
1

Database Internals

Zachary Ives
CSE 594

Spring 2002

Some slide contents by Raghu Ramakrishnan
2

Database Management Systems
API/GUI

Optimizer

Storage Mgr

Exec. Engine

Storage

Catalog

Query

Physical plan

Pages

RequestsData

Pages

Stats

Schemas

(Simplification!)

Buffer Mgr

Index/file/rec Mgr
Data/etc Requests

RequestsData/etc

Logging, recovery

3

Outline

§ Sketch of physical storage
§ Basic techniques

§ Indexing
§ Sorting
§ Hashing

§ Relational execution
§ Basic principles
§ Primitive relational operators
§ Aggregation and other advanced operators

§ Querying XML
§ Popular research areas
§ Wrap-up: execution issues

4

General Emphasis of
Today�s Lecture

§ Goal: cover basic principles that are applied
throughout database system design

§ Use the appropriate strategy in the appropriate
place
Every (reasonable) algorithm is good somewhere

§ … And a corollary: database people always
thing they know better than anyone else!

5

What�s the �Base� in �Database�?

§ Not just a random-access file (Why not?)

§ Raw disk access; contiguous, striped

§ Ability to force to disk, pin in buffer

§ Arranged into pages

§ Read & replace pages
§ LRU (not as good as you might think – why

not?)

§ MRU (one-time sequential scans)

§ Clock, etc.

§ DBMIN (min # pages, local policy)

Buffer Mgr

Tuple Reads/Writes

6

Storing Tuples

Tuples
§ Many possible layouts

Dynamic vs. fixed lengths
Ptrs, lengths vs. slots

§ Tuples grow down, directories
grow up

§ Identity and relocation

Objects are harder
§ Horizontal, path, vertical partitioning

§ Generally no algorithmic way of deciding

t1
t2 t3

2

Alternative File Organizations

Many alternatives, each ideal for some situation,
and poor for others:
§ Heap files: for full file scans or frequent updates

Data unordered

Write new data at end

§ Sorted Files: if retrieved in sort order or want range
Need external sort or an index to keep sorted

§ Hashed Files: if selection on equality

Collection of buckets with primary & overflow
pages

Hashing function over search key attributes

Model for Analyzing Access Costs

We ignore CPU costs, for simplicity:
§ b(T): The number of data pages in table T

§ r(T): Number of records in table T

§ D: (Average) time to read or write disk page

§ Measuring number of page I/O’s ignores gains of
pre-fetching blocks of pages; thus, I/O cost is only
approximated.

§ Average-case analysis; based on several simplistic
assumptions.

* Good enough to show the overall trends!

Assumptions in Our Analysis

§ Single record insert and delete.
§ Heap Files:

§ Equality selection on key; exactly one match.
§ Insert always at end of file.

§ Sorted Files:
§ Files compacted after deletions.
§ Selections on sort field(s).

§ Hashed Files:
§ No overflow buckets, 80% page occupancy.

Cost of Operations

Delete

Insert

Range Search

Equality Search

Scan all recs

Hashed FileSorted FileHeap File

11

* Several assumptions underlie these (rough) estimates!

2DSearch + b(T) DSearch + DDelete

2DSearch + b(T) D2DInsert

1.25 b(T) DD log2 b(T)

+ (# pages
with matches)

b(T) DRange Search

DD log2 b(T)b(T) D / 2Equality Search

1.25 b(T) Db(T)Db(T) DScan all recs

Hashed FileSorted FileHeap File

Cost of Operations

12

Speeding Operations over Data

§ Three general data organization techniques:
§ Indexing

§ Sorting

§ Hashing

3

Technique I: Indexing

§ An index on a file speeds up selections on the
search key attributes for the index (trade space
for speed).
§ Any subset of the fields of a relation can be the

search key for an index on the relation.
§ Search key is not the same as key (minimal set of

fields that uniquely identify a record in a relation).

§ An index contains a collection of data entries,
and supports efficient retrieval of all data entries
k* with a given key value k.

