
1

Computability and Complexity

Winter 2009
Prof. Anna Karlin
TA: Thach Nguyen

What is this course about?

• Amazing, foundational, blow-your-mind kind of
ideas

• It won’t be obvious how this will help you with your
job, but I promise that it will help you improve
your thinking skills.

• It will expand you intellectually.

• And I sincerely hope you will have fun.

• Warning: some of the material is hard and you may
not get it right away. Don’t give up too easily!!

Acknowledgements

I have taken many of these slides and specific thoughts
included here from my brilliant colleagues at other
universities, including Scott Aaronson, Sanjeev Arora,
Paul Beame, Bernard Chazelle, and the team of CMU’s 15-
251 course (which includes Anupam Gupta, Luis von Ahn
and Stephen Rudich).

Most of today’s slides are taken from
CMU course 15-251: Great Ideas in Theoretical Computer

Science

Apologies for inconsistency in
fonts/colors/styles/animation.

Heads up: we’ll be using the board more and more as time
goes on.

Humble observation

Contributions from complexity theory in the last
30 years rival those of any field.

I think some of them could shatter your vision of
the universe.

Here are some examples:

IP=PSPACE

• Suppose an alien came to earth and said “I can play
perfect chess”. He (it?) can prove it to you.

• To be convinced of the proof, we would not have to spend
billions of years analyzing one move sequence after
another. We’d engage in a short conversation with the
alien about the sums of certain polynomials over finite
fields.

• Courtesy of Scott Aaronson

The Riemann Hypothesis

• Considered by many mathematicians to be the most
important unresolved problem in pure mathematics

• Conjecture about the distribution of zeros of the
Riemann zeta - function

• 1 Million dollar prize offered by Clay Institute

2

3D Bin Packing is NP-Complete

• There is a finite and not unimaginably large set of boxes,
such that if we knew how to pack those boxes into the
trunk of your car, then we’d also know a proof of the
Riemann Hypothesis. Indeed, every formal proof of the
Riemann Hypothesis with at most (say) a million symbols
corresponds to some way of packing the boxes into your
trunk, and vice versa. Furthermore, a list of the boxes
and their dimensions can be feasibly written down.

• Courtesy of Scott Aaronson

Zero-Knowledge Proofs,
PCP Theorem

• Suppose you do prove the Riemann Hypothesis. Then it’s
possible to convince someone of that fact, without
revealing anything other than the fact that you proved it.

• It’s also possible to write the proof down in such a way
that someone else could verify it, with very high
confidence, having only seen 3 bits of the proof.

• Courtesy of Scott Aaronson

Are you richer
than me ?

 dunno, but I
won’t tell you

how much
I’m worth

Bill

Bob

I won’t tell
you either

So, who’s richer ?

Bill

Bob

Bill

There exists a dialogue…

Bob

3

blah blah blah
blah blah blah
blah blah blah
blah blah blah

blah blah blah
blah blah blah
blah blah blah
blah blah blah

Bill

Bob

Bill

at the end of which…

Bob

1. They will know who is richer

2. They will have learned nothing else

(with probability 0.99999999999)

Bob

Bill

Zero Knowledge

I have no nukes ! Prove it!

1. No UN inspections

2. Both parties try to cheat

4

Who will
believe me?

Your Proof of Riemann’s Hypothesis

Step 1 write proof in
 special format

Step 2 verifier will pick 5
 random words

compiler

Verifier

I see something fishy.
I say you’re a fool or a liar!

Verifier

Everything looks fine.

I say you’re a genius!

In either case, V will be
right 0.999999999 of

the time

Verifier

Everything looks fine.

I say you’re a genius!

If your 2000-page proof is
wrong in only one step,
how can verifier spot an
error in 5 random words?

Verifier

Everything looks fine.

I say you’re a genius!

How does verifier know
you proved Riemann’s
hypothesis and not 2+2=4 ?

5

Course Outline (tentative)
• Computability - Turing machines, universality, undecidability

– Arora, Barak - Chapter 1
– Sipser -- Chapters 3-5

• NP-completeness
– Arora, Barak - Chapter 2
– Sipser -- Chapter 7

• Space Complexity - PSPACE completeness
– Arora, Barak, Chapter 3
– Sipser -- Chapter 8

• Randomized computation
– Arora, Barak, Chapter 7
– Sipser -- Section 10.2

• Interactive Proof Systems - IP=PSPACE, zero-knowledge proofs
– Arora, Barak, Chapter 9
– Sipser - Section 10.4

• Probabilistically Checkable Proofs, hardness of approximation
– Arora, Barak, Chapter 11

• The Bright Side of Hardness - cryptography
– Sipser -- Section 10.6
– Arora, Barak, Chapter 10.

