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Grand challenge: Classify Problems According to Computational Requirements

Q.  Which problems will we be able to solve in practice?

A working definition.  [Cobham 1964, Edmonds 1965, Rabin 1966]

Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover
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Classify Problems

Desiderata.  Classify problems according to those that can be solved in

polynomial-time and those that cannot.

For any nice function T(n)

There are problems that require more than T(n) time to solve.

Frustrating news.  Huge number of fundamental problems have defied

classification for decades.

NP-completeness:  Show that these fundamental problems are

"computationally equivalent" and appear to be different manifestations

of one really hard problem.
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Polynomial-Time Reduction

Desiderata'.  Suppose we could solve X in polynomial-time. What else

could we solve in polynomial time?

Reduction.  Problem X polynomial reduces to problem Y if arbitrary

instances of problem X can be solved using:

Polynomial number of standard computational steps, plus

Polynomial number of calls to oracle that solves problem Y.

Notation.  X  P Y.

5

Polynomial-Time Reduction

Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If X  P Y and Y can be solved in polynomial-time,

then X can also be solved in polynomial time.

Establish intractability.  If X  P Y and X cannot be solved in

polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence.  If X  P Y and Y  P X, we use notation X  P Y.

up to cost of reduction

Basic Reduction Strategies

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.
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Review

Basic reduction strategies.

Simple equivalence:  INDEPENDENT-SET  P VERTEX-COVER.

Special case to general case:  VERTEX-COVER  P SET-COVER.

Encoding with gadgets:  3-SAT  P INDEPENDENT-SET.

Transitivity.  If X  P Y and Y  P Z, then X  P Z.

Pf idea.  Compose the two algorithms.

Ex:  3-SAT  P INDEPENDENT-SET  P VERTEX-COVER  P SET-COVER.

8

Self-Reducibility

Decision problem.  Does there exist a vertex cover of size   k?

Search problem.  Find vertex cover of minimum cardinality.

Self-reducibility.  Search problem  P decision version.

Applies to all (NP-complete) problems we discuss.

Justifies our focus on decision problems.

Ex:  to find min cardinality vertex cover.

(Binary) search for cardinality k* of min vertex cover.

Find a vertex v such that G  { v } has a vertex cover of size  k* - 1.

– any vertex in any min vertex cover will have this property

Include v in the vertex cover.

Recursively find a min vertex cover in G  { v }.

Definition of NP
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Decision Problems

Decision problem.

X is a set of strings (a language).

Instance:  string s.

Algorithm A solves problem X:  A(s) = yes iff s  X.

Polynomial time.  Algorithm A runs in poly-time if for every string s,

A(s) terminates in at most p(|s|) "steps", where p( ) is some polynomial.

PRIMES:  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }

Algorithm.  [Agrawal-Kayal-Saxena, 2002]   p(|s|) = |s|8.

length of s
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NP

Certification algorithm intuition.

Certifier views things from "managerial" viewpoint.

Certifier doesn't determine whether s  X  on its own;

rather, it checks a proposed proof t that s  X.

Def.  Algorithm C(s, t) is a certifier for problem X if for every string s,

s  X  iff there exists a string t such that C(s, t) = yes.

NP.  Decision problems for which there exists a poly-time certifier.

Remark.  NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and

|t|  p(|s|) for some polynomial p( ).

"certificate" or "witness"
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NP -- another definition

Nondeterministic Turing machines

At any point in a computation, the machine may proceed according to

several possibilities.

Machine accepts if there is a computation branch that ends in an

accepting state.

Example: NTM for Clique

On input (G,k) where G is a graph

– Nondeterministically select a subset S of k nodes of G

– Test whether G contains all edges connecting nodes in S.

– If yes, accept, else reject.

Theorem: A language is in NP iff it is decided by some nondeterministic

polynomial time Turing machine.
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NP -- equivalence of definitions

Theorem: A language is in NP iff it is decided by some nondeterministic

polynomial time Turing machine

Proof: let A be a language in NP.

