
CSEP531 Homework 5 Solution

1. Suppose that 3-SAT is PSPACE-complete. Then all problems in PSPACE reduces to 3-SAT, thereby
being in NP . This means PSPACE ⊆ NP . But we know NP ⊆ PSPACE. Therefore, NP =
PSPACE.

2. IPA is in PSPACE because in linear space we can simulateM on x and keeping a counter of the number
of steps. We rejects if M either (i) violates the “in space” constrain; or (ii) rejects; or (iii) operates
for more than the number of possible configurations, which is |Q||x||Σ||x| where Q is the set of state
of M , and Σ is its tape alphabet.

To show that IPA is PSPACE-hard, we show that any language L in PSPACE reduces to IPA. Since
L ∈ PSPACE, there is a machine M that decides if x ∈ L in space |x|k for some constant k. Then
obviously, M accepts x iff it accepts xB|x|

k

(that is, x “padded” with |x|k blanks). Hence x ∈ L iff
(M,xB|x|

k

) is a “yes” instance of IPA.

3. For each of the questions, we will give two solutions. One is systematic; the other is shorter and quite
“cute”.

(a) • First solution. Let F be the event that the last guest sits on her assigned seat and Ei be
the event that the first guest sits on seat i. Furthermore, let pk be the probability of F when
there are totally k guests. It is easy to see that p1 = 1/2.
Next, suppose k ≥ 2. Then

pk = Pr[F ] =
k∑

i=1

Pr[F ∧ Ei]

=
k∑

i=1

Pr[F|Ei]Pr[Ei]

= Pr[F|E1]Pr[E1] +
k−1∑
i=2

Pr[F|Ei]Pr[Ei] + Pr[F|Ek]Pr[Ek]

=
1
k

+
1
k

k−1∑
i=2

Pr[F|Ei].

The last equations follows from the following facts: (i) Pr[F|E1] = 1; (ii) Pr[F|Ek] = 0; and
(iii) Pr[Ei] = 1

k for all i.
Next, we compute Pr[F|Ei] for 2 ≤ i ≤ k − 1, that is the probability that the last guest sits
on her assigned seat given that the first guest sits on seat i. In this case, all guests from the
second one to the i − 1st one sits on their assigned seats. However, the ith guest has to sit
on a seat chosen uniformly at random among seats 1, i+ 1, i+ 2, . . . k − 1 and k. Renaming
seats i+ 1, i+ 2, . . . k to 2, 3, . . . k − i+ 1, we get the original situation with k − i+ 1 guests.
Therefore Pr[F|Ei] = pk−i+1.

1



The rest is a matter of calculation. We have

pk =
1
k

+
1
k

k−1∑
i=2

pk−i+1

=
1
k

+
1
k

k−1∑
j=2

pj

=
1
k

+ pk−1/k +
1
k

k−2∑
j=2

pj

Since pk−1 = 1/(k − 1) + 1/(k − 1)
∑k−2

j=2 pj , we have

k−2∑
j=2

pj = ((pk−1 − 1/(k − 1)) (k − 1).

Therefore
pk =

1
k

+ pk−1/k +
k − 1
k

(pk−1 − 1/(k − 1)) = pk−1.

Thus, we have pk = 1/2 for all k ≥ 2.
• Second solution. First, observe that when the last guest comes to the room, all the seats

from 2 to n− 1 have been occupied; for if a seat i, 2 ≤ i ≤ n was available, then the ith guest
should have taken it. Second, observe that the two seats 1 and n look completely the same to
the first n− 1 guests. Therefore, they are available with the same probability, which is 1/2.

(b) • First solution. Let Y be the (random variable representing the) number of guests sitting
on their assigned seat, X be the number of such guests except the absent minded professor –
the reason for introducing X will be clear later, and ek = E(X) if there are totally k guests.
Note that Y = X most of the time, except for when the absent minded professor sits on her
assigned seat, in which case Y = X + 1. Since this case happens with probability 1

k , we have
E(Y ) = E(X) + 1

k . Thus, instead of computing E(Y ), we compute E(X), i.e. ek.
We have e1 = 0. Suppose k ≥ 2, we have

ek = E[X] =
k∑

i=1

E[X|Ei]Pr[Ei]

= E[X|E1]Pr[E1] +
k∑

i=2

E[X|Ei]Pr[Ei]

=
k − 1
k

+
1
k

k∑
i=2

E[X|Ei].

