

Grand challenge: Classify Problems According to Computational Requirements
Q. Which problems will we be able to solve in practice?

A working definition. [Cobham 1964, Edmonds 1965, Rabin 1966]
Those with polynomial-time algorithms.

Yes	Probably no
Shortest path	Longest path
Matching	3D-matching
Min cut	Max cut
2-SAT	3-SAT
Planar 4-color	Planar 3-color
Bipartite vertex cover	Vertex cover
Primality testing	Factoring

Classify Problems

Desiderata. Classify problems according to those that can be solved in polynomial-time and those that cannot

For any nice function $T(n)$
There are problems that require more than $T(n)$ time to solve.

Polynomial-Time Reduction

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y if arbitrary
instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y

Notation. $\mathrm{X} \leq_{p} \mathrm{Y}$.
NP-completeness: Show that these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem.

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X s_{p} Y$ and Y can be solved in polynomial-time then X can also be solved in polynomial time.

Establish intractability. If $X \leq p y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X \leq_{p} Y$ and $Y \leq p X$, we use notation $X \equiv \equiv_{p} Y$ \uparrow
up to cost of reduction

Reduction by simple equivalence.
Reduction from special case to general case.

- Reduction by encoding with gadgets.

Basic Reduction Strategies

Review
Basic reduction strategies. - Simple equivalence: INDEPENDENT-SET \equiv_{ρ} VERTEX-COVER. - Special case to general case: VERTEX-COVER $\leq p$ SET-COVER. - Encoding with gadgets: 3 -SAT $\leq p$ INDEPENDENT-SET.
Transitivity. If $X \leq_{p} Y$ and $Y \leq_{p} Z$, then $X \leq_{p} Z$. Pf idea. Compose the two algorithms. Ex: 3 -SAT $\leq p$ INDEPENDENT-SET $\leq p$ VERTEX-COVER $\leq p$ SET-COVER.

Self-Reducibility

Decision problem. Does there exist a vertex cover of size $\leq k$?
search problem. Find vertex cover of minimum cardinality.
Self-reducibility. Search problem $\leq p$ decision version.

- Applies to all (NP-complete) problems we discuss.
- Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.

- (Binary) search for cardinality k^{*} of min vertex cover
- Find a vertex v such that $G-\{v\}$ has a vertex cover of size $\leq k^{\star}-1$. any vertex in any min vertex cover will have this property
- Include v in the vertex cover.
- Recursively find a min vertex cover in $G-\{v\}$.

Definition of NP

Decision Problems

Decision problem

- X is a set of strings (a language).
- Instance: string s.
- Algorithm A solves problem $X: A(s)=$ yes iff $s \in X$.

Polynomial time. Algorithm A runs in poly-time if for every strings, $A(s)$ terminates in at most $p(|s|)$ "steps", where $p(\cdot)$ is some polynomial. $\stackrel{\uparrow}{\text { length of s }}$

PRIMES: $X=\{2,3,5,7,11,13,17,23,29,31,37, \ldots$.
Algorithm. [Agrawal-Kayal-Saxena, 2002] $p(|s|)=|s|^{8}$.

NP

Certification algorithm intuition.

- Certifier views things from "managerial" viewpoint.
- Certifier doesn't determine whether $s \in X$ on its own; rather, it checks a proposed proof t that $s \in X$.

Def. Algorithm $C(s, t)$ is a certifier for problem X if for every string s, $s \in X$ iff there exists a string \dagger such that $C(s, t)=$ yes
"cerriticate" or "witness"

NP. Decision problems for which there exists a poly-time certifier.

NP -- another definition

Nondeterministic Turing machines

- At any point in a computation, the machine may proceed according to several possibilities.

Machine accepts if there is a computation branch that ends in an accepting state.

Example: NTM for Clique
On input (G, k) where G is a graph

- Nondeterministically select a subset S of k nodes of G
- Test whether G contains all edges connecting nodes in S.
- If yes, accept, else reject.

