1.2 I/Os to get data entry in index, plus 1
I/O to get (the exactly one) m atching Person tuple. Total:
220,000 I/Os. (36 m inutes)

• Hash-index on buyerof Purchase (as inner):
– Scan Person: 500 page I/Os, 80*500 tuples.
– For each Person tuple: 1.2 I/Os to find index page with data
entries, plus cost of retrieving matching Purchase tuples.
Assum ing uniform distribution, 2.5 purchases per buyer (100,000
/ 40,000). Cost of retrieving them is 1 or 2.5 I/Os depending on
clustering.

Block Nested Loops Join

• Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold ̀ b̀lock’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add
<r, s> to result. Then read next R-block, scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

Sort-M erge Join (R S)
• Sort R and S on the join column, then scan them to
do a ̀ m̀ erge’’ on the join column.
– Advance scan of R until current R-tuple >= current S
tuple, then advance scan of S until current S-tuple >=
current R tuple; do this until current R tuple = current S
tuple.

– At this point, all R tuples with same value and all S
tuples with same value match; output <r, s> for all pairs
of such tuples.

– Then resume scanning R and S.

><
i=j

Cost of Sort-M erge Join

• R is scanned once; each S group is scanned once
per matching R tuple.

• Cost: M log M + N log N + (M +N)
– The cost of scanning, M +N, could be M *N (unlikely!)

• W ith 35, 100 or 300 buffer pages, both Person and
Purchase can be sorted in 2 passes; total: 7500. (75
seconds).

16

Hash-Join
• Partition both relations using

hash fn h: R tuples in
partition i will only match S
tuples in partition i.

v Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
forSi

Hash table for partition
Ri (k < B-1 pages)

B m ain m em ory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B m ain m em ory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Cost of Hash-Join

• In partitioning phase, read+write both relations; 2(M +N).
In matching phase, read both relations; M +N I/Os.

• In our running example, this is a total of 4500 I/Os. (45
seconds!)

• Sort-M erge Join vs. Hash Join:

– Given a minimum amount of memory both have a cost
of 3(M +N) I/Os. Hash Join superior on this count if
relation sizes differ greatly. Also, Hash Join shown to
be highly parallelizable.

– Sort-M erge less sensitive to data skew; result is sorted.

Double Pipelined Join (Tukwila)

Hash Join
8 Partially pipelined: no output
until inner read

8 Asymmetric (inner vs. outer) —
optimization requires source
behavior knowledge

Double Pipelined Hash Join

4 Outputs data immediately

4 Symm etric — requires less
source knowledge to optim ize

Discussion

• How would you build a query optimizer?