GMUW §4.1-4.3 Alternatives for Data Entry k* in Index

§ Three alternatives:
Data record with key value k

Clustered -> fast lookup
8 Index is large; only 1 can exist

` <k, rid of data record with search key value k>, OR
´ <k, list of rids of data records with search key k>

Can have secondary indices
Smaller index may mean faster lookup

8 Often not clustered -> more expensive to use

§ Choice of alternative for data entries is
orthogonal to the indexing technique used to
locate data entries with a given key value k.

Classes of Indices

§ Primary vs. secondary: primary has primary key
§ Clustered vs. unclustered: order of records and index

approximately same
§ Alternative 1 implies clustered, but not vice-versa.
§ A file can be clustered on at most one search key.

§ Dense vs. Sparse: dense has index entry per data
value; sparse may “skip” some
§ Alternative 1 always leads to dense index.
§ Every sparse index is clustered!
§ Sparse indexes are smaller; however, some useful

optimizations are based on dense indexes.

Clustered vs. Unclustered Index

Suppose Index Alternative (2) used, records
are stored in Heap file
§ Perhaps initially sort data file, leave some gaps
§ Inserts may require overflow pages

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree: The World�s
Favourite Index
§ Insert/delete at log F N cost

§ (F = fanout, N = # leaf pages)

§ Keep tree height-balanced

§ Minimum 50% occupancy (except for root).

§ Each node contains d <= m <= 2d entries.
d is called the order of the tree.

§ Supports equality and range searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

Example B+ Tree

§ Search begins at root, and key comparisons
direct it to a leaf.

§ Search for 5*, 15*, all data entries >= 24* ...

* Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

4

B+ Trees in Practice

§ Typical order: 100. Typical fill-factor: 67%.
§ average fanout = 133

§ Typical capacities:
§ Height 4: 1334 = 312,900,700 records
§ Height 3: 1333 = 2,352,637 records

§ Can often hold top levels in buffer pool:
§ Level 1 = 1 page = 8 Kbytes
§ Level 2 = 133 pages = 1 Mbyte
§ Level 3 = 17,689 pages = 133 MBytes

Inserting Data into a B+ Tree

§ Find correct leaf L.
§ Put data entry onto L.

§ If L has enough space, done!
§ Else, must split L (into L and a new node L2)

Redistribute entries evenly, copy up middle key.
Insert index entry pointing to L2 into parent of L.

§ This can happen recursively
§ To split index node, redistribute entries evenly, but push up

middle key. (Contrast with leaf splits.)

§ Splits “grow” tree; root split increases height.
§ Tree growth: gets wider or one level taller at top.

Inserting 8* into Example B+ Tree

§ Observe how minimum occupancy is
guaranteed in both leaf and index pg splits.

§ Recall that all data items are in leaves, and
partition values for keys are in intermediate
nodes
Note difference between copy-up and push-up.

22

Inserting 8* Example: Copy up

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Want to insert here; no room, so split & copy up:

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

8*

23

Inserting 8* Example: Push up

Root

17 24 30

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

5* 7* 8*

5

Need to split node
& push up

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only
appears once in the index. Contrast
this with a leaf split.)

Deleting Data from a B+ Tree

§ Start at root, find leaf L where entry belongs.

§ Remove the entry.
§ If L is at least half-full, done!

§ If L has only d-1 entries,
Try to re-distribute, borrowing from sibling (adjacent node with
same parent as L).
If re-distribution fails, merge L and sibling.

§ If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

§ Merge could propagate to root, decreasing height.

5

B+ Tree Summary

B+ tree and other indices ideal for range searches, good
for equality searches.
§ Inserts/deletes leave tree height-balanced; logF N cost.

§ High fanout (F) means depth rarely more than 3 or 4.

§ Almost always better than maintaining a sorted file.

§ Typically, 67% occupancy on average.

§ Note: Order (d) concept replaced by physical space criterion in
practice (“at least half-full”).

Records may be variable sized

Index pages typically hold more entries than leaves

26

Other Kinds of Indices

§ Multidimensional indices
§ R-trees, kD-trees, …

§ Text indices
§ Inverted indices

§ etc.