Theorem: A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.
Remark. NP stands for nondeterministic polynomial-time.

NP -- equivalence of definitions

Theorem: A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine

Proof: let A be a language in NP.
\Rightarrow Let $C(s, t)$ be a certifer for A that runs in time n^{k}. Construct nondeterministic TM N that on input s of length n does:

- Nondeterministically select string \dagger of length at most n^{k}
- Run $C(s, t)$
- If $C(s, t)$ accepts, accept, otherwise reject
$<=$ Suppose N is a NTM that decides A. Construct verifier C that on input (s, t) does the following:
- Simulate N on input s, treating each symbol of t as a description of the nondeterministic choice to make at each step.
- If this branch of N's computation accepts, accept, else reject.

NP

Theorem: A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine

NTIME $(\dagger(n))=\{L \mid L$ is a language decided by an $O(\dagger(n))$ time nondeterministic Turing machine\}
$N P=U_{k}$ NTIME (n^{k}) = languages with poly-time verifiers

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.

EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.
Claim. $P \subseteq N P$.
Pf. Consider any problem X in P.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate: $\dagger=\varepsilon$, certifier $C(s, t)=A(s)$. -

Claim. NP \subseteq EXP
Pf. Consider any problem X in NP.

- By definition, there exists a poly-time certifier $C(s, t)$ for X.
- To solve input s, run $C(s, t)$ on all strings t with $|t| \leq p(|s|)$.
- Return yes, if $C(s, \dagger)$ returns yes for any of these. -

NP-Complete

NP-complete. A problem Y in NP with the property that for every problem X in $N P, X \leq{ }_{p} Y$.

Theorem. Suppose Y is an NP -complete problem. Then Y is solvable in poly-time iff $P=N P$.
Pf. \Leftarrow If $P=N P$ then Y can be solved in poly-time since Y is in $N P$.
Pf. \Rightarrow Suppose Y can be solved in poly-time.

- Let X be any problem in NP. Since $X s_{p} Y$, we can solve X in poly-time. This implies NP $\subseteq P$.
- We already know $P \subseteq N P$. Thus $P=N P$. -

Fundamental question. Do there exist "natural" NP-complete problems?

The Main Question: P Versus NP
Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

- Is the decision problem as easy as the certification problem?
- Clay $\$ 1$ million prize.

would break RSA cryptography
(and potentially collapse
economy
(and poten
economy)
If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ... If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

Consensus opinion on $P=N P$? Probably no.

Circuit Satisfiability
CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1 ?
yes: 101

The "First" NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]
Pf. (sketch++)

- Consider some problem X in NP. It has a poly-time certifier $C(s, t)$. To determine whether s is in X, need to know if there exists a certificate t of length $p(|s|)$ such that $C(s, t)=$ yes
- View $C(s, t)$ as an algorithm, i.e. Turing machine on $|s|+p(|s|)$ bits (input s, certificate t)
- Assumptions about TM:
- It moves its head all the way to left and writes blank in leftmost tape cell right before halting
Once it halts, it stays in same configuration for all future steps.
- Convert TM it into a poly-size circuit K
- first |s| bits are hard-coded with s
- remaining $p(|s|)$ bits represent bits of \dagger
- Construct circuit K that is satisfiable iff $C(s, t)=$ yes

Sequencing Problems

Basic genres.

- Packing problems: sET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT

Sequencing problems: HAMILTONIAN-CYCLE,TSP.

- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Sequencing Problems
Basic genres. - Packing problems: SET-PACKING, INDEPENDENT SET. - Covering problems: SET-COVER, VERTEX-COVER. - Constraint satisfaction problems: SAT,3-SAT. - Sequencing problems: HAMILTONIAN-CYCLE, TSP. - Partitioning problems: 3D-MATCHING, 3-COLOR. - Numerical problems: SUBSET-SUM, KNAPSACK.