=> Let C(s,t) be a certifer for A that runs in time nk.

Construct nondeterministic TM N that on input s of length n does:

Nondeterministically select string t of length at most nk

Run C(s,t)

If C(s,t) accepts, accept, otherwise reject

<=  Suppose N is a NTM that decides A. Construct verifier C that on

input (s,t) does the following:

Simulate N on input s, treating each symbol of t as a description of

the nondeterministic choice to make at each step.

If this branch of N’s computation accepts, accept, else reject.
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NP

Theorem: A language is in NP iff it is decided by some nondeterministic

polynomial time Turing machine

NTIME (t(n)) = {L | L is a language decided by an O(t(n)) time

nondeterministic Turing machine}

NP = Uk NTIME (nk)      =  languages with poly-time verifiers
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P, NP, EXP

P.  Decision problems for which there is a poly-time algorithm.

EXP.  Decision problems for which there is an exponential-time algorithm.

NP.  Decision problems for which there is a poly-time certifier.

Claim.  P    NP.

Pf.  Consider any problem X in P.

By definition, there exists a poly-time algorithm A(s) that solves X.

Certificate: t = , certifier C(s, t) = A(s).   

Claim.  NP    EXP.

Pf.  Consider any problem X in NP.

By definition, there exists a poly-time certifier C(s, t) for X.

To solve input s, run C(s, t) on all strings t with |t|  p(|s|).

Return yes, if C(s, t) returns yes for any of these.   
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The Main Question:  P Versus NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

Clay $1 million prize.

If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …

If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP?  Probably no.

EXP NP

P

If  P  NP If  P = NP

EXP

P = NP

would break RSA cryptography
(and potentially collapse
economy)
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NP-Complete

NP-complete.  A problem Y in NP with the property that for every

problem X in NP, X  p Y.

Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable in

poly-time iff P = NP.

Pf.    If P = NP then Y can be solved in poly-time since Y is in NP.

Pf.    Suppose Y can be solved in poly-time.

Let X be any problem in NP.  Since X  p Y, we can solve X in

poly-time. This implies NP    P.

We already know P    NP. Thus P = NP.  

Fundamental question.  Do there exist "natural" NP-complete problems?

18

¬

1 0 ? ? ?

output

inputshard-coded inputs

yes:  1 0 1

Circuit Satisfiability

CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, and NOT

gates, is there a way to set the circuit inputs so that the output is 1?
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The "First" NP-Complete Problem

Theorem.  CIRCUIT-SAT is NP-complete.  [Cook 1971, Levin 1973]

Pf.  (sketch++)

Consider some problem X in NP.  It has a poly-time certifier C(s, t).

To determine whether s is in X, need to know if there exists a

certificate t of length p(|s|) such that C(s, t) = yes.

View C(s, t) as an algorithm, i.e. Turing machine on |s| + p(|s|) bits

(input s, certificate t)

Assumptions about TM:

– It moves its head all the way to left and writes blank in leftmost

tape cell right before halting.

– Once it halts, it stays in same configuration for all future steps.

Convert TM it into a poly-size circuit K.

– first |s| bits are hard-coded with s

– remaining p(|s|) bits represent bits of t

Construct circuit K that is satisfiable iff C(s, t) = yes.

20

Establishing NP-Completeness

Remark.  Once we establish first "natural" NP-complete problem,

others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

Step 1.  Show that Y is in NP.

Step 2.  Choose an NP-complete problem X.

Step 3.  Prove that X  p Y.

Justification.  If X is an NP-complete problem, and Y is a problem in NP

with the property that X  P Y then Y is NP-complete.

Pf.  Let W be any problem in NP.  Then W   P   X    P   Y.

By transitivity, W  P  Y.

Hence Y is NP-complete.  
by assumptionby definition of

NP-complete
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Observation.  All problems below are NP-complete and polynomial

reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness
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Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

Packing problems:  SET-PACKING, INDEPENDENT SET.

