Computability and Complexity
Winter 2009
Prof. Anna Karlin
TA: Thach Nguyen

What is this course about?

- Amazing, foundational, blow-your-mind kind of ideas
- It won't be obvious how this will help you with your job, but I promise that it will help you improve your thinking skills.
- It will expand you intellectually.
- And I sincerely hope you will have fun.
- Warning: some of the material is hard and you may not get it right away. Don't give up too easily!!

Acknowledgements

I have taken many of these slides and specific thoughts included here from my brilliant colleagues at other universities, including Scott Aaronson, Sanjeev Arora Paul Beame, Bernard Chazelle, and the team of CMU's'15251 course (which includes Anupam Gupta, Luis von Ahn and Stephen Rudich).

Most of today's slides are taken from
CMU course 15-251: Great Ideas in Theoretical Computer Science

Apologies for inconsistency in
fonts/colors/styles/animation.
Heads up: we'll be using the board more and more as time goes on.

Humble observation

Contributions from complexity theory in the last 30 years rival those of any field.

I think some of them could shatter your vision of the universe.

Here are some examples
IP=PSPACE
Suppose an alien came to earth and said "I can play
perfect chess". He (it?) can prove it to you.
To be convinced of the proof, we would not have to spend
billions of years analyzing one move sequence after
another. We'd engage in a short conversation with the
alien about the sums of certain polynomials over finite
fields.
Courtesy of Scott Aaronson

The Riemann Hypothesis

Considered by many mathematicians to be the most important unresolved problem in pure mathematics

Conjecture about the distribution of zeros of the Riemann zeta - function

1 Million dollar prize offered by Clay Institute

Zero-Knowledge Proofs, PCP Theorem

Suppose you do prove the Riemann Hypothesis. Then it's possible fo convince someone of that fact, without possible fo convince someone of that fact, without
revealing anything other than the fact that you proved it

- It's also possible to write the proof down in such a way that someone else could verify it, with very high confidence, having only seen 3 bits of the proof.

Courtesy of Scott Aaronson


```
Course Outline (tentative)
Computability - Turing machines, universality, undecidability
    Arora, Barak - Chapter 1
        Sipser -- Chapters 3-5
NP-completeness
    - Arora, Barak - Chapter 2
    - Sipser -- Chapter }
Space Complexity - PSPACE completeness
    Arora, Barak, Chapter 3
        Sipser -- Chapter }
Randomized computation
    - Arora, Barak,Chapter }
    - Arora, Barak, Chapter }
Interactive Proof Systems - IP=PSPACE, zero-knowledge proofs
    - Arora, Barak, Chapter 
Probabilistically Checkable Proofs, hardness of approximation
    - Arora, Barak, Chapter }1
The Bright Side of Hardness - cryptography
    - Sipser -- Section 10.6
    - Arora, Barak, Chapter 10.
```


Project

Short (~10 mins) oral presentation during final 2 weeks of quarter
30% of grade
Either pick one theorem to prove for the class or pick a relevant pop-science/historical book, read it and present some interesting aspects of what you read

Example books:

- The Universal Computer: From Leibniz to Turing
- Alan Turing: The Enigma
- The Proof and Paradox of Kurt Godel
- The Mystery of the Aleph: Mathematics, the Kabbalah, and the Search for Infinity
- The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography
Project must be approved no later than March 1.
Project scheduling, week of March 16

The HELLO assignment

Write a JAVA program to output the words

Grading Script

The grading script G must be able to take any Java program P and grade it.

How exactly might such a script work?

It's got to be able to handle programs like this....


```
Nasty Program
n: \(=0\);
while ( \(n\) is not a counter-example to the Riemann Hypothesis) \{ n++;
\}
print "Hello World!";
```

The nasty program is a PASS if and only if the Riemann Hypothesis is false.

Computability

What is computation?
Later: Given a computational model, what can we compute and what is impossible to compute?

And even later: How do we design our computations so they are efficient?

Game of Life
- In what sense can this be viewed as computational model?