27

Objects and Indices

Multi-level hierarchy: Object.Subobject.Subsubobject
§ Want to query for objects with submember of specific value
§ Vehicles with Vehicle.Mfr.Name = “Ferrari”

§ Companies with Company.Division.Loc = “Modena”

360 Modena0310

TT0402

Testarosa0301
05, 06Ferrari03

ModenaAssembly05

Vehicle(Mfr, Model)

Division(Name, Loc)

ModenaDesign06

Company(Name, Division)

28

360 Modena0310

Z30402

Testarosa0301
05, 06Ferrari03

ModenaAssembly05

Vehicle(Mfr, Model)

ModenaDesign06

Company(Name, Division)

07BMW04 ModenaQuality
Ctrl.

07

Example Class Hierarchy

Division(Name, Loc)

29

Access Support Relations

§ Speed up finding a sub- or super-object
§ Create a table with a tuple per path through the object

hierarchy

VehicleOID CompanyOID DivisionOID

30

Beyond Objects

More complex than objects: semistructured data
(e.g. XML)
§ Self-describing (embedded labels)

§ Irregular structure

§ “Weaker” typing (potentially)

§ XPath expressions

OO indexing techniques applicable?
Why or why not?

6

31

Speeding Operations over Data

§ Three general data organization techniques:
§ Indexing

§ Sorting

§ Hashing

Technique II: Sorting

§ Pass 1: Read a page, sort it, write it.
§ only one buffer page is used

§ Pass 2, 3, …, etc.:
§ three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

GMUW §2.3

Two-Way External Merge Sort

§ Each pass we read, write
each page in file.

§ N pages in the file => the
number of passes

§ Total cost is:

§ Idea: Divide and
conquer: sort subfiles and
merge

 = +log2 1N

 ()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3

4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

General External Merge Sort

§ To sort a file with N pages using B buffer pages:
§ Pass 0: use B buffer pages. Produce sorted

runs of B pages each.

§ Pass 2, …, etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

* How can we utilize more than 3 buffer pages?

Cost of External Merge Sort

§ Number of passes:
§ Cost = 2N * (# of passes)
§ With 5 buffer pages, to sort 108 page file:

§ Pass 0: = 22 sorted runs of 5 pages
each (last run is only 3 pages)

§ Pass 1: = 6 sorted runs of 20 pages
each (last run is only 8 pages)

§ Pass 2: 2 sorted runs, 80 pages and 28 pages
§ Pass 3: Sorted file of 108 pages

  BNB /log1 1−+

 108 5/

 22 4/

36

Speeding Operations over Data

§ Three general data organization techniques:
§ Indexing

§ Sorting

§ Hashing

7

37

Technique 3: Hashing

§ A familiar idea:
§ Requires “good” hash function (may depend on data)

§ Distribute data across buckets

§ Often multiple items in same bucket (buckets might overflow)

§ Types of hash tables:
§ Static

§ Extendible (requires directory to buckets; can split)

§ Linear (two levels, rotate through + split; bad with skew)

§ Can be the basis of disk-based indices!
We won’t get into detail because of time, but see text

GMUW §4.4

38

Making Use of the Data + Indices:
Query Execution

§ Query plans & exec strategies
§ Basic principles
§ Standard relational operators
§ Querying XML

GMUW §6

39

Query Plans

§ Data-flow graph of
relational algebra
operators

§ Typically: determined by
optimizer

Select

Client = “Atkins”

Join

PressRel.Symbol = Clients.Symbol

Scan

PressRel

Scan

Clients

Join

Symbol = Northwest.CoSymbol

Project

CoSymbol

Scan
Northwest

SELECT *
FROM PressRel p, Clients C
WHERE p.Symbol = c.Symbol
AND c.Client = ‘Atkins’
AND c.Symbol IN
(SELECT CoSymbol FROM Northwest)

40

Execution Strategy Issues

§ Granularity &
parallelism:
§ Pipelining vs. blocking

§ Materialization

Select

Client = “Atkins”

Join

PressRel.Symbol = Clients.Symbol

Scan

PressRel

Scan

Clients

Join

Symbol = Northwest.CoSymbol

Project

CoSymbol

Scan
Northwest

41

Iterator-Based Query Execution

§ Execution begins at
root
§ open, next, close
§ Propagate calls to

children
May call multiple child nexts

! Efficient scheduling &
resource usage

Can you think of alternatives
and their benefits?