Covering problems:  SET-COVER, VERTEX-COVER.

Constraint satisfaction problems:  SAT, 3-SAT.

Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

Partitioning problems: 3D-MATCHING 3-COLOR.

Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions.  Factoring, graph isomorphism.

Basic genres.

Packing problems:  SET-PACKING, INDEPENDENT SET.

Covering problems:  SET-COVER, VERTEX-COVER.

Constraint satisfaction problems:  SAT, 3-SAT.

Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

Partitioning problems: 3D-MATCHING, 3-COLOR.

Numerical problems:  SUBSET-SUM, KNAPSACK.

Sequencing Problems

24

Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a

simple cycle  that contains every node in V.

YES:  vertices and faces of a dodecahedron.
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a

simple cycle  that contains every node in V.

1

3

5

1'

3'

2

4

2'

4'

NO:  bipartite graph with odd number of nodes.
26

Directed Hamiltonian Cycle

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple

directed cycle  that contains every node in V?

Claim.  DIR-HAM-CYCLE  P HAM-CYCLE.

Pf.  Given a directed graph G = (V, E), construct an undirected graph G'

with 3n nodes.

v

a

b

c

d

e
vin

aout

bout

cout

din

ein

G G'

v vout

27

Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  

Suppose G has a directed Hamiltonian cycle .

Then G' has an undirected Hamiltonian cycle (same order).

Pf.  

Suppose G' has an undirected Hamiltonian cycle '.

' must visit nodes in G' using one of following two orders:

   …, B, G, R, B, G, R, B, G, R, B, …

   …, B, R, G, B, R, G, B, R, G, B, …

Blue nodes in ' make up directed Hamiltonian cycle  in G, or

reverse of one.   

28

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT  P DIR-HAM-CYCLE.

Pf.   Given an instance  of 3-SAT, we construct an instance of DIR-

HAM-CYCLE that has a Hamiltonian cycle iff  is satisfiable.

Construction.  First, create graph that has 2n Hamiltonian cycles which

correspond in a natural way to 2n possible truth assignments.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.

Construct G to have 2n Hamiltonian cycles.

Intuition:  traverse path i from left to right    set variable xi = 1.

s

t

3k + 3

x1

x2

x3

30

3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.

For each clause:  add a node and 6 edges.

s

t

clause nodeclause node
3211

VV xxxC =
3212

VV xxxC =

x1

x2

x3



6

31

3-SAT Reduces to Directed Hamiltonian Cycle

Claim.    is satisfiable iff G has a Hamiltonian cycle.

Pf.  

Suppose 3-SAT instance has satisfying assignment x*.

Then, define Hamiltonian cycle in G as follows:

– if x*i = 1, traverse row i  from left to right

– if x*i = 0, traverse row i from right to left

– for each clause Cj , there will be at least one row i in which we are

going in "correct" direction to splice node Cj into tour

32

3-SAT Reduces to Directed Hamiltonian Cycle

Claim.    is satisfiable iff G has a Hamiltonian cycle.

Pf.  

Suppose G has a Hamiltonian cycle .

If  enters clause node Cj , it must depart on mate edge.

– thus, nodes immediately before and after Cj are connected by an

edge e in G

– removing Cj from cycle, and replacing it with edge e yields

Hamiltonian cycle on G - { Cj  }

Continuing in this way, we are left with Hamiltonian cycle ' in

G - { C1 , C2 ,  . . . , Ck }.

Set x*i = 1 iff ' traverses row i left to right.

Since  visits each clause node Cj , at least one of the paths is

traversed in "correct" direction, and each clause is satisfied.   
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Longest Path

SHORTEST-PATH.  Given a digraph G = (V, E), does there exists a simple

path of length at most k edges?

LONGEST-PATH.  Given a digraph G = (V, E), does there exists a simple

path of length at least k edges?