Begin Digression
Important theme in this course:
The power of negative thinking

Closer to home: mathematics: Hilbert's Problems
[Hilbert, 1900]

Math is axiomatic

Axioms - Set of statements

Derivation rules - finite set of rules for deriving new statements from axioms

Theorems - Statements that can be derived from axioms in a finite number
of steps
Mathematician - Person who tries to determine whether or not a statement is a theorem.
"Reductio ad absurdum, which Euclid loved so much, is one of a mathematician's finest weapons. It is a far finer gambit than any chess gambit: a chess player may offer the sacrifice
but a mathematician offers the game" Hardy.

Hilbert's Program

- The goal of Hilbert's program was to provide a secure foundation for all mathematics. This should include:
- A formalization of all mathematics
- Completeness: a proof that all true mathematical statements can be proved in the formalism
- Soundness: a proof that no contradiction can be obtained in the formalism
- Computability: there should be an algorithm for deciding the truth or falsity of any mathematical statement

End Digression
Back to models of computation

Let's get our hands a bit dirty...

- Formal model of Turing Machine
- Examples:
- Palindromes
- Adding, multiplying, etc.
- In his original paper, Turing showed how to compute binary representation of e and π, among other things.
- Turing Machine programming techniques
- Details don't matter:
- Multiple tapes
- Tape infinite in both directions
- Size of alphabet

Godel's Incompleteness Theorems

- Stunned the mathematical world by showing that most of the goals of Hilbert's program were impossible to achieve.
- First Incompleteness Theorem: In any system of logic that is consistent (can't prove a contradiction) and computable (application of rules is mechanical), there are true statements about integers that can't be proved or disproved within that system.
- Second Incompleteness Theorem: No consistent, computable system of logic can prove its own consistency.

Turing develops a model of computation

- Wanted a model of human calculation.
- Wanted to strip away inessential details.
- What are the important features?
- Paper (size? shape?)
- The ability to read or write what's on the paper.
- The ability to shift attention to a different part of the paper
- The ability to have what you do next depend on what part of the paper you are looking at and on what your
- Limited number of possible states of mind.

Turing Machine \equiv Ideal C Program

- Ideal C/C++/Java programs
- Just like the C/C++/Java you're used to programming with, except no bound on amount of memory.
- No overflow
- No out of memory errors
- Equivalent to Turing machines except a lot easier to program!
- Henceforth, we'll interchangeably talk about programs in your favorite programming language and Turing machines.

Church-Turing Thesis

Anything "computable" is computable by Turing machine.
Any "reasonable, physically realizable" model of
computation can be simulated on Turing machine with only polynomial slowdown.

- Program in C++, Pascal, Lisp, pseudocode
- Game of Life
- The brain?

Not a theorem. Just a belief, borne out by computational models we know about. Powerful idea.

Turing's next great insight: duality between programs and data

- Notation:
- We'll write $\langle P\rangle$ for the code of program P and $\langle P, x\rangle$ for the pair of the program code and an input x
- i.e. $\langle P\rangle$ is the program text as a sequence of ASCII symbols and P is what actually executes
- We'll write $P(x)$ to denote the output when we run program P on input x.
- <P> can be viewed as data -- can be input to another program!

Finally: some problems can't be solved on computers
We will show that there is no algorithm for solving the "halting problem".

Reminder: $P(P)$ is shorthand for $P(\langle P\rangle)$, the output obtained when we run P on the text of its own source code

$$
K=\{\text { programs } P \mid P(P) \text { halts }\}
$$

THEOREM: There is no program to solve the halting problem (Alan Turing 1937)

We'll use a "Proof by contradiction"
"When something's not right, it's wrong."
Bob Dylan

```
THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)
Suppose a program HALT existed that solved the halting problem.
```

```
HALT(P) = yes, if P(P) halts
```

HALT(P) = yes, if P(P) halts
HALT(P) = no, if P(P) does not halt

```
HALT(P) = no, if P(P) does not halt
```

We will call HALT as a subroutine in a new program called CONFUSE.

CONFUSE

```
CONFUSE(P)
{ if (HALT(P))
    then loop forever; // i.e., we dont halt
    else exit;
/l i.e., we halt
}
```

Suppose CONFUSE(CONFUSE) halts: then HALT(CONFUSE) = TRUE
\Rightarrow CONFUSE will loop forever on input CONFUSE
Suppose CONFUSE(CONFUSE) does not halt then HALT(CONFUSE) = FALSE
\Rightarrow CONFUSE will halt on input CONEUSE

What does it mean to say that two sets have the same size?

