Computability Theory:

 Vocabulary LessonWe call a set $S \subseteq \Sigma^{*}$ a language.

We say the language \mathbf{S} is decidable or recursive if there is a program P such that:
$P(x)=y e s$, if $x \in S$
$P(x)=$ no, if $x \neq S$
$P(x)=$ no, if $x \notin S$

We already know: the halting set K is undecidable

Decidable and Computable

```
Subset S of }\mp@subsup{\Sigma}{}{\star}\Leftrightarrow\Leftrightarrow\quad\mathrm{ Function f
xinS }\quad\Leftrightarrow\quad\mp@subsup{f}{S}{}(x)=
x not in S < f
```

Set S is decidable \Leftrightarrow function f_{S} is computable

Sets are "decidable" (or undecidable), whereas functions are "computable" (or not)

Some Important Terminology

We say the language \mathbf{S} is recognizable or recursively enumerable if there is a program P such that: $P(x)=y e s$, if $x \in S$

Claim: The Halting Set K is recognizable.
$K=\{T M P \mid P(P)$ halts $\}$

Claim: $K^{c}=\{T M P \mid P(P)$ doesn't halt $\}$ is not recognizable.

Some Important Terminology

We say the language S is c.e. (computably enumerable) (or sometimes just enumerable) if there is a TM P such that, when started with a blank tape, lists all and only the strings in S (separated by blanks).

We call P an enumerator for S.

Theorem: A language is recognizable iff it is c.e.

Some Important Terminology

Theorem: A language is recognizable iff it is c.e.

Proof:

<=
Suppose there is an enumerator E for L.
How would you build a recognizer for L using E?

Some Important Terminology

Theorem: A language is recognizable iff it is c.e.

Proof:
=>
Suppose that M recognizes L .
Let s_{1}, s_{2}, \ldots be a list of all strings in Σ^{*}
Repeat the following for $i=1,2,3, \ldots$
Run \mathbf{M} for i steps on each input $\mathbf{s}_{1} \mathbf{s}_{2} \ldots . . \mathbf{s}_{\mathbf{i}}$
If any of the computations accept, output corresponding s_{j}

Oracles and Reductions

Use slides from lecture 1 here.

More undecidable problems

We've shown the following undecidable:

- $K=\{\langle P\rangle \mid P$ is TM and $P(P)$ halts $\}$
- $K_{0}=\{<P>\mid P$ is TM that takes no input and halts $\}$
- Hello, Equal...

Let's do a few more:

- $A_{T M}=\{(\langle P\rangle, w) \mid P$ accepts $w\}$ is undecidable.
- $E_{T M}=\{<P>\mid L(P)$ is empty $\}$ is undecidable.
- REG $_{T M}=\{\langle P>| P$ is a TM and $L(P)$ is a regular language $\}$ is undecidable.

Reduction via computation

histories (Sipser Section 5.2)
Post Correspondence Problem (PCP)
Input: collection of dominos
Output: yes, if there is a list of these dominos (with repetition) so that the string on top $=$ string on bottom.

Theorem: PCP is undecidable

Computation history

Let M be a Turing machine and w an input string.

The computation history of M on w is the sequence of configurations the machine goes through as it processes the input.

It is a complete record of the computation.

Undecidability of PCP

For any (<P>,w), we'll construct a PCP instance such that there is a match iff $P(w)$ accepts.

Idea: put together a set of dominos that will correspond to a computation history.

Proof on board.

Reducibility (formally)

A function $\mathrm{f}: \Sigma^{*}-->\Sigma^{*}$ is a computable function if there is a TM M that, on every input w, halts with $f(w)$ on its output tape.

Language A is mapping reducible (write $A<=$ B) to language B if there is a computable function $f: \Sigma^{*}->\Sigma^{*}$ where for every $w, w \in A$ iff $f(w) \in B$

Rado's Busy Beaver

We can classify Turing machines by how many rules they have in the tape head.

Of the ones with n rules, some halt and others run forever when started on a blank tape.

What's the maximum number of steps $S(n)$ that any machine with n rules takes before it halts?