Prove that LONGEST-PATH is NP-complete

34

The Longest Path t

Lyrics.  Copyright © 1988 by Daniel J. Barrett.

Music.  Sung to the tune of The Longest Time by Billy Joel.

http://www.cs.princeton.edu/~wayne/cs423/lectures/longest-path.mp3

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done:
GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

t Recorded by Dan Barrett while a grad student at Johns Hopkins during a difficult algorithms final. 
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is

there a tour of length  D?

All 13,509 cities in US with a population of at least 500
Reference:  http://www.tsp.gatech.edu

36

Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is

there a tour of length  D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is

there a tour of length  D?

11,849 holes to drill in a programmed logic array
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is

there a tour of length  D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is

there a tour of length  D?

HAM-CYCLE:  given a graph G = (V, E), does there exists a simple cycle

that contains every node in V?

Claim.  HAM-CYCLE  P TSP.

Pf.

Given instance G = (V, E) of HAM-CYCLE, create n cities with

distance function

TSP instance has tour of length  n iff G is Hamiltonian.  

Remark.  TSP instance in reduction satisfies -inequality.

d(u, v)  =  
 1 if (u, v)  E

 2 if (u, v)  E

 
 
 

Basic genres.

Packing problems:  SET-PACKING, INDEPENDENT SET.

Covering problems:  SET-COVER, VERTEX-COVER.

Constraint satisfaction problems:  SAT, 3-SAT.

Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

Partitioning problems:  3D-MATCHING, 3-COLOR.

Numerical problems:  SUBSET-SUM, KNAPSACK.

Partitioning Problems

41

3-Dimensional Matching

3D-MATCHING.  Given n instructors, n courses, and n times, and a list of

the possible courses and times each instructor is willing to teach, is it

possible to make an assignment so that all courses are taught at

different times?

Instructor Course Time

Wayne COS 423 MW 11-12:20

Wayne COS 423 TTh 11-12:20

Wayne COS 226 TTh 11-12:20

Wayne COS 126 TTh 11-12:20

Tardos COS 523 TTh 3-4:20

Tardos COS 423 TTh 11-12:20

Tardos COS 423 TTh 3-4:20

Kleinberg COS 226 TTh 3-4:20

Kleinberg COS 226 MW 11-12:20

Kleinberg COS 423 MW 11-12:20

42

3-Dimensional Matching

3D-MATCHING.  Given disjoint sets X, Y, and Z, each of size n and a set

T  X  Y  Z of triples, does there exist a set of n triples in T such

that each element of X  Y  Z is in exactly one of these triples?
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Basic genres.

Packing problems:  SET-PACKING, INDEPENDENT SET.

Covering problems:  SET-COVER, VERTEX-COVER.

Constraint satisfaction problems:  SAT, 3-SAT.

Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

Partitioning problems:  3D-MATCHING, 3-COLOR.

Numerical problems:  SUBSET-SUM, KNAPSACK.

Graph Coloring

44

3-Colorability

3-COLOR:  Given an undirected graph G does there exists a way to

color the nodes red, green, and blue so that no adjacent nodes have the

same color?

yes instance

45

Register Allocation

Register allocation.  Assign program variables to machine register so

that no more than k registers are used and no two program variables

that are needed at the same time are assigned to the same register.

Interference graph.  Nodes are program variables names, edge

between u and v if there exists an operation where both u and

v are "live" at the same time.

Observation.  [Chaitin 1982]  Can solve register allocation problem iff

interference graph is k-colorable.

Fact.  3-COLOR  P k-REGISTER-ALLOCATION for any constant k  3.

46

3-Colorability

Claim.  3-SAT  P 3-COLOR.

Pf.  Given 3-SAT instance , we construct an instance of 3-COLOR that

is 3-colorable iff  is satisfiable.

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect

each literal to B.

iii. Connect each literal to its negation.

iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

47

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.    Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.

(ii) ensures each literal is T or F.

(iii) ensures a literal and its negation are opposites.