Select

Client = “Atkins”

Join

PressRel.Symbol = Clients.Symbol

Scan

PressRel

Scan

Clients

Join

Symbol = Northwest.CoSymbol

Project

CoSymbol

Scan
Northwest

42

Basic Principles

§ Many DB operations require reading tuples, tuple vs.
previous tuples, or tuples vs. tuples in another table

§ Techniques generally used:

§ Iteration: for/while loop comparing with all tuples on disk

§ Index: if comparison of attribute that’s indexed, look up matches
in index & return those

§ Sort: iteration against presorted data (interesting orders)

§ Hash: build hash table of the tuple list, probe the hash table

* Must be able to support larger-than-memory data

8

43

Basic Operators

§ One-pass operators:
§ Scan
§ Select
§ Project

§ Multi-pass operators:
§ Join

Various implementations
Handling of larger-than-memory sources

§ Semi-join
§ Aggregation, union, etc.

44

1-Pass Operators: Scanning a Table

§ Sequential scan: read through blocks of table
§ Index scan: retrieve tuples in index order

§ May require 1 seek per tuple!

§ Cost in page reads -- b(T) blocks, r(T) tuples
§ b(T) pages for sequential scan

§ Up to r(T) for index scan if unclustered index

§ Requires memory for one block

45

1-Pass Operators: Select (σσσσ)

§ Typically done while scanning a file
§ If unsorted & no index, check against predicate:

Read tuple

While tuple doesn�t meet predicate

Read tuple

Return tuple

§ Sorted data: can stop after particular value encountered
§ Indexed data: apply predicate to index, if possible
§ If predicate is:

§ conjunction: may use indexes and/or scanning loop above (may
need to sort/hash to compute intersection)

§ disjunction: may use union of index results, or scanning loop

46

1-Pass Operators: Project (ΠΠΠΠ)

§ Simple scanning method often used if no index:
Read tuple

While more tuples

Output specified attributes

Read tuple

§ Duplicate removal may be necessary
§ Partition output into separate files by bucket, do duplicate

removal on those
§ If have many duplicates, sorting may be better

§ If attributes belong to an index, don’t need to retrieve
tuples!

47

Multi-pass Operators:
Join (!"!"!"!") -- Nested-Loops Join

§ Requires two nested loops:
For each tuple in outer relation

For each tuple in inner, compare
If match on join attribute, output

§ Results have order of outer relation

§ Can do over indices

! Very simple to implement, supports any joins predicates

! Supports any join predicates

" Cost: # comparisons = t(R) t(S)
disk accesses = b(R) + t(R) b(S)

Join

outer inner

48

Block Nested-Loops Join

§ Join a page (block) at a time from each table:
For each page in outer relation

For each page in inner, join both pages
If match on join attribute, output

! More efficient than previous approach:

" Cost: # comparisons still = t(R) t(S)
disk accesses = b(R) + b(R) * b(S)

9

49

Index Nested-Loops Join

For each tuple in outer relation
For each match in inner�s index
Retrieve inner tuple + output joined tuple

§ Cost: b(R) + t(R) * cost of matching in S

§ For each R tuple, costs of probing index are about:
§ 1.2 for hash index, 2-4 for B+-tree and:

Clustered index: 1 I/O on average

Unclustered index: Up to 1 I/O per S tuple

50

Two-Pass Algorithms

Sort-based
Need to do a multiway sort first (or have an index)

Approximately linear in practice, 2 b(T) for table T

Hash-based
Store one relation in a hash table

51

(Sort-)Merge Join

§ Requires data sorted by join attributes
Merge and join sorted files, reading sequentially
a block at a time