Administrivia
• Course web -- sign up for mailing list.
• Sipser book is highly recommended
• Disconnect between some lectures and the book
• Office hours right before class 5:30 -- 6:30
• Weekly written homeworks, posted on

Wednesdays, due 9 days later - 70% of grade
• Turn in by mail to ncthach@cs.washington.edu on

Fridays.
• Anonymous feedback

Project
• Short (~10 mins) oral presentation during final 2 weeks of quarter -

30% of grade
– Either pick one theorem to prove for the class or pick a relevant

pop-science/historical book, read it and present some interesting
aspects of what you read.

• Example books:
– The Universal Computer: From Leibniz to Turing
– Alan Turing: The Enigma
– The Proof and Paradox of Kurt Godel
– The Mystery of the Aleph: Mathematics, the Kabbalah, and the

Search for Infinity
– The Code Book: The Science of Secrecy from Ancient Egypt to

Quantum Cryptography
• Project must be approved no later than March 1.

• Project scheduling, week of March 16.

The HELLO assignment

Write a JAVA program to output the words
“Hello World!” on the screen and halt.

Space and time are not an issue.
The program is for an “ideal” computer, meaning
with unlimited memory.

PASS for any working HELLO program, no
partial credit.

Grading Script

How exactly might such a script work?

The grading script G must be able to take any
Java program P and grade it.

G(P)=

Pass, if P prints only the word
“Hello World!” and halts.

Fail, otherwise.

6

It’s got to be able to handle
programs like this….

_(__,___,____){___/__<=1?_(__,___+1,_
___):!(___%__)?_(__,___+1,0):___%__=
=___/
__&&!____?(printf("%d\t",___/__),_(__,__
_+1,0)):___%__>1&&___%__<___/__?_(
__,1+
___,____+!(___/__%(___%__))):___<__*
__?_(__,___+1,____):0;}main(){_(100,0,0
);}

What kind of program
could a student who

hated his/her TA
hand in?

Nasty Program

n:=0;

while (n is not a counter-example

to the Riemann Hypothesis) {

n++;

}

print “Hello World!”;

The nasty program is a PASS if and only if the

Riemann Hypothesis is false.

A TA nightmare: Despite
the simplicity of the
HELLO assignment,

there is no program to
correctly grade it!

 And we will prove this.

The theory of what can
and can’t be computed
by an ideal computer is

called
Computability Theory
or Recursion Theory.

Computability

• What is computation?

• Later: Given a computational model, what can we compute
and what is impossible to compute?

• And even later: How do we design our computations so
they are efficient?

7

Conway’s Game of life
• Rules: At each step, in each cell

– Survival: Critter survives if it has
2 or 3 neighbors.

– Death: Critter dies if it has
1 or fewer neighbors, or more than 3.

– Birth: New critter is born if cell is currently empty
and 3 neighboring cells have critters.

• http://www.bitstorm.org/gameoflife/

Example

Game of Life

• In what sense can this be viewed as computational model?

Compass and Straightedge

• A computational model considered by ancient Greeks that illustrates
similar themes to those we will consider.

• Question: what kinds of figures can be drawn in the plane?
• Rules of computation:

– Start with 2 points: distance between them is “unit”
– Can draw a line between any 2 points
– Can draw a circle, given its center and a point on the circumference
– Can draw a point at intersection of any 2 previously constructed objects.

• Example: perpendicular bisector of line segment
• http://www.mathopenref.com/constbisectline.html

• Key is modularity

• Some constructions eluded geometers: doubling cube, squaring circle,
trisecting angle, etc.

• In 1800’s geometers started asking about fundamental limitations.

Begin Digression

Important theme in this course:

 The power of negative thinking

In Science….

• Impossibility of trisecting
angle with ruler and compass
(Galois)

Often, impossibility result deep insight

Examples

 Nothing travels faster than
light

Group
Theory and
much of
modern math

Relativity and
modern physics

Closer to home: mathematics:
Hilbert’s Problems

Axioms – Set of statements

Derivation rules – finite set of rules for deriving new statements from
axioms

Theorems – Statements that can be derived from axioms in a finite number
of steps

Mathematician – Person who tries to determine whether or not a statement
is a theorem.

