Lecture #7

Query Optimization
May 16, 2002

Agenda/Administration

« Last homework handed out by the weekend.
* Projects status?

* Trip Report

* Query optimization

Query Optimization

Goal:
Declarative SQL querys——Imperative query execution plan:

buyer

SELECT S.buyer

FROM Purchase P, Person Q

WHERE P.buyer=Q.name AND
Q.city="seattle’ AND
Q.phone > ‘5430000’

¢}
City="seattle’/\ phone>'5430000

selectivity factors)
*_avail able memor
Ideally: Want to find best plan. Practically: Avoid worst plans!

) ><
Inputs: i Buyer=name (Simple Nested Loops)
* the query 3
« statistics about the dad Purchase Person
. . !
(mdexes cardlnalltles i (Table scan) (Index scan)
i
i
i
i

How are we going to build one?

» What kind of optimizations can we do?
* What are the issues?
» How would we architect aquery optimizer?

Discussion

How Would You Do It?

Schemafor Some Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Reserves:

— Each tupleis 40 byteslong, 100 tuples per page, 1000
pages (4000 tuples)

Sailors:

— Each tupleis 50 byteslong, 80 tuples per page, 500
pages (4000 tuples).

RA Tree: Wsname

Motivating Example
b\d:lDD/\ rating > 5
SELECT S.shame ‘
FROM Reserves R, Sailors S —
WHERE R.sid=S.sid AND sidsid
R.bid=100 AND S.rating>5 N

+ Cost: 500+500* 1000 I/Os Reserves Sailors

* By no means the worst plan!
* Misses severd opportunities:
selections could have been “pushed” o
earlier, no use is made of any
available indexes, etc.

Plan: Wsname (On-the-fly)

bid=100/\ rating>5 (On-the-fly)

, (On-the-fly)

Alternative Plans 1 ‘

B>< (Sort-Merge Join)

sid=sid
&/Scan: o a &/Scan:
. . rite to bid=100 rating > 5 write to
Main difference: push selects. temp T1) temp T.
With 5 buffers, cost of plan: Reserves Sailors

— Scan Reserves (1000) + write temp T1
(10 pages, if we have 100 boats, uniform distribution).
— Scan Sailors (500) + write temp T2 (250 pages, if we have 10
ratings).
— Sort T1 (2*2*10), sort T2 (2* 3*250), merge (10+250), total=1800
— Totd: 3560 page 1/0s.
If we used BNL join, join cost = 10+4* 250, tota cost = 2770.
If we “push’ projections, T1 has only sid, T2 only sid and sname:

— T1fitsin 3 pages, cost of BNL dropsto under 250 pages, tota <
2000.

« Goal of optimization: To find more efficient ><1 (Simple Nested Loops)
plans that compute the same answer. sid=sid
Reserves Sailors
Alternative Plans 2
With Indexes s 0
i dustered ndex on 0 O 000 e SRS
eserves, we g A = PN
tuples on 1000/100 = 10 pages. (8 Cugero sators
. T . ot write
* INL with pipelining (outer isnot ~ fgsuse
mden aJ | zaj) . Reserves

v Join column sid is a key for Sailors.
—At most one matching tuple, unclustered index on sid OK.
v Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.
v Cost: Selection of Reserves tuples (10 1/0s); for each,
must get matching Sailors tuple (1000*1.2); total 1210 1/0Os.

Query Optimization Process
(simplified a bit)

» Parsethe SQL query into alogical tree:

— identify distinct blocks (corresponding to nested sub-
queries or views).

* Query rewrite phase:
— apply agebraic transformations to yield a cheaper plan.
— Merge blocks and move predi cates between bl ocks.
» Optimize each block: join ordering.
Complete the optimization: select scheduling
(pipelining strategy).

Building Blocks

Algebraic transformations (many and
wacky).

* Statistical model: estimating costs and sizes.
* Finding the best join trees:

— Bottom-up (dynamic programming): System-R
* Newer architectures:

— Starburst: rewrite and then tree find

— Volcano: all at once, top-down.

Key Lessons in Optimization

e There are many approaches and many
detailsto consider in query optimization
— Classic search/optimization problem!
— Not completely solved yet!
e Main pointsto take away are:
— Algebraic rules and their use in transformations
of queries.
— Deciding on join ordering: System-R style
(Selinger style) optimization.
— Estimating cost of plans and sizes of
intermediate results.

Operations (revisited)

Scan ([index], table, predicate):

— Either index scan or table scan.

