Diagonalization

Our goal: separate interesting complexity classes
Question: could we somehow use diagonalization to resolve P \vee N P ?
Only general technique we have (e.g. for hierarchy theorems)
Diagonalization relies on following properties of Turing machines:

- A Turing machine can be represented by a string

A Turing machine can be simulated by another Turing machine without head in time or space.

- Treats machines as blackboxes: internal workings don't matter.

Could we use diagonalization to resolve P \vee NP?
Here's some evidence that this won't work:
An Oracle Turing machine M^{A} is a modified $T M$ with the ability to query an oracle for language A.
Has special tape called an oracle tape. string is in A in one step.

Observations:
CONP \subseteq PSAT (because deterministic complexity classes are closed under complementation)

- NPSAT contains languages we believe are not in NP.
- Example: $\{\Phi \mid \Phi$ is not a minimal boolean formula $\}$

Relativization

An argument "relativizes" if it goes through when you give the machine oracle access.
Essentially, diagonalization is a simulation of one TM by another. simulation ensures that simulating machine determines behavior of other machine and then behaves differently.
What if you add an oracle?
Simulation proceeds as before $=$ if we could Prove $P \neq N P$, we could
also prove $P A \neq N P A$

Diagonalization and Relativization
Theorem:
There is on oracle B whereby $P^{B}=N^{B}$
There is an oracle A whereby $P^{A}=N^{P A}$

SPACE: The next frontier
Quite different from time: space can be reused.
Space complexity of Turing machine $M=$ space used. maximum number of tape cells that M scans as function of input length.

For non-deterministic $T M$, wherein all branches halt, space complexity computation as function of input length.

As usual, use asymptotic notation.
$\operatorname{SPACE}(f(n))=\{L \mid L$ is language decided by an $O(f(n))$ space deterministic $T M$
$\operatorname{NSPACE}(f(n))=\{L \mid L$ is language decided by an $O(f(n))$ space nondeterministic TM3

Savitch's Theorem

Savitch's Thm: Any nondeterministic TM that uses $f(n)$ space can be converted to deterministic $T M$ that uses $O\left({ }^{2} 2(n)\right)$ space.

Idea: Solve yieldability proble
Given two configurations of the NTM C and C, together with number \dagger,
determine if NTM can get from C to C in t steps.
Solve CanYield($\left(C_{\text {start }}, C_{\text {occept, }}\right.$, $20(f(f))$)
Use recursive algorithm, by searching for intermediate configuration.

PSPACE
P. Decision problems solvable in polynomial time.
PSPACE. Decision problems solvable in polynomial space.
EXPTIME. Decision problems solvable in exponential time.
Relationships: $\mathrm{P} \subseteq$ NP \subseteq PSPACE $=$ NPSPACE

PSPACE

Binary counter. Count from 0 to 2^{n-1} in binary.
Algorithm. Use n bit odometer.
Claim. 3-SAT is in PSPACE.

- Enumerate all 2^{n} possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses. -

Theorem. NP \subseteq PSPACE
Pf. Consider arbitrary problem Y in $N P$.
. Since $Y_{S p}$ 3-SAT, there exists algorithm that solves Y in poly-time plus polynomial number of calls to 3 -SAT black box.

- Can implement black box in poly-space. .

Quantified Satisfiability

QSAT is in PSPACE

Theorem. QSAT \in PSPACE
Pf. Recursively try all possibilities.
Pf. Recursively try all possibilities.
. Only need one bit of information from each subproblem.

- Amount of space is proportional to depth of function call stack.

Planning

Planning Problem

Conditions. Set $C=\left\{c_{1}, \ldots, c_{n}\right\}$.
Initial configuration. Subset
con
Initial configuration. Subset $c_{0} \subseteq c$ of conditions initially satisfied. Goal configuration. Subset $c^{*} \subseteq C$ of conditions we seek to satisfy.
Operators. Set $O=\left\{O_{1}, \ldots, O_{k}\right\}$

- To invoke operator O_{i}, must satisfy certain prereq conditions.
- After invoking O_{i} certain conditions become true, and certain conditions become false.
PLANNING. Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

Examples.

- Many puzzles such as 15 -puzzle, Rubik's cube.
- Logistical operations to move people, equipment, materials and robots (software or hardware).

Planning Problem: Binary Counter

Planning example. Can we increment an n-bit counter from the all Planning example. Can we increment
zeroes state to the all-ones state?

Conditions. $c_{1}, \ldots, c_{n} . \quad-c_{\text {corresponsis to bit } i=1}$
Initial state. $c_{0}=\phi$.
$c_{\text {corresponsis to bit }}$
Goal state. $c^{*}=\left\{C_{1}, \ldots\right.$,
-allos

- all 15
Operators. O_{1}, \ldots, O_{n}.
- To invoke operator O_{i}, must satisfy C_{1}, \ldots, C_{i-1}. \quad i. 1.esst signtifica
- After invoking o_{i}, condition c_{i} becomes true. - set bit to
- After invoking O_{i}, conditions C_{1}, \ldots, C_{i-1} become false. - set itit lesst signficicant

Solution. $\left\{C_{1}\right\} \Rightarrow\left\{C_{2}\right\} \Rightarrow\left\{C_{1}, C_{2}\right\} \Rightarrow\left\{C_{3}\right\} \Rightarrow\left\{C_{3}, C_{1}\right\} \Rightarrow \ldots$
Observation. Any solution requires at least $2 n-1$ steps.