§ Maintain two file pointers
While tuple at R < tuple at S, advance R (and vice versa)
While tuples match, output all possible pairings

§ Preserves sorted order of “outer” relation
! Very efficient for presorted data
! Can be “hybridized” with NL Join for range joins
" May require a sort before (adds cost + delay)
§ Cost: b(R) + b(S) plus sort costs, if necessary

In practice, approximately linear, 3 (b(R) + b(S))
52

Hash-Based Joins

§ Allows partial pipelining of operations with
equality comparisons

§ Sort-based operations block, but allow range
and inequality comparisons

§ Hash joins usually done with static number of
hash buckets
§ Generally have fairly long chains at each bucket
§ What happens when memory is too small?

53

Hash Join

Read entire inner
relation into hash
table (join attributes
as key)

For each tuple from
outer, look up in hash
table & join

! Very efficient, very
good for databases

" Not fully pipelined
" Supports equijoins

only
" Delay-sensitive

tuple tuple

tuple

54

Running out of Memory

§ Prevention: First partition the data by value into
memory-sized groups
Partition both relations in the same way, write
to files

Recursively join the partitions

§ Resolution: Similar, but do when hash tables full
Split hash table into files along bucket
boundaries

Partition remaining data in same way

Recursively join partitions with diff. hash fn!

§ Hybrid hash join: flush “lazily” a few buckets at a time

§ Cost: <= 3 * (b(R) + b(S))

10

55

Pipelined Hash Join Useful for Joining
Web Sources

§ Two hash tables
§ As a tuple comes in,

add to the appropriate
side & join with
opposite table

! Fully pipelined,
adaptive to source
data rates

! Can handle overflow
as with hash join

" Needs more memory

tuple tuple

tuple

56

The Semi-Join/Dependent Join

§ Take attributes from left and feed to the
right source as input/filter

§ Important in data integration

§ Simple method:
for each tuple from left

send to right source
get data back, join

§ More complex:
§ Hash “cache” of attributes & mappings

§ Don’t send attribute already seen

§ Bloom joins (use bit-vectors to reduce traffic)

JoinA.x = B.y

A Bx

57

Aggregation (γγγγ)

§ Need to store entire table, coalesce groups with
matching GROUP BY attributes

§ Compute aggregate function over group:
§ If groups are sorted or indexed, can iterate:

Read tuples while attributes match, compute aggregate
At end of each group, output result

§ Hash approach:
Group together in hash table (leave space for agg values!)
Compute aggregates incrementally or at end
At end, return answers

§ Cost: b(t) pages. How much memory?

58

Other Operators

§ Duplicate removal very similar to grouping
§ All attributes must match

§ No aggregate

§ Union, difference, intersection:
§ Read table R, build hash/search tree

§ Read table S, add/discard tuples as required

§ Cost: b(R) + b(S)

59

Relational Operations

In a whirlwind, you’ve seen most of relational
operators:
§ Select, Project, Join

§ Group/aggregate

§ Union, Difference, Intersection

§ Others are used sometimes:
Various methods of “for all,” “not exists,” etc
Recursive queries/fixpoint operator

etc.

60

Recall XML
<db>
<store>
<manager>Griffith</manager>
<manager>Sims</manager>
<location>
<address>12 Pike Pl.</address>
<city>Seattle</city>

</location>
</store>
<store>
<manager>Jones</manager>
<address>30 Main St.</address>
<city>Berkeley</city>
</store>
</db>

Element

Data value

11

61

Querying XML with XQuery

“Query over all stores, managers, and cities”:

Query operations evaluated over all possible tuples
of ($s, $m, $c) that can be matched on input

FOR $s = (document)/db/store,
$m = $s/manager/data(),
$c = $s//city/data()

WHERE {join + select conditions}
RETURN {XML output}

62

Processing XML

§ Bind variables to subtrees; treat each set of
bindings as a tuple

§ Select, project, join, etc. on tuples of bindings
§ Plus we need some new operators:

§ XML construction:
Create element (add tags around data)

Add attribute(s) to element (similar to join)

Nest element under other element (similar to join)

§ Path expression evaluation – create the binding
tuples

63

Standard Method: XML
Query Processing in Action

Parse XML:
<db>
<store>
<manager>Griffith</manager>
<manager>Sims</manager>
<location>
<address>12 Pike Pl.</address>
<city>Seattle</city>

</location>
</store>
…

Match paths:
$s = (root)/db/store
$m = $s/manager/data()
$c = $s//city/data()

$s $m $c
#1 Griffith Seattle
#1 Sims Seattle
#2 Jones Madison

db

store store

Griffith

Seattle

manager

city
Jones

30 Main St.

manager

address
location

12 Pike Pl.

address
city

Madison

manager

Sims

db

store store

Griffith

Seattle

manager

city
Jones

30 Main St.

manager

address
location

12 Pike Pl.

address
city

Madison

#1 #2

manager

Sims

64

X-Scan: �Scan� for Streaming
XML

§ We often re-read XML from net on every query
Data integration, data exchange, reading from Web

§ Previous systems:
§ Store XML on disk, then index & query

§ Cannot amortize storage costs

§ X-scan works on streaming XML data
§ Read & parse

§ Evaluate path expressions to select nodes
§ Also has support for mapping XML to graphs

65

$s $m $c

X-Scan: Incremental
Parsing & Path Matching

</location>
</store>
<store>
<manager>Jones</manager>
<address>30 Main St.</address>
<city>Berkeley</city>
</store>
</db>

<db>
<store>
<manager>Griffith</manager>
<manager>Sims</manager>
<location>
<address>12 Pike Pl.</address>
<city>Seattle</city>

#1 Griffith
#1 Sims

Seattle
Seattle

#2 Jones Berkeley

#1

#2
Tuples for query:

$s

$m

$c

1 2 3
db store

4 5 6
manager data()

6 7 8
city data()

66

X-Scan works on Graphs

§ XML allows IDREF-style links within a document

§ Keep track of every ID

§ Build an “index” of the XML document’s structure;
add real edges for every subelement and IDREF

§ When IDREF encountered, see if ID is known
If so, dereference and follow it

Otherwise, parse and index until we get to it, then process
the newly indexed data

node3

node4

node2

ref=“node4”

ref=“node2”

12

67

Building XML Output

§ Need the following operations:
§ Create XML Element

§ Create XML Attribute

§ Output Value/Variable into XML content

§ Nest XML subquery results into XML element
(Looks very much like a join between parent query and
subquery!)

68

An XML Query

§ X-scan creates tuples

§ Select, join as usual

§ Construct results
§ Output variable

§ Create element
around content

§ A few key extensions
to standard models! X-scan X-scan

$b = db/book
$pID = $b/@publisher
$t = $b/title,
$ed = $b/editors/name

$p = db/company
$pID2 = $p/@ID

books.xml pubs.xml

$pID = $pID2

Output

Element

Output

Element

Element

$t

<name>, 1

$p

<publisher>,1

<book>,2

b pID t ed p pID2

b pID t ed p pID2

b pID t ed p pID2

publisher

name
b pID t ed p pID2

b pID t ed p pID2

name

b pID t ed p pID2

name

publishername

book

b pID t ed

$ed =
"Stonebraker"

b pID t ed p pID2

69

Where�s Query Execution Headed?

§ Adaptive scheduling of operations – adjusting
work to prioritize certain tuples

§ Robust – as in distributed systems, exploit
replicas, handle failures

§ Show and update partial/tentative results
§ More interactive and responsive to user
§ More complex data models –XML,

semistructured data

70

Leading into Next Week�s Topic:
Execution Issues for the Optimizer

§ Goal: minimize I/O costs!
§ Try different orders of applying operations

Selectivity estimates

§ Choose different algorithms
§ “Interesting orders” – exploit sorts

§ Equijoin or range join?

§ Exploit indices

§ How much memory do I have and need?