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y .

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X
. Step 3. Prove that $X \leq_{p} y$.
Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X s_{p} Y$ then Y is $N P$-complete.

Pf. Let W be any problem in $N P$. Then $W s_{p} X s_{p} Y$

- By transitivity, $\mathrm{W} \leq_{p} \mathrm{Y}$.
.
by definition of by by definition of by assumption
No.complete

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.
Notable exceptions. Factoring, graph isomorphism.

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph $G=(V, E)$, does there exists a simple directed cycle Γ that contains every node in V ?

Claim. DIR-HAM-CYCLE \leq pHAM-CYCLE.
Pf. Given a directed graph $G=(V, E)$, construct an undirected graph G^{\prime} with $3 n$ nodes.

G

Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G^{\prime} does.

Pf. \Rightarrow

- Suppose G has a directed Hamiltonian cycle Г.
- Then G^{\prime} has an undirected Hamiltonian cycle (same order).

Pf. \Leftarrow

- Suppose G^{\prime} has an undirected Hamiltonian cycle Γ^{\prime}.
- Γ^{\prime} must visit nodes in G^{\prime} using one of following two orders:
$\ldots, B, G, R, B, G, R, B, G, R, B, \ldots$
, $B, R, G, B, R, G, B, R, G, B$,
- Blue nodes in Γ^{\prime} make up directed Hamiltonian cycle Γ in G, or reverse of one. -

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT \leq_{p} DIR-HAM-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^{n} Hamiltonian cycles which correspond in a natural way to 2^{n} possible truth assignments.

3-SAT Reduces to Directed Hamiltonian Cycle
Claim. Φ is satisfiable iff G has a Hamiltonian cycle.
Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x^{\star}.
- Then, define Hamiltonian cycle in G as follows:
- i $x^{\star} i_{i}=$, traverse row i from left to right
- i $x_{i}{ }_{i}=0$ traverse row i from right to left
- for each clause c_{j}, there will be at least one row i in which we are
going in "correct" direction to splice node c_{j} into tour

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.
Pf. \Leftarrow

- Suppose G has a Hamiltonian cycle Γ.
- If Γ enters clause node C_{j}, it must depart on mate edge.
- thus, nodes immediately before and after C_{j} are connected by an edge e in G
- removing C_{j} from cycle, and replacing it with edge e yields Hamiltonian cycle on $G-\left\{C_{j}\right\}$
- Continuing in this way, we are left with Hamiltonian cycle Γ^{\prime} in $G-\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$.
. Set $x^{\star}{ }_{i}=1$ iff Γ^{\prime} traverses row i left to right
- Since Γ visits each clause node C_{j}, at least one of the paths is traversed in "correct" direction, and each clause is satisfied. .

Longest Path

SHORTEST-PATH. Given a digraph $G=(V, E)$, does there exists a simple path of length at most k edges?

LONGEST-PATH. Given a digraph $G=(V, E)$, does there exists a simple path of length at least k edges?

Prove that LONGEST-PATH is NP-complete

The Longest Path ${ }^{+}$

Lyrics. Copyright © 1988 by Daniel J. Barrett.
Music. Sung to the tune of The Longest Time by Billy Joel. http://www.cs.princeton.edu/~wayne/cs423/lectures/longest-path.mp3
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
If you said P is $N P$ tonight
There would still be papers left to write,
I'm addicted to co
And I keep searching for the longest path
The algorithm I would like to see
mial degree
Nobody has found conclusive
Evidence that we can find a longest path.

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

Partitioning Problems
Basic genres.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

Traveling Salesperson Problem

$$
\begin{aligned}
& \text { Oppinal TsP tour } \\
& \text { Reference: htp://ww..tspgatechedu }
\end{aligned}
$$

Partitioning Problems

- Packing problems: SET-PACKING, INDEPENDENT SET
- Covering problems: SET-COVER, VERTEX-COVER.
sat
Sequening problems: amiltonin crale, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR
- Numerical problems: SUBSET-SUM, KNAPSACK.
- TSP instance has tour of length $\leq n$ iff G is Hamiltonian. -

Remark. TSP instance in reduction satisfies Δ-inequality.

