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Computability Theory:

Vocabulary Lesson

We call a set S * a language.

We say the language S is decidable or recursive if
there is a program P such that:

P(x) = yes, if x S

P(x) = no,  if  x S

We already know: the halting set K is
undecidable

Decidable and Computable

Subset S of *  Function fS

x in S      fS(x) = 1

x not in S     fS(x) = 0

Set S is decidable  function fS is computable

Sets are “decidable” (or undecidable), whereas

functions are “computable” (or not)

Some Important Terminology

We say the language S is recognizable or recursively
enumerable if there is a program P such that:

P(x) = yes, if x S

Claim: The Halting Set K is recognizable.

K = { TM P | P(P) halts }

Claim: Kc = {TM P| P(P) doesn’t halt} is not
recognizable.

Some Important Terminology

We say the language S is c.e.  (computably
enumerable)  (or sometimes just enumerable) if
there is a TM P such that, when started with a blank
tape, lists all and only the strings in S (separated by
blanks).

We call P an enumerator for S.

 Theorem: A language is recognizable iff it is c.e.

Some Important Terminology

Theorem: A language is recognizable iff it is
c.e.

Proof:

<=

Suppose there is an enumerator E for L.

How would you build a recognizer for L using
E?

Some Important Terminology

Theorem: A language is recognizable iff it is
c.e.

Proof:

=>

Suppose that M recognizes  L.

Let s1, s2,… be a list of all strings in *

Repeat the following for i= 1,2,3,…
Run M for i steps on each input s1 s2 …..si

If any of the computations accept, output
corresponding sj



2

Oracles and Reductions

Use slides from lecture 1 here.

More undecidable problems

We’ve shown the following undecidable:

• K= {<P> | P is TM and P(P) halts}

• K0= {<P> | P is TM that takes no input and halts}

• Hello, Equal…

Let’s do a few more:

• ATM={(<P>,w)| P accepts w} is undecidable.

• ETM={<P>| L(P) is empty} is undecidable.

• REGTM={<P>| P is a TM and L(P) is a regular
language} is undecidable.

Reduction via computation
histories  (Sipser Section 5.2)

Post Correspondence Problem  (PCP)

Input: collection of dominos

Output: yes, if  there is a list of these dominos
(with repetition) so that the string on top =
string on bottom.

Theorem: PCP is undecidable

Computation history

Let M be a Turing machine and w an input
string.

The computation history of M on w is the
sequence of configurations the machine
goes through as it processes the input.

It is a complete record of the computation.

Undecidability of PCP

For any (<P>,w), we’ll construct a PCP
instance such that there is a match iff P(w)
accepts.

Idea: put together a set of dominos that will
correspond to a computation history.

Proof on board.

Reducibility (formally)

A function f: * --> * is a computable function
if there is a TM M that, on every input w,
halts with f(w) on its output tape.

Language A is mapping reducible (write A <=

B) to language B if there is a computable
function f: * --> * where for every w,   w  A
iff  f(w)  B
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Reducibility (formally)

Language A is mapping reducible (write A   B) to
language B if there is a computable function f: * -->

* where for every w,   w  A iff  f(w)  B

A  B and B is decidable ==> A is decidable

A  B and A is undecidable ==> B is undecidable.

A  B and B is recognizable ==> A is recognizable.

A  B and A is not recognizable ==> B is not

recognizable.

Rado’s Busy Beaver

We can classify Turing machines by how many rules they have in
the tape head.

Of the ones with n rules, some halt and others run forever when
started on a blank tape.

What’s the maximum number of steps S(n) that any machine with
n rules takes before it halts?

Call this number S(n) = nth “Busy Beaver” number.

S(n):  finds the busiest beaver with n rules, albeit not infinitely
busy.

Rado’s Busy Beaver

What’s the maximum number of steps S(n) that any machine with
n rules takes before it halts?

S(n) = nth “Busy Beaver” number.

n       S(n)

1 1

2 6

3 21

4 107

5 > 47,176,870

6 > 8,690,333,381,690,951

In fact, they grow so fast that we can prove:

Theorem: S(n) is not computable.

Rado’s Busy Beaver

What’s the maximum number of steps S(n) that any machine with

n rules takes before it halts?

S(n) = nth “Busy Beaver” number.

Theorem:

       There is no computable function C such that S(n)  C(n) for

all n.

i.e., S(n) grows faster than any computable function.

Some of the big ideas we’ve seen so far

• The Turing Machine model and the Church-Turing
thesis

• Universality via duality
• Undecidability.
• Diagonalization and the different types of

infinity
• Notion of reduction.

Next up: Complexity

We focus next on efficiency of computation.

Let T: N --> N
DTIME(T(n)) is the set of Boolean functions that

are computable in O(T(n)) time.

Our notion of efficiently solvable: polynomial time
computable.

           P = Uc DTIME (nc)
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Circuit Complexity

Question:

• Given a Boolean function f: {0,1}n--> {0,1},
what is the size of the smallest circuit
that computes it? (how many gates?)

• Warmup: XOR of n inputs given 2-input
XOR gates. How many do we need?

Shannon’s Counting Argument

Is there a  Boolean function with n inputs
that requires a circuit of exponential size
in n ?

Yes, in fact, most functions.

Very complex functions exist, but this
argument doesn’t give us a single
example!!!

Called nonconstructive.

Hartmanis-Stearns

The QuickHalt Problem:
Given as input a TM P, int n, does P(P) halt in   n3

steps?

Claim: Any TM to solve this problem needs at
least n3 steps.

THEOREM: There is no program to

solve the QuickHalt problem in < n3

steps.
Suppose a program QHALT existed that solved
the quick halting problem in say n2.99.

QHALT(P,n) =     yes, if P(P) halts in  n3

QHALT(P,n) =     no,   otherwise.

We will call QHALT as a subroutine in a new
program called CONFUSE.

CONFUSE

What happens with CONFUSE(CONFUSE)?

CONFUSE(P)

{  if (QHALT(P,n))

then loop forever;

                 // i.e., P(<P>) halts in n3 steps

   else exit; // in this case, Confuse halts in  n2.99

steps.

}

CONFUSE

Suppose CONFUSE(CONFUSE) halts in  n3 steps:

then QHALT(CONFUSE,n) = TRUE

 CONFUSE(CONFUSE) will loop forever

Suppose CONFUSE(CONFUSE) doesn’t halt in  n3

then QHALT(CONFUSE,n) = FALSE

 CONFUSE(CONFUSE) will halt in  n3

CONTRADICTION

CONFUSE(P)

{  if (QHALT(P,n)) 

then loop forever;  

                 // i.e., P(<P>) halts in n3 steps

   else exit; // in this case, Confuse halts in  n2.99 steps.

}
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Theorems we skipped from
Arora/Barak Chap 1

Robustness of TM definition (alphabet size,
number of work tapes, bidirectional tapes)

Efficient Universal Turing Machine

Many others in Sipser Chapters 3-5.

Extra Problems if there is time

Rice’s Theorem

Problems from homework