— Try to push down sar gable predicates.
Selection (filter)

Projection (always need to go to the data?)

Joins: nested loop (indexed), sort-merge,
hash, outer join.

Grouping and aggregation (usualy the last).

Algebraic Laws

e Commutative and Associative Laws
—-RUS=SUR, RU(SUT)=(RUS)UT
—-RNS=SNR, RN(SNT)=(RNSNT
—R><S=S<R, R< (S><a T) = (R><S)><T

« Distributive Laws
—R><(SUT) = (R<1S) U (R><T)

Algebraic Laws

» Lawsinvolving selection:
—ocawc(R) =ooc(R)=c(R Ncc(R)
—ocorc(R) =0 (R)Uc(R)
—oc(R<9=cRP<S

* When Cinvolves only attributes of R

- oc(R-9=06c(R)-S
-o6c(RU§=0ccR)Ucc(9
- oc(RNY =cRNS

Algebraic Laws

» Example: R(A, B, C, D), S(E, F, G)
- ors3(Rg § =

-c A=5ANDG:9(RI§:<EI) =

PSRRI

Algebraic Laws

 Lawsinvolving projections
~ Ty(Re<t S) =My ([Te(R)>< T(S))

* Where N, P, Q are appropriate subsets of attributes
of M

= My([I\(R)) =TIy n(R)
» Example R(A,B,C,D), S(E, F, G)
- nA,B,G(REfE] S) =I1,(I1R) E:El I14S))

Query Rewrites. Sub-queries

SELECT Emp.Name
FROM Emp
WHERE Emp.Age < 30
AND Emp.Dept# IN
(SELECT Dept.Dept#

FROM Dept

WHERE Dept.Loc = “Sesttle”

AND Emp.Emp#=Dept.Mgr)

The Un-Nested Query

SELECT Emp.Name

FROM Emp, Dept

WHERE Emp.Age< 30
AND Emp.Dept#=Dept.Dept#
AND Dept.Loc = “ Seattle”
AND Emp.Emp#=Dept.Mgr

Converting Nested Queries

Select distinct x.name, x.maker
From product x
Where x.color= “blue”
AND x.price >= ALL (Select y.price
From product y
Where x.maker = y.maker
AND y.color="blue")

How do we convert this oneto logica plan ?

Converting Nested Queries

Let’'s compute the complement first:

Select distinct x.name, x.maker
From product x
Where x.color=“blue’
AND x.price < SOME (Select y.price
From product y
Where x.maker = y.maker
AND y.color="blue")

Converting Nested Queries

This one becomes a SFW query:

Select distinct x.name, x.maker

From product X, product y

Where x.color=“blug’” AND x.maker = y.maker
AND y.color="blue” AND x.price <y.price

This returns exactly the products we DON' T
want, o...

Converting Nested Queries

(Select x.name, x.maker
From product x
Where x.color = “blue”)

EXCEPT

(Select x.name, x.maker

From product x, product y

Where x.color=“blueg” AND x.maker = y.maker
AND y.color="blue” AND x.price <y.price)

Semi-Joins, Magic Sets

* You can't always un-nest sub-queries (it’ s tricky).

* But you can often use a semi-join to reduce the
computation cost of the inner query.

* A magic set is a superset of the possible bindings
in the result of the sub-query.

* Also called “sideways information passing”.

» Great idea; reinvented every few yearson a
regular basis.

Rewrites. Magic Sets
Create View DepAvgSa AS
(Select E.did, Avg(E.sal) as avgsal
From EmpE
Group By E.did)

Select E.eid, E.sal

From Emp E, Dept D, DepAvgSal V

Where E.did=D.did AND D.did=V.did
And E.age < 30 and D.budget > 100k
And E.sa >V.avgsal

Supporting Views
1. Create View PartialResult as
(Select E.eid, E.sdl, E.did
From EmpE, Dept D
Where E.did=D.did
And E.age< 30 and D.budget > 100K)
2. Create View Filter AS
Select DISTINCT P.did FROM PartialResult P.
2. Creste View LimitedAvgSal as
(Select F.did Avg(E.Sal) as avgSal
From Emp E, Filter F
Where E.did=F.did
Group By F.did)

Rewrites. Group By and Join
* Schema:

— Product (pid, unitprice,...)

