
CSEP531 Homework 4 Solution

1. DOUBLE-SAT is in NP . The polynomial size certificate consists of two assignments f1 and f2.
First, the verifier verifies if f1 6= f2. Then, it verifies if both assignments satisfy φ by subtituting
the values for the variables and evaluate the clauses of φ. Both checks can be done in linear time.

DOUBLE-SAT is NP -hard. We give a reduction from SAT. Given an instance φ of SAT
which is a CNF formula of n variables x1, x2, . . . xn, we construct a new variable xn+1 and let
ψ = φ ∧ (xn+1 ∨ ¬xn+1) be the corresponding instance of DOUBLE-SAT.
We claim that φ has a satisfying assignment iff ψ has at least two satisfying assignments. On
one hand, if φ has a satisfying assignment f , we can obtain two distinct satisfying assignments
of ψ by extending f with xn+1 = T and xn+1 = F respectively. On the other hand, if ψ has at
least two sastisyfing assignments then the restriction of any of them to the set {x1, x2, . . . xn} is
a satisfying assignment for φ.
Thus, DOUBLE-SAT is NP -complete.

2. k-SPANNING-TREE is in NP . The polynoial size certificate is a subgraph of G. The verifier
needs to verify that this subgraph

(a) is connected;
(b) is acyclic;
(c) spans all the vertices of G; and
(d) has maximum degree at most k.

The first three conditions can be checked by a depth-first traversal in which we mark a vertex
when we visit it for the first time. If we ever visit a marked vertex, the subgraph contains a
cycle; otherwise, it is acyclic. If all the vertices of G are marked by the traversal, then the
subgraph is connected and spans G. Otherwise, either it is not connected or it doesn’t span G.
Finally, checking for the maximum degree involves going through all the vertices and count theirs
neighbors. All these checks can be done in time linear in the number of edges of the subgraph.

k-SPANNING-TREE is NP -hard. First, note that 2-SPANNING-TREE is exactly undirected
HAMPATH: a tree in which each vertex has degree at most 2 is a path. Thus, 2-SPANNING-
TREE is NP -hard.
Now, we give a reduction from 2-SPANNING-TREE to k-SPANNING-TREE for any k ≥ 3. Given
a graph G(V,E) as an instance of 2-SPANNING-TREE, we construct another graph G′(V ′, E′)
where V ′ contains V and some other vertices as follows. For each vertex v ∈ V , V ′ also contains
k − 2 new vertices v1, v2, . . . vk−2. Similarly, E′ contains E and some extra edges connecting vi

and v. Formally,

V ′ = V ∪ {v1, v2, . . . vk−2|v ∈ V }
E′ = E ∪ {v1v, v2v, . . . vk−2v|v ∈ V }.

We claim that G has a 2-SPANNING-TREE iff G′ has a k-SPANNING-TREE. On one hand,
assume that G has a 2-SPANNING-TREE T , then T ′ = T ∪ {viv|v ∈ V, i = 1, 2, . . . k − 2} is a
spanning tree of G′. Since each vertex of T has degree at most 2, each vertex of T ′ has degree at
most k.
On the other hand, assume that G′ has a k-SPANNING-TREE T ′. One can see that T ′ must
contains all the edges viv, since those are the only edges incident at vi. Furthermore, all vi’s are

1

leaves of T ′ since they all have degree 1. Thus we can remove them to obtain a spanning tree T of
G. Since removing all edges viv decrease the degree of each v by k−2, T is a 2-SPANNING-TREE
of G.
Thus, k-SPANNING-TREE is NP -complete for any k ≥ 2.

Note: you can also do a reduction from k-SPANNING-TREE to (k + 1)-SPANNING-TREE for
any k ≥ 2.