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

HAM-CYCLE: given a graph $G=(V, E)$, does there exists a simple cycle that contains every node in V ?

Claim. HAM-CYCLE $\leq p$ TSP.
Pf.
Given instance $G=(V, E)$ of HAM-CYCLE, create n cities with
distance function

$$
d(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ 2 & \text { if }(u, v) \notin E\end{cases}
$$

Graph Coloring
Basic genres. - Packing problems: SET-PACKING, INDEPENDENT SET. - Covering problems: SET-COVER, VERTEX-COVER. - Constraint satisfaction problems: SAT,3-SAT. - Sequencing problems: HAMILTONIAN-CYCLE, TSP. - Partitioning problems: 3D-MATCHING, 3-COLOR. - Numerical problems: SUBSET-SUM, KNAPSACK.

Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k -colorable.

Fact. 3 -COLOR $\leq p k$-REGISTER-ALLOCATION for any constant $k \geq 3$.
\qquad

3-Colorability
 Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.

3-Colorability
3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

Claim. 3-SAT \leq p 3 -COLOR.
Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3 -colorable iff Φ is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.
to be described next

3-Colorability

3-Colorability

Claim. Graph is 3 -colorable iff Φ is satisfiable

Pf. \Rightarrow Suppose graph is 3-colorable

- Consider assignment that sets all T literals to true
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites
- (iv) ensures at least one literal in each clause is T.

Numerical Problems
Basic genres. - Packing problems: sET-PACKING, Inderendent set. - Covering problems: SET-COVER, vertex-COVER. - Constraint satisfaction problems: SAT, 3-SAT. - Sequencing problems: Haniltonian Crcle, TSP. - Parritioning problems: 3-COLOR, 30-MATCHING - Numerical problems: SUBSET-SUM, kNAPSACK.

Subset Sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2 n+2 k$ decimal integers, each of $n+k$ digits, as illustrated below.

Claim. Φ is satisfiable iff there exists a subset that sums to W . Pf. No carries possible.

Subset Sum							
Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2 n+2 k$ decimal integers, each of $n+k$ digits, as illustrated below. Claim. Φ is satisfiable iff there exists a subset that sums to W .							
	\times	y	z	c_{1}	c_{2}	C_{3}	
x	1	0	0	0	1	0	100,010
$\rightarrow x$	1	0	0	1	0	1	100,101
	0	1	0	1	0	0	10,100
$C_{1}=x \vee y \vee z \quad-y$	0	1	0	0	1	1	10,011
$C_{2}=x \vee y \vee z$	0	0	1	1	1	0	1,110
$C_{3}=\bar{x} \vee \bar{y} \vee \bar{z}$	0	0	1	0	0	1	1,001
	0	0	0	1	0	0	100
	0	0	0	2	0	0	200
dummies to get	0	0	0	0	1	0	10
clause columns	0	0	0	0	2	0	20
	0	0	0	0	0	1	1
	0	0	0	0	0	2	$\underline{2}$
w	1	1	1	4	4	4	111,444

3-Colorability

Claim. Graph is 3 -colorable iff Φ is satisfiable.
Pf. \Leftarrow Suppose 3-SAT formula Φ is satisfiable

- Color all true literals T
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
. Color remaining bottom nodes T or F as forced. -

Subset Sum

SUBSET-SUM. Given natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W?

Ex: $\{1,4,16,64,256,1040,1041,1093,1284,1344\}, W=3754$. Yes. $1+16+64+256+1040+1093+1284=3754$.

Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in binary encoding.

Claim. 3-SAT $\leq p$ SUBSET-SUM.
Pf. Given an instance Φ of 3 -SAT, we construct an instance of SUBSETsUM that has solution iff Φ is satisfiable.