T

B

F

x1 x1 x2 x2 xn xnx3 x3

true false

base

48

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.    Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.

(ii) ensures each literal is T or F.

(iii) ensures a literal and its negation are opposites.

(iv) ensures at least one literal in each clause is T.

T F

B

x1 x2 x3
  Ci

= x1 V x2 V x3

6-node gadget

true false
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3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.    Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.

(ii) ensures each literal is T or F.

(iii) ensures a literal and its negation are opposites.

(iv) ensures at least one literal in each clause is T.

  Ci
= x1 V x2 V x3

T F

B

x1 x2 x3

not 3-colorable if all are red

true false

contradiction

50

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.     Suppose 3-SAT formula  is satisfiable.

Color all true literals T.

Color node below green node F, and node below that B.

Color remaining middle row nodes B.

Color remaining bottom nodes T or F as forced.  

T F

B

x1 x2 x3

a literal set to true in 3-SAT assignment

  Ci
= x1 V x2 V x3

true false

Basic genres.

Packing problems:  SET-PACKING, INDEPENDENT SET.

Covering problems:  SET-COVER, VERTEX-COVER.

Constraint satisfaction problems:  SAT, 3-SAT.

Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

Partitioning problems:  3-COLOR, 3D-MATCHING.

Numerical problems:  SUBSET-SUM, KNAPSACK.

Numerical Problems

52

Subset Sum

SUBSET-SUM.  Given natural numbers w1, …, wn and an integer W, is

there a subset that adds up to exactly W?

Ex:  { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 },  W = 3754.

Yes.  1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark.  With arithmetic problems, input integers are encoded in

binary. Polynomial reduction must be polynomial in binary encoding.

Claim.  3-SAT  P SUBSET-SUM.
Pf.  Given an instance  of 3-SAT, we construct an instance of SUBSET-

SUM that has solution iff  is satisfiable.

53

Subset Sum

Construction.  Given 3-SAT instance  with n variables and k clauses,

form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

Claim.   is satisfiable iff there exists a subset that sums to W.

Pf.  No carries possible.

C1 = x y z

C2 = x y z

C3 = x y z

dummies to get
clause columns
to sum to 4

y

x

z

0 0 0 0 1 0

0 0 0 2 0 0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 1

0 1 0 1 0 0

1 0 0 1 0 1

1 0 0 0 1 0

0 0 1 1 1 0

x y z C1 C2 C3

0 0 0 0 0 2

0 0 0 0 0 1

0 0 0 0 2 0

1 1 1 4 4 4

¬ x

¬ y

¬ z

W

     10

    200

    100

  1,001

 10,011

 10,100

100,101

100,010

  1,110

      2

      1

     20

111,444

54

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES.  Given a set of n jobs with processing time

ti, release time ri, and deadline di, is it possible to schedule all jobs on a

single machine such that job i is processed with a contiguous slot of ti

time units in the interval [ri, di ] ?

Claim.  SUBSET-SUM  P SCHEDULE-RELEASE-TIMES.

Pf.  Given an instance of SUBSET-SUM w1, …, wn, and target W,

Create n jobs with processing time ti = wi, release time ri = 0, and no

deadline (di =  1 + j wj).

Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W+1.

W W+1 S+10

Can schedule jobs 1 to n anywhere but [W, W+1]

job 0



10

55

Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction

An Extra :  4 Color Theorem

57

Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

YES instance.

58

Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

NO instance.

59

Def.  A graph is planar if it can be embedded in the plane in such a way

that no two edges cross.

Applications:  VLSI circuit design, computer graphics.

Kuratowski's Theorem.  An undirected graph G is non-planar iff it

contains a subgraph homeomorphic to K5 or K3,3.

Planarity

Planar K5:  non-planar K3,3:  non-planar

homeomorphic to K3,3

60

Planarity testing.  [Hopcroft-Tarjan 1974]  O(n).

Remark.  Many intractable graph problems can be solved in poly-time if

the graph is planar; many tractable graph problems can be solved

faster if the graph is planar.