"Reductio ad absurdum, which Euclid loved so much, is one of a
mathematician's finest weapons. It is a far finer gambit than any chess
gambit: a chess player may offer the sacrifice of a pawn or even a piece,
but a mathematician offers the game” Hardy.

[Hilbert, 1900]

Math is axiomatic

8

Hilbert’s Program

• The goal of Hilbert’s program was to provide a
secure foundation for all mathematics. This
should include:
– A formalization of all mathematics

– Completeness: a proof that all true mathematical
statements can be proved in the formalism

– Soundness: a proof that no contradiction can be
obtained in the formalism

– Computability: there should be an algorithm for
deciding the truth or falsity of any mathematical
statement

Godel’s Incompleteness Theorems

• Stunned the mathematical world by showing that most of
the goals of Hilbert’s program were impossible to
achieve.

• First Incompleteness Theorem: In any system of logic
that is consistent (can’t prove a contradiction) and
computable (application of rules is mechanical), there are
true statements about integers that can’t be proved or
disproved within that system .

• Second Incompleteness Theorem: No consistent,
computable system of logic can prove its own consistency.

End Digression

Back to models of computation

Turing develops a model of computation

• Wanted a model of human calculation.
• Wanted to strip away inessential details.

• What are the important features?

– Paper (size? shape?)
– The ability to read or write what’s on the paper.
– The ability to shift attention to a different part of

the paper
– The ability to have what you do next depend on what

part of the paper you are looking at and on what your
state of mind is

– Limited number of possible states of mind.

Let’s get our hands a bit dirty…

• Formal model of Turing Machine
• Examples:

– Palindromes
– Adding, multiplying, etc.
– In his original paper, Turing showed how to compute

binary representation of e and , among other things.
• Turing Machine programming techniques
• Details don’t matter:

– Multiple tapes
– Tape infinite in both directions
– Size of alphabet

Turing Machine Ideal C Program

• Ideal C/C++/Java programs
– Just like the C/C++/Java you’re used to

programming with, except no bound on amount of
memory.

• No overflow

• No out of memory errors

• Equivalent to Turing machines except a lot
easier to program !
– Henceforth, we’ll interchangeably talk about

programs in your favorite programming language
and Turing machines.

9

Church-Turing Thesis

• Anything “computable” is computable by Turing machine.

• Any “reasonable, physically realizable” model of
computation can be simulated on Turing machine with only
polynomial slowdown.
– Program in C++, Pascal, Lisp, pseudocode
– Game of Life
– The brain?

• Not a theorem. Just a belief, borne out by computational
models we know about. Powerful idea.

Turing’s next great insight: duality
between programs and data

• Notation:
– We’ll write <P> for the code of program P and <P,x>

for the pair of the program code and an input x
– i.e. <P> is the program text as a sequence of ASCII

symbols and P is what actually executes
– We’ll write P(x) to denote the output when we run

program P on input x.

• <P> can be viewed as data -- can be input to
another program!

Which leads to Universality!

• A Turing machine interpreter U
– On input <P> and its input x, U outputs the same thing as P does on

input x
– At each step it decodes which operation P would have performed

and simulates it.

• One Turing machine, the Universal TM, is enough!
– Basis for modern stored-program computer

• Von Neuman studied Turing’s UTM design

• “existence of software industry lemma” --Scott Aaronson

P
input

x
output
P(x) U

x output
P(x)<P>

Before Turing…

data

brain

control

dataprogram

brain

10

control

dataprogram

brain

Let ‘em eat cakePrint this

Let ‘em eat cake

Fishing … Fishing …

Fishing manual

program data

control

dataprogram

knows
nothing

001010100010100010011111010001010turn bits into sounds

11

001010100010100010011111010001010display/organize email

001010100010100010011111010001010algebra

Earth simulator

Finally: some problems can’t
be solved on computers

We will show that there is no algorithm for
solving the “halting problem”.

Reminder : P(P) is shorthand for P(<P>),
the output obtained when we run P on the
text of its own source code

K = { programs P | P(P) halts }

The Halting Problem

Is there a program HALT such that:

HALT(P) = yes, if P(P) halts

HALT(P) = no, if P(P) does not halt
We’ll use a “Proof by contradiction”

“When something’s not right, it’s wrong.”