Do N and E have the same

 cardinality?$\mathrm{N}=\{0,1,2,3,4,5,6,7, \ldots\}$
$\mathrm{E}=\{0,2,4,6,8,10,12, \ldots\}$
The even, natural numbers.

Cantor's Definition

 (1874)Two sets are defined to have the same size, or cardinality, if and only if they can be placed into bijection

Bijection: 1-to-1, onto correspondence

How can E and N have the same cardinality? E is a proper subset of N with plenty left over.

The attempted correspondence $f(x)=x$ does not take E onto N.

Lesson:

Cantor's definition only requires that some one-to-one correspondence between the two sets is also onto (i.e., a bijection), not that all one-to-one correspondences are bijections!

This distinction never arises when the sets are finite

Do N and Z have the same cardinality?

$$
\begin{aligned}
& N=\{0,1,2,3,4,5,6,7, \ldots\} \\
& Z=\{\ldots,-2,-1,0,1,2,3, \ldots\}
\end{aligned}
$$

N and Z do have the same cardinality!

$$
\begin{aligned}
& \mathrm{N}=0,1,2,3,4,5,6 \ldots \\
& \mathrm{Z}=0,1,-1,2,-2,3,-3, \ldots .
\end{aligned}
$$

$$
\begin{array}{cl}
f(x)= & \lceil x / 2\rceil
\end{array} \begin{aligned}
& \text { if } x \text { is odd } \\
& -x / 2
\end{aligned} \begin{aligned}
& \text { if } x \text { is even }
\end{aligned}
$$

A Useful Transitivity Lemma

Lemma:

If
$f: A \rightarrow B$ is a bijection, and $\mathrm{g}: B \rightarrow C$ is a bijection.
Then $h(x)=g(f(x))$ defines a function
$h: A \rightarrow C$ that is a bijection

Hence, N, E, and Z all have the same cardinality.

Onto the Rationals!

How could it be????

The rationals are dense: between any two there is a third. You can't list them one by one without leaving out an infinite number of them.

Cantor's 1877 letter to Dedekind:

"I see it, but I don't believe it! "

Do N and R have the same cardinality?
I.e., is R countable?
$N=\{0,1,2,3,4,5,6,7, \ldots\}$
$R=$ The real numbers
Do N and R have the same
cardinality?
I.e., is R countable?
$N=\{0,1,2,3,4,5,6,7, \ldots\}$
$R=$ The real numbers

The point at x, y represents x / y

Countable Sets

We call a set countable if it can be placed into a bijection with the natural numbers N

Hence N, E, Z, Q are all countable

Theorem: The set $\mathrm{R}_{[0,11]}$ of reals between 0 and 1 is not countable Proof: (by contradiction)

Suppose $R_{[0,1]}$ is countable Let f be a bijection from N to $R_{[0,1]}$
Make a list L as follows:
0 : decimal expansion of $f(0)$
1: decimal expansion of $f(1)$
k : decimal expansion of $f(k)$

Define the following real number Confuse $_{\mathrm{L}}=0 . \mathrm{C}_{0} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \ldots$

$$
C_{k}=\left\{\begin{array}{l}
5, \text { if } d_{k}=6 \\
6, \text { otherwise }
\end{array}\right.
$$

The set of reals is uncountable! (Even the reals between 0 and 1)

Sanity Check

Why can't the same argument be used to show that the set of rationals Q is uncountable?

Proof:
Sort S first by length and then alphabetically
Map the first word to 0 , the second to 1 , and so on...

Theorem: Every infinite subset S
 of Σ^{*} is countable

 1, and so
End detour through infinity:

What does all this have to do with Turing machines and the Halting problem?

Standard Notation

$\Sigma=$ Any finite alphabet
Example: $\{a, b, c, d, e, \ldots, z\}$
$\Sigma^{*}=$ All finite strings of symbols from Σ including the empty string ε

Some infinite subsets of Σ^{*}

$\Sigma=$ The symbols on a standard keyboard
For example:
The set of all possible Java programs is a subset of Σ^{*}

The set of all possible Turing machines is a subset of Σ^{*}

The set of all possible finite pieces of English text is a subset of Σ^{*}

$\operatorname{CONFUSE}\left(\mathrm{P}_{\mathrm{i}}\right)$ halts iff $\mathrm{d}_{\mathrm{i}}=0$
(The CONFUSE function is the negation of the diagonal.)
Hence CONFUSE cannot be on this list.