Planarity Testing

simple planar graph can have at most 3n edges
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Planar 3-Colorability

Claim.  3-COLOR  P PLANAR-3-COLOR.

Proof sketch:  Given instance of 3-COLOR, draw graph in plane, letting

edges cross if necessary.

Replace each edge crossing with the following planar gadget W.

– in any 3-coloring of W, opposite corners have the same color

– any assignment of colors to the corners in which opposite corners

have the same color extends to a 3-coloring of W

62

Planar k-Colorability

PLANAR-2-COLOR.  Solvable in linear time.

PLANAR-3-COLOR.  NP-complete.

PLANAR-4-COLOR.  Solvable in O(1) time.

Theorem.  [Appel-Haken, 1976]  Every planar map is 4-colorable.

Resolved century-old open problem.

Used 50 days of computer time to deal with many special cases.

First major theorem to be proved using computer.

False intuition.  If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR

and PLANAR-5-COLOR.

co-NP and the Asymmetry of NP

64

Asymmetry of NP

Asymmetry of NP.  We only need to have short proofs of yes instances.

Ex 1.  SAT vs. NON-SATISFIABLE.

Can prove a CNF formula is satisfiable by giving such an assignment.

How could we prove that a formula is not satisfiable?

Ex 2.  HAM-CYCLE vs. NO-HAM-CYCLE.

Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.

How could we prove that a graph is not Hamiltonian?

Remark.  SAT is NP-complete and SAT  P NON-SATISFIABLE, but how

do we classify NON-SATISFIABLE?

not even known to be in NP
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NP and co-NP

NP.  Decision problems for which there is a poly-time certifier.

Ex.  SAT, HAM-CYCLE, COMPOSITES.

Def.  Given a decision problem X, its complement X is the same problem

with the yes and no answers reverse.

Ex.  X = { 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, … }

Ex.  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, … }

co-NP.  Complements of decision problems in NP.

Ex.  NON-SATISFIABLE, NO-HAM-CYCLE, PRIMES.

Why doesn’t the following poly-time NTM solve NON-SATISFIABILITY?

Guess an assignment to variables.

If assignment doesn’t satisfy formula, accept. Else, reject

66

NP and co-NP

NP.  Decision problems for which there is a poly-time certifier.

Def.  Given a decision problem X, its complement X is the same problem

with the yes and no answers reverse.

co-NP.  Complements of decision problems in NP.

An equivalent definition:

co-NP:

We say that L is in co-NP if there is a polynomial p, and a poly time TM

M, such that for every x,

        x is in L   iff  for all u of length p(|x|)  M(x,u)=1
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Fundamental question.  Does NP = co-NP?

Do yes instances have succinct certificates iff no instances do?

Consensus opinion:  no.

Theorem.  If NP  co-NP, then P  NP.

Pf idea.

P is closed under complementation.

If P = NP, then NP is closed under complementation.

In other words, NP = co-NP.

This is the contrapositive of the theorem.

NP = co-NP ?

68

Good Characterizations

Good characterization.  [Edmonds 1965]   NP  co-NP.

If problem X is in both NP and co-NP, then:

– for yes instance, there is a succinct certificate

– for no instance, there is a succinct disqualifier

Provides conceptual leverage for reasoning about a problem.

Ex.  Given a bipartite graph, is there a perfect matching.

If yes, can exhibit a perfect matching.

If no, can exhibit a set of nodes S such that |N(S)| < |S|.
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Good Characterizations

Observation.  P   NP  co-NP.

Proof of max-flow min-cut theorem led to stronger result that max-

flow and min-cut are in P.

Sometimes finding a good characterization seems easier than

finding an efficient algorithm.

Fundamental open question.  Does P = NP  co-NP?

Mixed opinions.

Many examples where problem found to have a non-trivial good

characterization, but only years later discovered to be in P.