— Sales(tid, date, store, pid, units)

Join
e Trees.
groupBy(pid)
Sum(units) groupBy(pid)
‘ Sum(units)
Jom\ Products
Products scen(Sdes) Filter inNW)
Filter (in NW A8 €5)
Scan(Sdles) ¢) Filter(date in Q2,2000)
Filter(date in Q2,2000)

Rewrites: SIPs

Select E.eid, E.sal

From Emp E, Dept D, DepAvgSal V

Where E.did=D.did AND D.did=V.did
And E.age < 30 and D.budget > 100k
And E.sa >V.avgsal

* DepAvgsal needsto be evaluated only for
departments where V.did IN

Select E.did
From EmpE, Dept D
Where E.did=D.did
And E.age <30 and D.budget > 100K

And Finaly...

Transformed query:

Select P.eid, P.sdl

From PartialResult P, LimitedAvgSa V
Where P.did=V .did
And P.sa >V.avgsa

Rewrites.Operation Introduction
e Schema: (pid determines cid)
— Category (pid, cid, details) groupBy(cid)
— Sales(tid, date, store, pid, amount) Sum(amount)
e Trees ‘

groupBy(cid) Join
Sum(amount)

‘ groupBy(pid)

Join Sum(amount)
Category Category
Filter (... Scan(Sdles) Filter (...
S‘ca"l(Sal es)) Filter(store IN)
Filter(store IN {CA,WA})

{CAWA})

Query Rewriting: Predicate

shame
.
snhame
Omd:mg/\ rating > 5 ‘
=
sid=sid
><
- Scan; Scan,
sid=sid 358 Thig-100 rating > 5 {eani,
temp T1) temp T
Reserves Sailors Reserves Sailors

The earlier we process selections, less tuples we need to mani pul ate
higher up inthe tree.
Disadvantages?

Query Rewrites: Predicate
Pushdown (through grouping)

Select bid, Max(age)

From ReservesR, Salors S
Where R.sd=Ssid Where Rsid=Ssid and
GroupBy bid S.age> 40
Having Max(age) > 40 GroupBy bid

Select bid, Max(age)
From ReservesR, Salors S

« For each boat, find the maximal age of sailorswho’ ve reserved it.

*Advantage: the size of the join will be smaller.

* Requires transformati on rules specific to the groupi ng/aggregation
operators.

» Will it work work if we replace Max by Min?

Query Rewrite:
Predicate Movearound

Sailing wiz dates: when did the youngest of each sailor level rent boats?

Select sid, date

From V1,V2

Where V1raing=V2.raing and
Vlage=V2.age

N

Create View V1 AS Create View V2 AS

Select rating, Min(age) Select sid, rating, age, date
From Sailors S From Sailors S, Reserves R
Where S.age< 20 Where R.sid=S.sid

Group By rating

Query Rewrite:
Predicate M ovearound

Sailing wiz dates: when did the youngest of each sailor level rent boats?

) Select sid, date

First, move From V1,V2

predicatesupthe | where V1.rating=V2.raing and
tree. Vl.age=V2age age< 20

N

Create View V1 AS Create View V2 AS

Select rating, Min(age) Select sid, rating, age, date
From SalorsS From Sailors S, Reserves R
Where S.age < 20 Where R.sid=S.sid

Group By rating

Query Rewrite:
Predicate Movearound

Sailing wiz dates: when did the youngest of each sailor level rent boats?

, Sdedt sd, dae

First, move From V1,V2

predicatesupthe | \where V1.raing=V2.raing and
tree. Vl.age = V2.age, and age < 20

Then, move them
down.

Create View V1 AS Create View V2 AS

Select rating, Min(age) Select sid, rating, age, date
From SailorsS From Sailors S, Reserves R
Where S.age < 20 Where R.sid=S.sid, and
Group By rating S.age< 20.

Query Rewrite Summary

» The optimizer can use any semantically correct
rule to transform one query to another.
* Rulestry to:
— move constraints between blocks (because each will be
optimized separately)
— Unnest blocks
* Especially important in decision support
applications where queries are very complex.
 Inafew minutes of thought, you'll come up with
your own rewrite. Some query, somewhere, will
benefit from it.
* Theorems?

Cost Estimation

* For each plan considered, must estimate cost:
— Must estimate cost of each operation in plan tree.
* Depends oninput cardindlities.
— Must estimate size of result for each operation in tree!
* Useinformation about the input relations.
* For selections and joins, assume independence of predicates.
« We'll discuss the System R cost estimation
approach.
— Very inexact, but works ok in practice.
— More sophisticated techniques known now.