Call this number $\mathbf{S}(\mathrm{n})=\mathrm{nth}$ "Busy Beaver" number.
$S(n)$: finds the busiest beaver with n rules, albeit not infinitely busy.

$$
\text { Rado's BuSy Beaver }
$$

What's the maximum number of steps $S(n)$ that any machine with
n rules takes before it halts?
S(n) $=$ nth "Busy Beaver" number.
$n \quad S(n)$
$1 \quad 1$
$2 \quad 6$
$3 \quad 21$
$4 \quad 107$
$5 \quad>47,176,870$
$6 \quad>8,690,333,381,690,951$
In fact, they grow so fast that we can prove:
Theorem: $S(n)$ is not computable.

Some of the big ideas we've seen so far

- The Turing Machine model and the Church-Turing thesis
- Universality via duality
- Undecidability.
- Diagonalization and the different types of infinity
- Notion of reduction.

Next up: Complexity

We focus next on efficiency of computation.
Let T: N --> N
DTIME $(T(n))$ is the set of Boolean functions that are computable in $O(T(n))$ time.

Our notion of efficiently solvable: polynomial time computable.

$$
P=U_{c} \operatorname{DTIME}\left(n^{c}\right)
$$

Circuit Complexity

Question:

- Given a Boolean function f: $\{0,1\}^{n-->}\{0,1\}$, what is the size of the smallest circuit that computes it? (how many gates?)
- Warmup: XOR of n inputs given 2-input XOR gates. How many do we need?
Hartmanis-Stearns
The QuickHalt Problem:
Given as input a TM P, int n, does P(P) halt in $\leq n^{3}$
steps?
Claim: Any TM to solve this problem needs at
least n^{3} steps.

CONFUSE

CONFUSE(P)
\{ if (QHALT(P,n))
then loop forever;
// i.e., P(<P>) halts in n^{3} steps
else exit; // in this case, Confuse halts in $\leq \mathrm{n}^{2.99}$
steps.
\}

What happens with CONFUSE(CONFUSE)?

CONFUSE
confuse(P) \{ if (QHALT(P,n)) then loop forever; //i.e., P(<P>) halts in n^{3} steps else exit; // in this case, Confuse halts in $\leq n^{2.99}$ steps. \}
What happens with CONFUSE(CONFUSE)?

Shannon's Counting Argument

Is there a Boolean function with n inputs that requires a circuit of exponential size in n ?

Yes, in fact, most functions.

Very complex functions exist, but this argument doesn't give us a single example!!!
Called nonconstructive.

THEOREM: There is no program to solve the QuickHalt problem in $<n^{3}$ steps.
Suppose a program QHALT existed that solved the quick halting problem in say $\mathrm{n}^{2.99}$.

```
QHALT(P,n) = yes, if P(P) halts in \leq n }\mp@subsup{n}{}{3
QHALT(P,n) = no, otherwise.
```

We will call QHALT as a subroutine in a new program called CONFUSE.

CONFUSE

CONFUSE(P)
\{ if (QHALT(P,n))
then loop forever;
// i.e., $P(<P>)$ halts in n^{3} steps
else exit; // in this case, Confuse halts in $\leq \mathrm{n}^{2.99}$ steps.
\}
Suppose CONFUSE(CONFUSE) halts in $\leq \mathrm{n}^{3}$ steps:
then QHALT(CONFUSE,n) = TRUE
\Rightarrow CONFUSE(CONFUSE) will loop forever
Suppose CONFUSE(CONFUSE) doesn't halt in $\leq \mathrm{n}^{3}$
then QHALT(CONFUSE, n) = FALSE
\Rightarrow CONFUSE(CONFUSE) will halt in $\leq n^{3}$
CONTRADICTION

Theorems we skipped from
Arora/Barak Chap 1
Robustness of TM definition (alphabet size,
number of work tapes, bidirectional tapes)
Efficient Universal Turing Machine
Many others in Sipser Chapters 3-5.

Extra Problems if there is time

Rice's Theorem

Problems from homework