– linear programming [Khachiyan, 1979]

– primality testing [Agrawal-Kayal-Saxena, 2002]

Fact.  Factoring is in NP  co-NP, but not known to be in P.

if poly-time algorithm for factoring,
can break RSA cryptosystem
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PRIMES is in NP  co-NP

Theorem.  PRIMES is in NP  co-NP.

Pf.  We already know that PRIMES is in co-NP, so it suffices to prove

that PRIMES is in NP.

Pratt's Theorem.  An odd integer s is prime iff there exists an integer

1 < t < s  s.t. t s 1 1 (mod s)

t (s 1) / p 1 (mod s)

for all prime divisors p of s-1

Certifier.

  - Check s-1 = 2  2  3  36,473.

  - Check 17s-1 = 1 (mod s).

  - Check 17(s-1)/2  437,676 (mod s).

  - Check 17(s-1)/3  329,415 (mod s).

  - Check 17(s-1)/36,473  305,452 (mod s).

Input.  s = 437,677

Certificate.  t = 17, 22  3  36,473

prime factorization of s-1
also need a recursive certificate
to assert that 3 and 36,473 are prime

use repeated squaring
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FACTOR is in NP  co-NP

FACTORIZE.  Given an integer x, find its prime factorization.

FACTOR.  Given two integers x and y, does x have a nontrivial factor

less than y?

Theorem.  FACTOR  P FACTORIZE.

Theorem.  FACTOR is in NP  co-NP.

Pf.

Certificate:  a factor p of x that is less than y.

Disqualifier:  the prime factorization of x (where each prime factor

is less than y), along with a certificate that each factor is prime.
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Primality Testing and Factoring

We established:  PRIMES  P COMPOSITES  P FACTOR.

Natural question:  Does FACTOR  P PRIMES ?

Consensus opinion.  No.

State-of-the-art.

PRIMES is in P.

FACTOR not believed to be in P.

RSA cryptosystem.

Based on dichotomy between complexity of two problems.

To use RSA, must generate large primes efficiently.

To break RSA, suffixes to find efficient factoring algorithm.

proved in 2001
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Some Philosophical Remarks

P v NP  captures important philosophical phenomenon:  recognizing the

correctness of an answer is often easier than coming up with the

answer.

P v NP asks if exhaustive search can be avoided.

If P = NP -- then  there is an algorithm that finds mathematical proofs

in time polynomial in the length of the proof.

Theorems = {( , 1n) :  has a formal proof of length at most n in

axiomatic system A}

Theorems is in NP

In fact, Theorems is NP-complete.
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The Riemann Hypothesis

Considered by many mathematicians to be the most important
unresolved problem in pure mathematics

Conjecture about the distribution of zeros of the Riemann zeta -
function

1 Million dollar prize offered by Clay Institute
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3D Bin Packing is NP-Complete

There is a finite and not unimaginably large set of boxes, such
that if we knew how to pack those boxes into the trunk of your
car, then we’d also know a proof of the Riemann Hypothesis.
Indeed, every formal proof of the Riemann Hypothesis with at
most (say) a million symbols corresponds to some way of packing
the boxes into your trunk, and vice versa. Furthermore, a list of
the boxes and their dimensions can be feasibly written down.

Courtesy of Scott Aaronson
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Why do we believe P different from NP if we can’t prove it?

  The empirical argument:  hardness of solving NP-complete problems

in practice.

 There are “vastly easier” problems than NP-complete ones (like

factoring) that we already have no idea how to solve in P

  P=NP would mean that mathematical creativity could be automated.

“God would not be so kind!”   Scott Aaronson

 We will add to this list later…
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Why is it so hard to prove P different from NP?

  Because P is different from NP

  Because there are lots of clever, non-obvious polynomial time

algorithms.  For example, proof that 3SAT is hard will have to fail for

2-SAT. Proof that 3-coloring planar graphs is hard will have to fail for

4-coloring planar graphs. Etc Etc.

 We’ll add to this list later….