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time
\dagger_{i}, release time r_{i}, and deadline d_{i}, is it possible to schedule all jobs on a single machine such that job i is processed with a contiguous slot of t_{i} time units in the interval $\left[r_{i}, d_{i}\right]$?

Claim. SUBSET-SUM \leq_{p} SCHEDULE-RELEASE-TIMES.
Pf. Given an instance of SUBSET-SUM w_{1}, \ldots, w_{n}, and target w,
. Create n jobs with processing time $t_{i}=w_{i}$, release time $r_{i}=0$, and no deadline ($\mathrm{d}_{\mathrm{i}}=1+\Sigma_{\mathrm{j}} \mathrm{w}_{\mathrm{j}}$).

- Create job 0 with $t_{0}=1$, release time $r_{0}=W$, and deadline $d_{0}=W+1$.

An Extra: 4 Color Theorem
\square

Planar 3-Colorability
PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that no two edges cross.
Applications: VLSI circuit design, computer graphics.

K_{5} : non-planar

$\mathrm{K}_{3,3}$: non-planar
Kuratowski's Theorem. An undirected graph G is non-planar iff it contains a subgraph homeomorphic to K_{5} or $K_{3,3}$.

Planar 3-Colorability

Claim. 3-COLOR $\leq p$ PLANAR-3-COLOR.
Proof sketch: Given instance of 3-COLOR, draw graph in plane, letting edges cross if necessary.

- Replace each edge crossing with the following planar gadget W. - in any 3-coloring of W, opposite corners have the same color
- any assignment of colors to the corners in which opposite corners have the same color extends to a 3 -coloring of W

co-NP and the Asymmetry of NP
\square

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Def. Given a decision problem X, its complement \bar{X} is the same problem with the yes and no answers reverse. co-NP. Complements of decision problems in NP.

An equivalent definition:
co-NP:
We say that L is in co-NP if there is a polynomial p, and a poly time TM M, such that for every x,
x is in L iff for all u of length $p(|x|) M(x, u)=1$

$N P=c o-N P ?$

Fundamental question. Does NP = co-NP?

- Do yes instances have succinct certificates iff no instances do?
- Consensus opinion: no.

Theorem. If $N P \neq$ co-NP, then $P \neq N P$.
Pf idea.

- P is closed under complementation.
- If $P=N P$, then $N P$ is closed under complementation.
- In other words, NP = co-NP.
- This is the contrapositive of the theorem.

Good Characterizations

Good characterization. [Edmonds 1965] NP \cap co-NP.

- If problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching

- If yes, can exhibit a perfect matching.
- If no, can exhibit a set of nodes S such that $|N(S)|<|S|$.

Good Characterizations	
Observation. $P \subseteq N P \cap$ co-NP. - Proof of max-flow min-cut theorem led to stronger result that maxflow and min-cut are in P. - Sometimes finding a good characterization seems easier than finding an efficient algorithm.	
Fundamental open question. Does $P=N P \cap$ co-NP? - Mixed opinions. - Many examples where problem found to have a non-trivial good characterization, but only years later discovered to be in P. - linear programming [Khachiyan, 1979] - primality testing [Agrawal-Kayal-Saxena, 2002]	
Fact. Factoring is in NP \cap co-NP, but not known to be in P . if poly-time algorithm for factoring can break RSA cryptosystem	
	69

PRIMES is in NP \cap co-NP

Theorem. PRIMES is in NP \cap co-NP.
Pf. We already know that PRIMES is in co-NP, so it suffices to prove that PRIMES is in NP.