We know there are at least 2 infinities. (The number of naturals, the number of reals.)

Are there more?

Definition: Power Set

The power set of S is the set of all subsets of S.

The power set is denoted as $P(S)$
Proposition:
If S is finite, the power set of S has cardinality $2^{|S|}$

How do sizes of S and $P(S)$ relate if S is infinite?

Theorem: S can't be put into bijection with $P(S)$

Let CONFUSE $_{f}=\{x \mid x \in S, x \notin f(x)\}$
Since f is onto, exists $y \in S$ such that $f(y)=\operatorname{CONFUSE}_{f}$. Is y in CONFUSE $_{f}$?

YES: Definition of CONFUSE $_{f}$ implies no NO: Definition of CONFUSE $_{f}$ implies yes

This proves that there are at least a countable number of infinities.

Indeed, take any infinite set S . Then $P(S)$ is also infinite, and its cardinality is a larger infinity than the cardinality of S.

This proves that there are at least a countable number of infinities.

The first infinity is the size of all the countable sets. It is called:

Cantor called his conjecture the

 "Continuum Hypothesis."However, he was unable to prove it. This helped fuel his depression.

Computability Theory: Vocabulary Lesson
We call a set $S \subseteq \Sigma^{*}$ decidable or recursive if there is a program P such that:
$P(x)=y e s$, if $x \in S$
$P(x)=$ no, if $x \notin S$
We already know: the halting set K is undecidable

Decidable and Computable

Subset S of Σ^{*}	\Leftrightarrow	Function f_{S}
x in S	$f_{S}(x)=1$	
x not in S	\Leftrightarrow	$f_{S}(x)=0$

Set S is decidable \Leftrightarrow function f_{S} is computable
Sets are "decidable" (or undecidable), whereas functions are "computable" (or not)

Example Oracle S = Odd Naturals

Hence, the set HELLO is not decidable.

Halting with input, Halting without input, HELLO, and EQUAL are all undecidable.
Diophantine Equations

Does polynomial $4 x^{2} Y+\mathrm{XY}^{2}+1=0$ have an integer
root? I.e., doess it have a zero at a point where all
variables are integers?
$\mathrm{D}=$ \{multivariate integer polynomials $\mathrm{P} \mid \mathrm{P}$ has
a root where all variables are integers $\}$
Famous Theorem: D is undecidable
This is the solution to Hilbert's $10^{\text {th }}$
problem]

Polynomials can Encode Programs

There is a computable function
F: Java programs that take no input \rightarrow
Polynomials over the integers

Such that
program P halts $\Leftrightarrow F(P)$ has an integer root

The Church-Turing Thesis is NOT a theorem. It is a statement of belief concerning the universe we live in.

Your opinion will be influenced by your religious, scientific, and philosophical beliefs...
...mileage may vary

CHURCH-TURING THESIS

Any well-defined procedure that can be grasped and performed by the human mind and pencil/paper, can be performed on a conventional digital computer with no bound on memory.

Empirical Intuition

No one has ever given a counter-example to the Church-Turing thesis. I.e., no one has given a concrete example of something humans compute in a consistent and well defined way, but that can't be programmed on a computer. The thesis is true.

Mechanical Intuition

The brain is a machine. The components of the machine obey fixed physical laws. In principle, an entire brain can be simulated step by step on a digital computer. Thus, any thoughts of such a brain can be computed by a simulating computer. The thesis is true.

Quantum Intuition

The brain is a machine, but not a classical one. It is inherently quantum mechanical in nature and does not reduce to simple particles in motion. Thus, there are inherent barriers to being simulated on a digital computer. The thesis is false. However, the thesis is true if we allow quantum computers.

Some of the big ideas we've seen so far

- The Turing Machine model and the Church-Turing thesis
- Universality via duality
- Some problems can't be solved on computers
- Diagonalization and the different types of infinity
- Notion of reduction.

