CSE 594 – HW #4 Sample Solution

[image: image1.png]1. a. Insert 70:

80

[image: image2.png]b. Insert 155:

v 80 | 155
10 | 40 I 100 140 206 7250
7 k
4(8 {10]20 p{a0]s0]60]70]-{80] 90 &
fradfrsd

c. Insert 165

80 | 155

e

10 | 40

\ \ feoof2z0f24

14015 15516(115517 4

“9260280

[image: image3.png]d. Delete 10:

80 | 155
/ T —
%0750] 700140 200]260
) I l
- S 7
[4]s | [Pfzo]40 T so[so]70 s0]90] Hodte \ feodzz0ad
frads 15! 16416517 .
“raso2sd
e. Delete 8:
~ 155
e B -
50 | 80 [100]140 200|260
\\ L N\ .
L7
4 zuFAO {s0[60[70 Jeoof20j24q]

l{ﬁo]s § 4{155'16(1165170

— »]260280{ ‘

[image: image4.png]2.
+ A. Neither of the predicates can be pushed through the grouping into the WHERE
clause. For example, the tables have the following data:

Sailors Reserves
sid rating age sid bid
1 1 16 1 80
2 1 18 2 120
3 1 32 3 90
4 2 2 4 120
5 2 15 5 80

[image: image5.png]The First Query

select s.rating, min(age)

from reserve r. sailor s

where r.sid = s.sid

group by s.rating

having min(age) < 20 and max(bid) > 100

produces the following results:

[image: image6.png]rating age
1 16
2 15

[F we push both predicates into the where clause:

select s.rating, min(age)

from reserve . sailor s

where r.sid = s.sid and s.age < 20 and r.bid > 100
group by s.rating

The results are:

rating age
1 18
All the tuples that belong to rating 2 are eliminated by the where clause., so we
cannot push both of the predicates into the WHERE clause.

[image: image7.png]IF we only push the first predicate into the WHERE clause:

select s.rating, min(age)

rve 1, sailor s

where r.sid = s.sid and s.age <20
group by s.rating

having max(bid) > 100

[image: image8.png]The results are:

rating age
1 16
The tuple that has sid=4 is eliminated by the WHERE clause. so the rating 2

group doesn’t have a bid > 100. Only the group rating 1 left. We should not push
the first predicate into the WHERE clause.

[image: image9.png]If we only push the second predicate into the WHERE clause:

select s.rating, min(age)

from reserve r, sailor s

where r.sid = s.sid and r.bid > 100
group by s.rating

having min(age) < 20

The results are:

rating age
1 18
The tuple that has sid = 5 is eliminated by the WHERE clause. the having clause
eliminates the other one left in group 2 (whose age is 22). We should not push the
second predicate into the WHERE clause.

[image: image10.png]B. Neither of the predicates can be pushed through the grouping into the WHERE
clause if the select clause also includes MAX(age). The reason is the same as

question A.

Table size:
= Single Record | . I 2
Tuples oo Tuples/Page Total pages
Subscriber | 15000 30 66 228
City 5000 50 40 125
Region 1500 1000 2 750

[image: image11.png]A. Since there are no indexes, we cannot use the index based join algorithm. We
cannot push the select either because there are no predicates. Here is the query

plan:
Sort Merge Joi
>

Region-id = Region-id

Sort Merge Join, / \
>

write to temp T1

Region

city-name = city-name

N

Subscriber City

[image: image12.png]Cost of plan:

Sort merge join. Since SQRT(B(S) +B(C)) = SQRT(227+125) = 19, which is
less than the available page size. the cost of Sort Merge Join is 3(B(S) +B(C))
=3 X (227 +125)=1056

Write the result into temporary table, Let’s assume there are 1000 distinct
city-names in the City table, so the size of the temporary table T1
(15000x5000)/1000 =75000 tuples. Since the record size of subscriber and

[image: image13.png]city are 30 and 50 respectively, the record size of T1 must be less than 80.
Let’s assume it is 70. So there will be 2678 pages for the T1 table.

o The total for the first sort Merge Join is 1056 + 2678 = 3734 Disk I/Os

e Cost of the second Sort Merge Join: Sort(T1) = (2*3*2678) = 16068.
Sort(Region) = (2#3*750) = 4500, Merge = (2678 + 750) = 3428, Total of
the Second merge sort = 23996 Disk 1/Os.

o The total cost of the plan = 23996 + 3734 = 27730 Disk 1/Os.

[image: image14.png]. Create a clustered hash index on city-name of the subscriber table. The query plan
is as follows:

Index Nested Loop, with
pipelining

>

City-name = city-name

Hash Join, do not write / \

result to temp

Subscriber

Region-id = Region-id

SN

Region City

[image: image15.png]Cost of plan:

o The cost of first hash join: 3(B(R) +B(C)) =3 X (750 + 125) = 2625. Let’s
assume there are 1000 distinct region-id in the region table, so the total size of
the result is (1500*5000) / 1000 = 7500 tuples.

o [Foreach tuples in the result, the costs of probing index are about 1.2 for the
hash index. So the total Disk I/Os for matching the Subscriber tuples are 7500
*1.2=9000.

e The total Disk I/Os = 2625 + 9000 = 11625.

/ A. The first view is:

[image: image16.png]CREATE VIEW V1 AS

SELECT SSN, StoreName, Sum(Price) as SumPurchases, Count(*) as
NumPurchases

FROM Customers C. Purchases P. Books B. Bookstores S

WHERE C.PurchaselD=P.PurchaselD AND

P.ISBN =B.ISBN AND

P.StorelD = S.StorelD

GROUP BY SSN, StoreName

[image: image17.png]It cannot be used for the query directly because it doesn’t contain the month
information. The result of the view is the total purchase of the user from each store.
We still need another query to get the customers that bought more than two books at
Barnes & Noble this month. (The MS SQL Server’s Function DATEPART and
GETDATE are used here to get the value of the current month).

SELECT C1.CustomerName, SUM(V.SumPurchases)
FROM Customers C1. V1 V
WHERE C1.SSN = V.SSN and
C1.SSN IN (SELECT C.SSN
FROM Customers C, Purchases P, Bookstores S
WHERE C.PurchaselD=P.Purchase]D AND
P.StorelD = S.StoreID AND
S.StoreName = ‘Barnes & Noble” AND
P.Month = DATEPART(month. GETDATE())
GROUP BY C.SSN
HAVING (COUNT(P.ISBN)>2))
GROUP BY C1.CustomerName

B. The second view is:

CREATE VIEW V2 AS
SELECT SSN, StoreName, Sum(Price) as SumPurchases, Count(*) as
NumPurchases
FROM Customers C. Purchases P. Books B, Publishers Pb. Bookstores S
WHERE C.PurchaseID=P.PurchaselD AND
P.StoreID = S.StoreID AND
P.ISBN = B.ISBN AND Pb.PublisherlD=B.PublisherlD AND
PublisherName="Addison Wesley”
GROUP BY SSN. StoreName

We cannot use this view because it limits the publisher to “Addison Wesley’.

_1084877649.bin

_1084877769.bin

_1084877867.bin

_1084877922.bin

_1084877963.bin

_1084877889.bin

_1084877826.bin

_1084877720.bin

_1084877745.bin

_1084877672.bin

_1084877515.bin

_1084877584.bin

_1084877631.bin

_1084877542.bin

_1084877285.bin

_1084877349.bin

_1084877241.bin