Pratt's Theorem. An odd integer s is prime iff there exists an integer
$1<t<s$ s.t.

$$
\begin{aligned}
& t^{s-1} \equiv 1(\bmod s) \\
& t^{(s-1) / p} \neq 1(\bmod s) \\
& \text { for all prime divisors } p \text { of } s-1
\end{aligned}
$$

```
Input. s=437,677
    Certificate. }t=17,\mp@subsup{2}{}{2}\times3\times36,47
            prime factorization of s-1
        M prime factorization of s-1
        Calso need a recursive certificate 
```

Certifier. - Check s-1 $=2 \times 2 \times 3 \times 36,473$. - Check $17^{s-1}=1(\bmod s)$. - Check $17^{(s-1) / 2} \equiv 437,676(\bmod s)$. - Check $17(\mathrm{~s}-1) / 3=329,415(\bmod s)$. - Check $17(\mathrm{~s}-1) / 36,473=305,452(\operatorname{mod~s})$

FACTOR is in NP \cap co-NP

FACTORIZE. Given an integer x, find its prime factorization. FACTOR. Given two integers x and y, does x have a nontrivial factor less than y ?

Theorem. FACTOR \equiv_{p} FACTORIZE.
Theorem. FACTOR is in NP \cap co-NP.
Pf.

- Certificate: a factor p of x that is less than y.
- Disqualifier: the prime factorization of x (where each prime factor is less than y), along with a certificate that each factor is prime.

Primality Testing and Factoring

We established: PRIMES s_{p} COMPOSITES $\leq p$ FACTOR.
Natural question: Does FACTOR $\leq p$ PRIMES ?
Consensus opinion. No.
State-of-the-art.

- PRIMES is in P . \leftarrow proved in 2001
- FACTOR not believed to be in P.

RSA cryptosystem.

- Based on dichotomy between complexity of two problems.
- To use RSA, must generate large primes efficiently.
- To break RSA, suffixes to find efficient factoring algorithm.
Some Philosophical Remarks
$P \vee N P$ captures important philosophical phenomenon: recognizing the
correctness of an answer is often easier than coming up with the
answer.
$P \vee N P$ asks if exhaustive search can be avoided.
If $P=N P$.- then there is an algorithm that finds mathematical proofs
in time polynomial in the length of the proof.
Theorems $=\left\{\left(\varphi, 1^{n}\right): \varphi\right.$ has a formal proof of length at most n in
axiomatic system A $\}$
Theorems is in $N P$
In fact, Theorems is NP-complete.

The Riemann Hypothesis

Considered by many mathematicians to be the most important
unresolved problem in pure mathematics
Conjecture about the distribution of zeros of the Riemann zeta function
1 Million dollar prize offered by Clay Institute in time polynomial in the length of the proof.

Theorems $=\left\{\left(\varphi, 1^{n}\right): \varphi\right.$ has a formal proof of length at most n in axiomatic system A\}

Theorems is in NP
In fact, Theorems is NP-complete.

3D Bin Packing is NP-Complete

There is a finite and not unimaginably large set of boxes, such that if we knew how to pack those boxes into the trunk of your car, then we'd also know a proof of the Riemann Hypothesis. Indeed, every formal proof of the Riemann Hypothesis with at most (say) a million symbols corresponds to some way of packing
the boxes into your trunk, and vice versa. Furthermore, a list of the boxes into your trunk, and vice versa. Furthermore, a list o
the boxes and their dimensions can be feasibly written down.

Courtesy of Scott Aaronson

Why do we believe P different from NP if we can't prove it?

- The empirical argument: hardness of solving NP-complete problems in practice.
- There are "vastly easier" problems than NP-complete ones (like factoring) that we already have no idea how to solve in P
- P=NP would mean that mathematical creativity could be automated. "God would not be so kind!" Scott Aaronson

- We will add to this list later...

Why is it so hard to prove P different from NP?

- Because P is different from NP
- Because there are lots of clever, non-obvious polynomial time algorithms. For example, proof that 3SAT is hard will have to fail for 2-SAT. Proof that 3 -coloring planar graphs is hard will have to fail for 4-coloring planar graphs. Etc Etc.
- We'll add to this list later....