Planning Problem: In Exponential Time

Configuration graph G.
. Include node for each of 2^{n} possible configurations.

- Include node for each of ${ }^{\text {" poussible configurations. }}$ Include an edge from configuration c ' to configuration c " if one of the operators can convert from c^{\prime} to $c^{\prime \prime}$

PLANNING. Is there a path from c_{0} to c^{*} in configuration graph?

Claim. PLANNING is in EXPTIME
Pf. Run BFS to find path from c_{0} to c^{\star} in configuration graph. -

Note. Configuration graph can have $2 n$ nodes, and shortest path can be of length $=2 n-1$.

Planning Problem: In Polynomial Space
Theorem. PLANNING is in PSPACE.
Pf. Same idea as proof of Savitch's theorem.
Pf. Same idea as proof of Savitch's theorem.

- Suppose there is a path from c_{1} to c_{2} of length L.
- Suppose there is a path hrom c_{1} to c_{2} of length L. . .
- Enumerate all possible midpoints.
- Apply recursively. Depth of recursion $=\log _{2}$ L. .


```
            enumerate ssing binary counc
            foreach configuration c',
            boolean x = haspath(c, (c', L/2)
            m,
            if (X and y) return true
            ' return false
```


PSPACE-Complete

SSPACE. Decision problems solvable in polynomial space.
PSPACE-Complete. Problem Y is PSPACE-complete if (i) Y is in PSPACE and (ii) for every problem X in PSPACE, $X_{s_{p}} Y$.

Why polynomial reduciblity?
Think about what it means for a problem to be complete for complexity class

- one of the hardest problems in the clas
every other problem in the class *easily* reduced to it so reduction must be easy, relative to complexity of typica problems in class.

PSPACE-Complete

SPACE. Decision problems solvable in polynomial space.
PSPACE-Complete. Problem y is PSPACE-complete if (i) y is in PSPACE and (ii) for every problem X in PSPACE, $X s_{p} Y$.

Theorem. [Stockmeyer-Meyer 1973] QSAT is PSPACE-complete
PSPACE-Complete Problems
More PSPACE-complete problems.

- Competitive facility location.
- Natural generalizations of

Natural generaiizations of games.

- Othello, Hex, Geography, Rush-Hour, Instant Insanity
Shanghai, go-moku, Sokoban
- Various motion planning and search problems.
Competitive Facility Location
Input. Graph with positive edge weights, and target B.
Game. Two competing players alternate in selecting nodes. Not allowed
to select a node if any of its neighbors has been selected.
Competitive facility location. Can second player guarantee at least B
units of profit?

Competitive Facility Location

Claim. COMPETTTIVE-FACILITY is PSPACE-complete.
Pf.

- In PSPACE
- To show that it's complete, we show that QSAT polynomial reduc
to it. Given an instance of QSAT, we construct an instance of COMPETTTTVE-FACIITTY such that player 2 can force a win iff QSAT formula is true.

Competitive Facility Location
Construction. Given instance $\Phi\left(x_{1}, \ldots, x_{n}^{\prime}\right)=C_{1} \wedge C_{1} \wedge \ldots C_{k}$ of QSAT. - Include a node for each literal and its negation and connect them. - at most one of x_{i} and its negation can be chosen - Choose $c \geq k+2$, and put weight c^{\prime} on literal x^{i} and its negation: set $B=c^{n-1}+c^{n-3}+\ldots+c^{4}+c^{2}+1$. ensures variables are selected in order $x_{n}, x_{n-1}, \ldots, x_{1}$. . As is, player 2 will lose by 1 unit: $c^{n-1}+c^{n-3}+\ldots+c^{4}+c^{2}$.
$\stackrel{10 n}{10 n}$
$\begin{array}{ccc} 100 & \vdots & 100 \\ \times(5) \end{array}$
10

Competitive Facility Location
Construction. Given instance $\Phi\left(x_{1}, \ldots, x_{n}\right)=c_{1} \wedge c_{1} \wedge \ldots c_{k}$ of QSAT.
Construction. Given instance $\Phi\left(x_{1}, \ldots, x_{n}\right)=c_{1} \wedge c_{1} \wedge \ldots c_{k}$.

- Give player 2 one last move on which she can try to win.
For each clause C_{j}, add node with value 1 and an edge to each of its
anan make last move iff truth assignment defined alternately by the players failed to satisfy some clause. .

Other important results related to space complexity Sipser, Sections 8.4-- 8.6: Arora, Barak, Section 3.4
. The classes L (logspace) and NL (nondeterministic logspace)
. NL completeness

- NL= coNL

Sipser, Section 9.1; Arora, Barak, Section 4.2
. Space hierarchy theorem

- Corollaries

NL strictly contained in PSPACE

- PSPACE strictly contained in EXPSPACE