The last equality follows from the following facts: (i) E[X|E1] = k − 1 since if the absent
minded professor sits on her assigned seat, all others do as well; and (ii) Pr[Ei] = 1

k for all i.
Now, suppose that the absent minded professor sits on seat i 6= 1. Then all guests from the
second one to the i − 1st one – there are i − 2 of them – sit on their assigned seats, while
the ith guest sits on a seat chosen uniformly at random among seats 1, i+ 1, i+ 2 . . . k. If we
rename seats i + 1, i + 2, . . . k to 2, 3, . . . k − i + 1, we get the same situation with k − i + 1
guests. (Here is where the definition of X is useful, since no matter where the ith guest sits,
she does not sit on her assigned seat.) Thus, we have E(X|Ei) = (i− 2) + ek−i+1.
The rest is a matter of calculation. We have

2



ek =
k − 1
k

+
1
k

k∑
i=2

((i− 2) + ek−i+1)

=
k − 1
k

+
1
k

k−1∑
j=1

(k − 1− j + ej)

=
k − 1
k

+
1
k

k−2∑
j=1

(k − 1− j + ej) + ek−1


=

k − 1
k

+
1
k

k−2∑
j=1

(k − 2− j + ej) + (k − 2) + ek−1


Since

ek−1 =
k − 2
k − 1

+
1

k − 1

k−2∑
j=1

(k − 2− j + ej),

we have
k−2∑
j=1

(k − 2− j + ej) = (k − 1)ek−1 − (k − 2).

Thus,

ek =
k − 1
k

+ ek−1,

which yields
ek = k − (1 + 1/2 + 1/3 + . . . 1/k).

Hence, E(Y ) = 1/k + ek = k − (1 + 1/2 + . . . 1/(k − 1)), which is around k − ln k.

• Second solution. Let xi be the probability that the ith guest sits on her assigned seat, then
xi is also the probability that seat i is available when the ith guest comes. By linearity of
expectation, the expected number of guests sitting on their assigned seats is

∑n
i=1 xi. Clearly,

x1 = 1/n.
Now, suppose i > 1. Consider the time when the ith guest comes. At that time, all seats
from 2 to i− 1 must be occupied. Therefore, exactly one among the remaining n− i+ 2 seats
is unavailable. Since all these seats look exactly the same to the first i − 1 guests, they are
unavailable with the same probability. In particular, the probability that seat i is unavailable
is 1/(k − i+ 2). Therefore, xi = 1− 1/(n− i+ 2). Plug this in, we get the expected number
of guests who sit on their assigned seats is:

1/n+
n∑

i=2

(
1− 1

n− i+ 2

)
= 1/n+

n∑
j=2

(1− 1/j)

= n− (1 + 1/2 + . . . 1/(n− 1))

4. We start with stating some observations. First, since the communication system has |V1| · |V2| · · · |Vn|
polynomial size states, we can enumerate all its states using polynomial space. Second, given two
states a = (a1, a2, . . . an) and b = (b1, b2, . . . bn), we can check if (a,b) ∈ T using polynomial space by
walking through all index i and checking if ai = bi or (ai, bi) ∈ P . Third, we can also check if a state
a = (a1, a2, . . . an) is a deadlock using polynomial space by walking through all indices and check if
there are two indices i and j such that there exist bi, bj where (ai, bi) ∈ P and (aj , bj) ∈ P .

3



With these observations, we can solve ReachableDeadlock as follows. The algorithm walk through all
states of the communication system and check if the current state d is a deadlock. If it is, the algorithm
check if d can be reached from the starting state s in exactly the same way with the proof of Savitch’s
theorem.

To see that this algorithm uses polynomial space, note that if d is reachable, then the minimum number
of steps to go from s to d is at most the number of states, whose log is a polynomial on the size of the
input. Thus, the recursion stack contains a polynomial number of items at any time. Furthermore,
each of the items is of polynomial size. Therefore, the size of the recursion stack is a polynomial on
the size of the input, which shows that the algorithm uses polynomial space.