Statistics and Catalogs

» Need information about the relations and indexes
involved. Catalogs typically contain at least:
— #tuples (NTuples) and # pages (NPages) for each relation.
— #distinct key vaues (NKeys) and NPages for each index.
— Index height, low/high key vaues (Low/High) for each tree
index.
» Catalogs updated periodically.
— Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.
* More detailed information (e.g., histograms of the values
in some field) are sometimes stored.

Cost Model for Our Analysis

* Asagood approximation, we ignore CPU
costs:
— B: The number of data pages
— P: Number of tuples per page
—D: (Average) time to read or write disk page

— Measuring number of page 1/0’ s ignores gains of
pre-fetching blocks of pages; thus, even 1/0 cost
is only approximated.

Simple Nested Loops Join

For each tuple rin R do
for each tuple s in Sdo
if ri==s; then add <r, s> to result
For each tuple in the outer relation R, we scan the entire
inner relation S.
— Cost: M+ (Py* M) * N.
Page-oriented Nested Loopsjoin: For each page of R, get
each page of S, and write out matching pairs of tuples <r,
s>, wherer isin R-page and Sisin S-page.
— Cost: M +M*N.

Index Nested Loops Join

foreach tuple r in R do
foreach tuple s in S where ri =='s; do
add <r, s> to result
« If thereis an index on the join column of one relation (say
S), can make it the inner.
— Cost: M + ((M*Pg) * cost of finding matching S tuples)
» For each R tuple, cost of probing Sindex is about 1.2 for
hash index, 2-4 for B+ tree. Cost of then finding S tuples
depends on clustering.

— Clustered index: 1 1/0 (typical), unclustered: upto 1 1/0 per
matching Stuple.

Block Nested Loops Join

» Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use al
remaining pages to hold “block’” of outer R.

— For each matching tupler in R-block, sin S-page, add
<r, s> toresult. Then read next R-block, scan S, etc.

R in Resul
&S Hash table for block of R JOt
(k < B-1 pages)
D Input buffer for S Output buffer

Sort-Merge Join (R&51S)

* Sort R and S on thejoin column, then scan them to
doa "merge’ on thejoin column.

— Advance scan of R until current R-tuple >= current S
tuple, then advance scan of S until current S-tuple >=
current R tuple; do this until current R tuple = current S
tuple.

— At this point, al R tuples with same value and al S
tuples with same value match; output <r, s> for all pairs
of such tuples.

— Then resume scanning R and S.

Cost of Sort-Merge Join

» Risscanned once; each S group is scanned
once per matching R tuple.
e Cost: MlogM +NlogN + (M+N)

— The cost of scanning, M+N, could be M*N
(unlikely!)

<

Original

Hash-‘]ol n Relation OUTPUT | Partitions
S—

Partition both relations INPUT

using hash fnh: R

: R —>[] ulon
tuplesin partitioni will h
only match Stuplesin

partitioni. Disk B main memory buffers
Partitions
of R& S

. ey Hash table for partition
Read in a partition hash | Ri (k <B-1 pages)
i i fn

of R, hash it using oo S O vee [

h2 (<> hl). Scan oo

matching partition e "

of St ;earch for oo tnput bufer Output

m .

atches Disk B main memory buffers Disk

Cost of Hash-Join

* In partitioning phase, read+write both relations;
2(M+N). In matching phase, read both relations;
M+N I/Os.

 Sort-Merge Join vs. Hash Join:

— Given aminimum amount of memory both have a cost
of 3(M+N) 1/0s. Hash Join superior on this count if
relation sizes differ greatly. Also, Hash Join shown to
be highly parallelizable.

— Sort-Merge less sensitive to data skew; result is sorted.

Size Estimation and Reduction
Factors

SELECT attribute list

. FROM relation list
Consider aquery block: | wHERe term, AND ... AND term,

Maximum # tuples in result is the product of the
cardinalities of relationsin the FROM clause.

Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF's.

— Implicit assumption that terms are independent!

— Term col=value has RF 1/NKeys(l), given index | on col

— Term col1=col2 has RF 1/MAX(NKeys(1 1), NKeys(12))

— Term col>value has RF (High(l)-value)/(High(l)-Low(l))

Histograms

 Key to obtaining good cost and size
estimates.

e Comein severd flavors:

— Equi-depth

— Equi-width

Which is better?

Compressed histograms: specia treatment
of frequent values.