3. MINES-CONSITENCY is in NP . The polynomial size certificate is a placement of mines.
Checking such a certificate involves walking through all the vertices in the graph and for each
vertex, count the number of mines around it. This can be done in O(|E|).
MINES-CONSISTENCY is NP -hard. We give a reduction from 3SAT. Given a formula
φ on n variables x1, x2, . . . xn as an instance of 3SAT, we construct an instance G of MINES-
CONSISTENCY as follows.
For each variables xi, create two unlabeled vertices corresponding to xi and ¬xi. We will abuse
the notations and use xi and ¬xi to name these two vertices. Then, we create a vertex ti labeled
by 1 and connect it to both xi and ¬xi. This guarantees that a bomb is placed at either xi or
¬xi but not both, correspond to the fact that exactly one of xi and ¬xi is true.
For each clause C, we create 3 extra vertices uC , vC and hC where both uC and vC are unlabeled
while hC is labeled by 3. We then connect uC and vC to hC . Finally, assume that C = li ∨ lj ∨ lk
where li, lj and lk are literals, i.e., either variables or their negation, we connect li, lj and lk to
hC . Clearly, this reduction can be done in polynomial time.
We claim that φ has a satisfying assignment iff G has a consistent placement of mines. One one
hand, assume that φ has a satisfying assignment. For each i, we place a mine at xi if xi is true
and at ¬xi otherwise. This is consistent with ti’s label. Next, for each C at least one among the
three literal vertices adjacent to hC contains a mine, since C is satisfied. Then, we can place some
extra mines at either uC or vC or both to make hC consistent.
On the other hand, assume that G has a consistent placement of mines, then for each variable xi,
either xi or ¬xi contains a mine but not both (because of ti’s label). We set xi to T if it contains
a mine and F otherwise. We claim that this is a satisfying assignment. Consider any clause C,
since uC and vC provide at most 2 mines, at least one of the three literal vertices adjacent to hC

must contain a mine in order for hC to be consistent. This means one of the three literals of C is
set to T, hence satisfying C.
Thus, MINES-CONSISTENCY is NP -complete.

4. LDC is in NP . A polynomial size certificate for LDC is the lists of objects in the k clusters.
To verify this certificate, the verifier computes the distances between any two objects in the same
cluster and check them against B. This verfication takes O(n2) time.

LDC is NP -hard. We give a reduction from k-Colorability to LDC. Given a graph G as
an instance of k-Colorability, we construct an instance of LDC as follows. For each vertices
G, we create a corresponding objects - we will use the same names for the vertices and the
objects. If there is no edges between two vertices u and v, we let d(u, v) = B. Otherwise, we let
d(u, v) = B + 1.
We claim that G can be colored by k colors iff the objects can be partitioned into k clusters. On
one hand, assume that G can be colored by k colors. Then the objects corresponding to vertices
of each color form a cluster, since the distance between any two of them is B.
On the other hand, assume that the objects can be participated into k cluster. Consider any two
objects u and v in the same cluster. Since the d(u, v) ≤ B, there is no edge between u and v in
G. This means we can color all the vertex corresponding to objects in each cluster by the same
color; thereby coloring G by k colors.
Thus, LDC is NP -complete.

5. Idea: Let’s start by constructing the cluster that contains the first object p1. First, all the objects
pi such that d(p1, pi) < B has to be in this cluster. Then, all the objects that has distance at most B

2

to one of these pi must also be in the cluster. This process continues until we don’t need to add any
more objects to the cluster. Then we can start to build the next cluster. Note that in this problem,
the more clusters we can construct the better: if the answer is “yes” for k, it is also “yes” for k − 1
(verify this).

Algorithm:

while there are unmarked objects:
if there is an unmarked pi such that d(pi,pj) < B for some pj in the current cluster:
add pi to the current cluster
mark pi

else:
create a new cluster containing one unmarked object pi
mark pi

if at least k clusters were created:
return yes

else:
return no

Running time: The while loop takes n iterations. In each of iteration, testing the condition of the if
statement take O(n2) time. Thus, the algorithm runs in O(n3) time.

Correctness Proof: The correctness of the algorithm follows from the fact that each cluster it
constructs is minimal: all the points in such a cluster must stay together in order to guarantee that
the inter-cluster distance is at least B.

Note: You can also solve this problem by reducing it to Minimum Spanning Tree as follow. First,
construct a graph where each vertex represents an object and the length of the edge connecting vertex
is the distance between the to represented objects. Next, compute the minimum spanning tree of the
graph. If there are k − 1 edges of length at least B in the spanning tree, then the answer is “yes”,
otherwise, the answer is “no”.

First, assume that such k − 1 edges exist; then removing them separate the spanning tree into k
subtrees. The objects in each subtree form a cluster. The smallest distance between two objects in
two clusters Ti and Tj is the length of the original edge connecting Ti and Tj ; for if there is another
edge whose distance is smaller, the minimum spanning tree should have used it.

On the other hand, assume that there are k clusters such that the minimum distance between any two
clusters is at least B; then the spanning tree must contain at least k− 1 edges among the inter-cluster
edges. So it contains at least k − 1 edges of length at least B.

Note 2: The reduction to minimum spanning tree is nicer than greedy algorithm above in the sense
that given k, it finds the maximum minimum inter-cluster distance.

3

