
1

Diagonalization

Our goal: separate interesting complexity classes

Question: could we somehow use diagonalization to resolve P v NP?

Only general technique we have (e.g. for hierarchy theorems)

Diagonalization relies on following properties of Turing machines:

 A Turing machine can be represented by a string
 A Turing machine can be simulated by another Turing machine without

much overhead in time or space.

 Treats machines as blackboxes: internal workings don’t matter.

2

Could we use diagonalization to resolve P v NP?

Here’s some evidence that this won’t work:

An Oracle Turing machine MA  is a modified TM with the ability to
query an oracle for language A.

Has special tape called an oracle tape.
When MA writes a string on oracle tape, it is informed whether that

string is in A in one step.

Observations:
 NP   PSAT

 coNP   PSAT  (because deterministic complexity classes are closed

under complementation)
 NPSAT contains languages we believe are not in NP.

Example:  {  |  is not a minimal boolean formula}

3

Relativization

An argument “relativizes” if it goes through when you give the machine
oracle access.

Essentially, diagonalization is a simulation of one TM by another.

Simulation ensures that simulating machine determines behavior of
other machine and then behaves differently.

What if you add an oracle?
Simulation proceeds as before => if we could prove P   NP, we could

also prove PA  NPA

4

Diagonalization and Relativization

Theorem:
There is an oracle B whereby  PB = NPB

There is an oracle A whereby  PA  NPA

5

SPACE: The next frontier

Quite different from time: space can be reused.

Space complexity of Turing machine M = space used.
= maximum number of tape cells that M scans as function of input

length.

For non-deterministic TM, wherein all branches halt, space complexity
defined as maximum number of tape cells scanned on any branch of

computation as function of input length.

As usual, use asymptotic notation.

SPACE(f(n)) = {L | L is language decided by an O(f(n)) space

                             deterministic TM}
NSPACE(f(n)) = {L | L is language decided by an O(f(n)) space

                               nondeterministic TM}

6

Savitch’s Theorem

Savitch’s Thm: Any nondeterministic TM that uses f(n) space can be
converted to deterministic TM that uses O(f2(n)) space.

Idea: Solve yieldability problem.

Given two configurations of the NTM C and C’, together with number t,
determine if NTM can get from C to C’ in t steps.

Solve CanYield(Cstart, Caccept, 2O(f(n)) )

Use recursive  algorithm, by searching for intermediate configuration.



7

Savitch’s theorem

On input w:

        Output the result of CanYield (cstart, caccept, 2O(f(n)))

 Whenever CanYield invokes itself recursively, stores the current

stage number and values of c1, c2 and t on stack.
 Every level of recursion uses O(f(n)) space.

 Depth of recursion  O(f(n))
      =>  total space O(f(n)2)

boolean CanYield(c1, c2, t) {

   if (t  1) return correct answer

   foreach configuration c' {

      boolean x = CanYield(c1, c', t/2)

      boolean y = CanYield(c2, c', t/2)

      if (x and y) return true

   }

   return false

}

enumerate using binary counter

8

PSPACE

P.  Decision problems solvable in polynomial time.

PSPACE.  Decision problems solvable in polynomial space.

EXPTIME.  Decision problems solvable in exponential time.

Relationships:  P    NP  PSPACE = NPSPACE

9

PSPACE

Binary counter.  Count from 0 to 2n - 1 in binary.
Algorithm.  Use n bit odometer.

Claim.  3-SAT is in PSPACE.

Pf.
Enumerate all 2n possible truth assignments using counter.

Check each assignment to see if it satisfies all clauses.  

Theorem.  NP    PSPACE.

Pf.  Consider arbitrary problem Y in NP.
Since Y P 3-SAT, there exists algorithm that solves Y in poly-time

plus polynomial number of calls to 3-SAT black box.
Can implement black box in poly-space.  

Quantified Satisfiability

11

QSAT.  Let (x1, …, xn) be a Boolean CNF formula. Is the following
propositional formula true?

Intuition.  Amy picks truth value for x1, then Bob for x2, then Amy for
x3, and so on.  Can Amy satisfy  no matter what Bob does?

Ex.

Yes.  Amy sets x1 true; Bob sets x2; Amy sets x3 to be same as x2.

Ex.
No.  If Amy sets x1 false; Bob sets x2 false; Amy loses;

No.  if Amy sets x1 true; Bob sets x2 true; Amy loses.

Quantified Satisfiability

x1  x2  x3  x4 …  xn-1  xn  (x1, …, xn)

assume n is odd

(x1   x2 )   (x2   x3)   (x1   x2   x3 )

(x1   x2  )   (x2   x3)   (x1   x2   x3 )

12

QSAT is in PSPACE

Theorem.  QSAT  PSPACE.
Pf.  Recursively try all possibilities.

Only need one bit of information from each subproblem.
Amount of space is proportional to depth of function call stack.

x1 = 0

x2 = 0

x3 = 0

x2 = 1

x3 = 1

x1 = 1

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

return true iff both
subproblems are true

return true iff either
subproblem is true



Planning

14

Planning Problem

Conditions.  Set C = { C1, …, Cn }.
Initial configuration.  Subset c0  C of conditions initially satisfied.

Goal configuration.  Subset c*  C of conditions we seek to satisfy.
Operators.  Set O = { O1, …, Ok }.

To invoke operator Oi, must satisfy certain prereq conditions.
After invoking Oi certain conditions become true, and certain

conditions become false.

PLANNING.  Is it possible to apply sequence of operators to get from

initial configuration to goal configuration?

Examples.