5. We give a reduction from IPA to ReachableDeadlock. Given a machine M and a string x, we first
modify M to get a machine M ′ that works exactly like M except that it rejects whenever the head is
on the first cells outside of the input so that M ′ never uses more than |x|+ 2 cells in its computation.
Clearly, M accepts x inplace iff M ′ accepts x. In the following, we will refer to the two special cells
next to either ends of the input the bad cells.

We will build a system of communicating processes such that the states of the system correspond
to the configurations of M ′, the transitions between states correspond to the transitions between
configurations and the deadlock states correspond to the accepting configurations. To begin with, let
|x| = n, we create n+ 2 processes G0, G1, . . . Gn, Gn+1 where G1, G2, . . . Gn correspond to the n cells
holding the input and G0 and Gn+1 corresponding to the two bad cells. In the followings, we describe
the vertex sets Vi and edge sets Ei of these processes.

Observe that we can represent configurations of M ′ as strings of n + 2 elements, where each element
is either a tape symbol or a pair of a tape symbol and a state of M ′. For example, the string

y = y0y1 . . . yi−1(yi, q)yi+1 . . . ynyn+1

represent the configuration in which the content of the tape is y0y1 . . . yi−1yiyi+1 . . . ynyn+1, the head
of M ′ is at position i and M ′ is in state q. Clearly, in order for a string to be a valid representation of
a configuraiton, exactly one of its element must be a (tape symbol, state) pair.

Let S be the set of all possible elements of such string, that is S = Σ ∪ (Σ × Q) where Σ is the
set of tape symbols and Q is the set of states of M ′. We set Vi to be a “marked copy” of S, i.e.
Vi = {si|s ∈ S} so that Vi and Vj are disjoint for all i 6= j. Finally, we set Ei = Vi × Vi. It can be
verify that each configuration can be represented by a state of the described system. On the other
hand, there are states of the system that are not the representation of any configuration; for example,
the state (a0, a1, . . . an+2) where both a1 and a2 are (tape symbol, state) pairs. However, by setting
the starting state to be the representation of the starting configuration of M ′ and specifying the set of
transition pairs appropriately, we will make sure that all reachable states represent configurations.

Now, we specify the set P of transition pairs so that each pairs represent a step in the computation
of M . P contains all pairs ((si

1, s
i
2), (si+1

3 , si+1
4 )) such that: (i) exactly one of s1 and s3 and exactly

one of s2 and s4 are (tape symbol, state) pairs; and (ii) (s1, s3) and (s2, s4) are yi, yi+1 and zi, zi+1

respectively where y and z represents 2 consecutive configurations in the computation of M ′.

To see the correspondence between elements of P and the computation of M ′, consider any particular
rule of M ′:

If the current symbol is α and the current state is q, write β, move to the right and change
to state q′.

This rule corresponds to all pairs of the form

(((α, q)i, βi), (γi+1, (γ, q′)i+1))

for all i and γ.

Up to this point, it is easy to verify that for any two states a = (a1, a2, . . . an) and b = (b1, b2, . . . bn)
which represents configurations of M ′, (a,b) ∈ T iff they represent two consecutive configurations.

4



Therefore, the reachable states of the system represents the reachable configurations of M ′. Now, as
stated above, we will make sure that the only reachable deadlocks are those represent the accepting
configurations. Clearly, the only configurations where M ′ (therefore, the system) gets stuck is the
rejecting and accepting ones. So, we add the following transition pairs:

(((αi, r), (αi, r)), (γi+1, γi+1)) and ((αi, αi), ((γi+1, r), (γi+1, r)))

for all α, γ and 0 ≤ i ≤ n where r is the rejecting state of M ′. This make sure that the system
of communicating processes doesn’t get stuck on rejecting configurations of M ; thus completes the
reduction.

The corresponding between the reachable states and the configuration of M is clear. Furthermore, we
can verify that starting from a state representing a reachable configuration, there is exactly one state
that the system can transform into, and that state represents the next configuration. Thus, the system
reach a deadlock iff M ′ reach an accepting configuration. Finally, given two states a and b, we can
check if (a,b) ∈ P in polynomial time by looking at the transition table of M ′.

This completes the proof that ReachableDeadlock is PSPACE-hard.

5