Histograms

* Statistics on data maintained by the
RDBMS

» Makes size estimation much more accurate
(hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, salary, phone)
* Maintain a histogram on salary:

Salary: 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k | > 100k

Tuples 200 800 5000 12000 6500 500

* T(Employee) = 25000, but now we know the
distribution

Histograms

Ranks(rankName, salary)
* Estimate the size of Employee -, Ranks

Employee | 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k | > 100k
200 800 5000 12000 6500 500

Ranks 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k | > 100k
8 20 40 80 100 2

Histograms

e Assume:
— V(Employee, Salary) = 200
— V(Ranks, Salary) = 250
* Then T(Employee 1,
=X T T /250
= (200x8 + 800x20 + 5000x40 +
12000x80 + 6500x100 + 500x2)/250

Ranks) =

Plans for Single-Relation Queries
(Prep for Join ordering)

e Task: create aquery execution plan for asingle
Sel ect-proj ect-group-by block.

» Key idea: consider each possible access path to
the relevant tuples of the relation. Choose the
cheapest one.

* The different operations are essentialy carried out
together (e.g., if an index isused for a selection,
projection isdone for each retrieved tuple, and the
resulting tuples are pipelined into the aggregate
computation).

SELECT S.sid

Examp|e FROM Sailors S

WHERE S.rating=8

If we have an Index on rating:

— (I/NKeys(l)) * NTuples(R) = (1/10) * 40000 tuples retrieved.

— Clustered index: (UNKeys(1)) * (NPages(I)+NPages(R)) = (1/10)
* (50+500) pages are retrieved (= 55).

— Unclustered index: (I/NKeys(1)) * (NPages(l)+NTuples(R)) =
(1/10) * (50+40000) pages are retrieved.

If we have an index on sid:

— Would havetoretrieve dl tuples/pages. With aclustered index,
the cost is 50+500.

Doing afile scan: we retrieve all file pages (500).

Determining Join Ordering Types of Join Trees
e R1>< R2>4 ... < Rn o Left deep:
* Jointree:
TN -
2 > AN
VANERVAN e
R3 R1 R2 R4 D RS
* A join tree represents a plan. An optimizer needs /N
to inspect many (all ?) join trees R3 R1
Types of Join Trees Types of Join Trees
* Bushy: * Right deep:
>
D T
N/ \N R3 / \N
RL <
ya
R3 < R2 R4 R5 / \
/ \ R2 R4
R1 R5

Problem Dynamic Programming
* Given: aquery Rl R2xq ... <Rn * ldea for each subset of {R1, ..., Rn}, compute the
« Assume we have a function cost() that gives best plan for that subset _
us the cost of every join tree * Inincreasing order of set cardinality:
. .. — Step 1: for {R1}, {R2}, ..., {Rn}
* Find the best join tree for the query

— Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}

— Stepn: for {R1, ..., Rn}
* A subset of {R1, ..., Rn} isaso caled a subquery

Dynamic Programming

* For each subquery Q < {R{1, ..., Rn}
compute the following:
-Size(Q)
— A best plan for Q: Plan(Q)
— The cost of that plan: Cost(Q)

Dynamic Programming

* Step 1: For each {Ri} do:
— Size({Ri}) = B(Ri)
—Plan{Ri}) =Ri
— Cosgt({Ri}) = (cost of scanning Ri)

Dynamic Programming

» Stepi: Foreach Q < {R1, ..., Rn} of
cardindlity i do:
— Compute Size(Q) (later...)
— For every pair of subqueriesQ’, Q'
st Q=Q UQ”
compute cost(Plan(Q’) < Plan(Q’"))
— Cost(Q) = the smallest such cost
— Plan(Q) = the corresponding plan

Dynamic Programming

* Return Plan({R1, ..., Rn})

Dynamic Programming

* Summary: computes optima plans for subqueries:
— Sep1:{R1}, {R2}, ..., {Rn}
— Sep2: {R1,R2},{R1,R3}, ..., {Rn-1, Rn}
— Sepn:{R1,...,Rn}
* We used naive size/cost estimations
* Inpractice:
— more redlistic size/cost estimations (next)

— heurigtics for Reducing the Search Space
 Restrict to left linear trees

+ Restrict to trees “without cartesian product”

— need more than just one plan for each subquery:
* “interesting orders”

Completing the
Physical Query Plan

Choose a gorithm to implement each
operator
— Need to account for more than cost:

* How much memory do we have ?

« Aretheinput operand(s) sorted ?

» Decide for each intermediate result:

— To materialize
—To pipeline

11