Many puzzles such as 15-puzzle, Rubik’s cube.
Logistical operations to move people, equipment, materials and

robots (software or hardware).

15

Planning Problem:  Binary Counter

Planning example.  Can we increment an n-bit counter from the all-
zeroes state to the all-ones state?

Conditions.  C1, …, Cn.

Initial state.  c0 = .
Goal state. c* = {C1, …, Cn }.

Operators.  O1, …, On.
To invoke operator Oi, must satisfy C1, …, Ci-1.

After invoking Oi, condition Ci becomes true.

After invoking Oi, conditions C1, …, Ci-1 become false.

Solution.  {C1}  {C2}  {C1, C2}  {C3}  {C3, C1}  …

Observation. Any solution requires at least 2n - 1 steps.

Ci corresponds to bit i = 1

all 0s

all 1s

i-1 least significant bits are 1

set bit i to 1

set i-1 least significant
bits to 0

16

Planning Problem:  In Exponential Time

Configuration graph G.
Include node for each of 2n possible configurations.

Include an edge from configuration c' to configuration c'' if one of
the operators can convert from c' to c''.

PLANNING.  Is there a path from c0 to c* in configuration graph?

Claim.  PLANNING is in EXPTIME.

Pf.  Run BFS to find path from c0 to c* in configuration graph.  

Note.  Configuration graph can have 2n nodes, and shortest path can

be of length = 2n - 1.

17

Planning Problem:  In Polynomial Space

Theorem.  PLANNING is in PSPACE.
Pf.  Same idea as proof of Savitch’s theorem.

Suppose there is a path from c1 to c2 of length L.
Path from c1 to midpoint and from c2 to midpoint are each  L/2.

Enumerate all possible midpoints.
Apply recursively.  Depth of recursion = log2 L.  

boolean hasPath(c1, c2, L) {

   if (L  1) return correct answer

   foreach configuration c' {

      boolean x = hasPath(c1, c', L/2)

      boolean y = hasPath(c2, c', L/2)

      if (x and y) return true

   }

   return false

}

enumerate using binary counter

PSPACE-Completeness



19

PSPACE-Complete

PSPACE.  Decision problems solvable in polynomial space.

PSPACE-Complete.  Problem Y is PSPACE-complete if (i) Y is in PSPACE
and (ii) for every problem X in PSPACE, X P Y.

Why polynomial reducibility?

Think about what it means for a problem to be complete for a

complexity class

one of the hardest problems in the class

every other problem in the class *easily* reduced to it.
so reduction must be easy, relative to complexity of typical

problems in class.

20

PSPACE-Complete

PSPACE.  Decision problems solvable in polynomial space.

PSPACE-Complete.  Problem Y is PSPACE-complete if (i) Y is in PSPACE
and (ii) for every problem X in PSPACE, X P Y.

Theorem.  [Stockmeyer-Meyer 1973]  QSAT is PSPACE-complete.

Theorem.  PSPACE   EXPTIME.

Pf.  Previous algorithm solves QSAT in exponential time, and QSAT is
PSPACE-complete.  

Summary.   P    NP    PSPACE   EXPTIME.

it is known that P  EXPTIME, but unknown which inclusion is strict;
conjectured that all are

21

PSPACE-Complete Problems

More PSPACE-complete problems.
Competitive facility location.

Natural generalizations of games.
– Othello, Hex, Geography, Rush-Hour, Instant Insanity

– Shanghai, go-moku, Sokoban
Various motion planning and search problems.

22

Competitive Facility Location

Input.  Graph with positive edge weights, and target B.
Game.  Two competing players alternate in selecting nodes.  Not allowed

to select a node if any of its neighbors has been selected.

Competitive facility location.  Can second player guarantee at least B
units of profit?

10 1 5 15 5 1 5 1 15 10

Yes if B = 20; no if B = 25.

23

Competitive Facility Location

Claim.  COMPETITIVE-FACILITY is PSPACE-complete.

Pf.

In PSPACE

To show that it's complete, we show that QSAT polynomial reduces
to it. Given an instance of QSAT, we construct an instance of

COMPETITIVE-FACILITY such that player 2 can force a win iff QSAT

formula is true.

24

Competitive Facility Location

Construction.  Given instance (x1, …, xn) = C1  C1  … Ck of QSAT.
Include a node for each literal and its negation and connect them.

– at most one of xi and its negation can be chosen
Choose c  k+2, and put weight ci on literal xi and its negation;

set B = cn-1 + cn-3 + … + c4 + c2 + 1.
– ensures variables are selected in order xn, xn-1, …, x1.

As is, player 2 will lose by 1 unit: cn-1 + cn-3 + … + c4 + c2.

10n

  
x

n  
x

n

10n

100

  
x2  

x2

100

10

  
x1  

x1

10

...

assume n is odd



25

Competitive Facility Location

Construction.  Given instance (x1, …, xn) = C1  C1  … Ck of QSAT.
Give player 2 one last move on which she can try to win.

For each clause Cj, add node with value 1 and an edge to each of its
literals.

Player 2 can make last move iff truth assignment defined
alternately by the players failed to satisfy some clause.  

  
x

n  
x

n

  
x2  

x2

  
x1  

x1

1

  
x1   x2   x

n

...

10n10n

100100

1010

26

Other important results related to space complexity

Sipser, Sections 8.4-- 8.6; Arora, Barak, Section 3.4

The classes L (logspace) and NL (nondeterministic logspace)
.

NL completeness

NL= coNL

Sipser, Section 9.1; Arora, Barak, Section 4.2

Space hierarchy theorem

Corollaries:

– NL strictly contained in PSPACE
– PSPACE strictly contained in EXPSPACE