Bob Dylan

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

12

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT existed that
solved the halting problem.

HALT(P) = yes, if P(P) halts

HALT(P) = no, if P(P) does not halt

We will call HALT as a subroutine in a new
program called CONFUSE.

CONFUSE

Does CONFUSE(CONFUSE) halt?

CONFUSE(P)

{ if (HALT(P))

then loop forever; // i.e., we don’t halt

 else exit; // i.e., we halt

}

CONFUSE
CONFUSE(P)

{ if (HALT(P))

then loop forever; // i.e., we dont halt

 else exit; // i.e., we halt

}

Suppose CONFUSE(CONFUSE) halts:

then HALT(CONFUSE) = TRUE

 CONFUSE will loop forever on input CONFUSE

Suppose CONFUSE(CONFUSE) does not halt

then HALT(CONFUSE) = FALSE

 CONFUSE will halt on input CONFUSE

CONTRADICTION

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting

problem

Detour Through Infinity

What does it mean to say that
two sets have the same size?

13

Georg Cantor (1845-1918)
Cantor’s Definition

(1874)

Two sets are defined to have the same
size, or cardinality, if and only if they
can be placed into bijection

Bijection: 1-to-1, onto correspondence

Do N and E have the same
cardinality?

 = { 0, 1, 2, 3, 4, 5, 6, 7, … }

 = { 0, 2, 4, 6, 8, 10, 12, … }

The even, natural numbers.

How can E and N have the same
cardinality? E is a proper subset of N
with plenty left over.

The attempted correspondence
f(x) = x does not take E onto N.

E and N do have the same cardinality!

N = 0, 1, 2, 3, 4, 5, …
E = 0, 2, 4, 6, 8,10, …

f(x) = 2x is a bijection

Lesson:

Cantor’s definition only requires that
some one-to-one correspondence
between the two sets is also onto (i.e., a
bijection), not that all one-to-one
correspondences are bijections!

This distinction never arises when the
sets are finite

14

Do and have the same

cardinality?

 = { 0, 1, 2, 3, 4, 5, 6, 7, … }

 = { …, -2, -1, 0, 1, 2, 3, … }

 and do have the same cardinality!

f(x) = x/2 if x is odd

 -x/2 if x is even

 = 0, 1, 2, 3, 4, 5, 6 …

 = 0, 1, -1, 2, -2, 3, -3, ….

A Useful Transitivity Lemma

Hence, N, E, and Z all have the same
cardinality.

Lemma:
If

f: A B is a bijection, and

g: B C is a bijection.

Then h(x) = g(f(x)) defines a function

h: A C that is a bijection

Onto the Rationals!

Do N and Q have the same

cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, …. }

Q = The Rational Numbers

How could it be????

The rationals are dense: between
any two there is a third. You can’t
list them one by one without leaving
out an infinite number of them.

15

The point at x,y represents x/y The point at x,y represents x/y

3

2

0 1

Cantor’s 1877 letter to Dedekind:

“I see it, but I don't believe it! ” Countable Sets

We call a set countable if it can be placed
into a bijection with the natural numbers N

Hence N, E, Z, Q are all countable

Do N and R have the same

cardinality?

I.e., is R countable?

N = { 0, 1, 2, 3, 4, 5, 6, 7, … }

R = The real numbers

Theorem: The set R[0,1] of reals

between 0 and 1 is not

countable
Proof: (by contradiction)

Suppose R[0,1] is countable

Let f be a bijection from N to R[0,1]

Make a list L as follows:

0: decimal expansion of f(0)
1: decimal expansion of f(1)

 …

k: decimal expansion of f(k)

 …

16

L 0 1 2 3 4 …

0

1

2

3

…

In
d

e
x

Position after decimal point

L 0 1 2 3 4 …

0 3 3 3 3 3 3

1 3 1 4 1 5 9

2 1 2 4 8 1 2

3 4 1 2 2 6 8

…

In
d

e
x

Position after decimal point

L 0 1 2 3 4 …

0 d0

1 d1

2 d2

3 d3

… d4

L 0 1 2 3 4

0 d0

1 d1

2 d2

3 d3

… …

Define the following real number
ConfuseL = 0.C0C1C2C3C4C5 …

5, if dk=6

6, otherwise
Ck=

By design, ConfuseL can’t be on the list L!

Indeed, note that ConfuseL differs from the

kth element on the list L in the kth position.

Diagonalized!

This contradicts the assumption that
the list L is complete; i.e., that the map

f: N to R[0,1] is onto.

The set of reals is uncountable!

(Even the reals between 0 and 1)

17

Why can’t the same argument be used
to show that the set of rationals Q

is uncountable?

Sanity Check
End detour through infinity:

What does all this have to
do with Turing machines and

the Halting problem?

Turing’s argument is
essentially the

reincarnation of
Cantor’s Diagonalization

argument that we just
saw.

 Standard Notation

 = Any finite alphabet

Example: {a,b,c,d,e,…,z}

 = All finite strings of symbols from

including the empty string

Theorem: Every infinite subset S
of * is countable

Sort S first by length and then
alphabetically

Map the first word to 0, the second
to 1, and so on…

Proof:

Some infinite subsets of

 = The symbols on a standard keyboard

For example:

The set of all possible Java
programs is a subset of

The set of all possible Turing machines
is a subset of

The set of all possible finite pieces of
English text is a subset of

18

Thus:

The set of all possible Java programs
is countable.

The set of all possible Turing
machines is countable.

The set of all possible finite length
pieces of English text is countable.

P0 P1 P2 … Pj …

P0

P1

…

Pi

…

A
ll

 P
ro

g
ra

m
s

All Programs (the input)

Programs (computable functions) are countable,

so we can put them in a (countably long) list

P0 P1 P2 … Pj …

P0

P1

…

Pi

…

A
ll

 P
ro

g
ra

m
s

All Programs (the input)

YES, if Pi(Pj) halts

No, otherwise

P0 P1 P2 … Pj …

P0 d0

P1 d1

… …

Pi di

…
…

A
ll

 P
ro

g
ra

m
s

All Programs (the input)

Let di =
HALT(Pi)

CONFUSE(Pi) halts iff di = 0
(The CONFUSE function is the negation of the diagonal.)

Hence CONFUSE cannot be on this list.

CONFUSE(P)

{ if (HALT(P))

then loop forever;

 else exit;

}

One final interesting

digression about infinities …

We know there are at least 2 infinities. (The
number of naturals, the number of reals.)

Are there more?

19

Definition: Power Set

The power set of S is the set of all
subsets of S.

The power set is denoted as P(S)

Proposition:

 If S is finite, the power set of S has
 cardinality 2|S|

How do sizes of S and P(S) relate
if S is infinite?

Since f is onto, exists y S such that f(y) = CONFUSEf.

A

B

C

S

{B}{A}

{C}

P(S)

{A,B}

{B,C}
{A,C}

{A,B,C}

Suppose f:S P(S) is a bijection.

Theorem: S can’t be put into bijection with P(S)

Let CONFUSEf = { x | x S, x f(x) }

Is y in CONFUSEf?

YES: Definition of CONFUSEf implies no

NO: Definition of CONFUSEf implies yes

For any set S (finite or infinite),
the cardinality of P(S)
is strictly greater than

the cardinality of S.

This proves that there are at least a
countable number of infinities.

Indeed, take any infinite set S.
Then P(S) is also infinite, and its

cardinality is a larger infinity than
the cardinality of S.

This proves that there are at least a
countable number of infinities.

The first infinity is the size of all the
countable sets. It is called:

0

0, 1, 2,…

Cantor wanted to show that
there is no set whose size is

strictly between 0

and 1

20

Cantor called his conjecture the
“Continuum Hypothesis.”

However, he was unable to prove
it. This helped fuel his depression.

This has been proved!

The Continuum Hypothesis
can’t be proved or disproved
from the standard axioms of

set theory!

Adding CH=T to set theory doesn’t create
inconsistency. Neither does adding CH=F.

Consistent: can’t prove a contradiction

End of digression…

Next: proving
undecidability.

The crucial notion of a
reduction.

Computability Theory:

Vocabulary Lesson
We call a set S * decidable or recursive if

there is a program P such that:

P(x) = yes, if x S

P(x) = no, if x S

We already know: the halting set K is
undecidable

Decidable and Computable

Subset S of * Function fS

x in S fS(x) = 1

x not in S fS(x) = 0

Set S is decidable function fS is computable

Sets are “decidable” (or undecidable), whereas

functions are “computable” (or not)

Oracles and Reductions

21

Oracle
for S

Oracle For Set S

Is x S?

YES/NO

Example Oracle

 S = Odd Naturals

Oracle
for S

4?

No

81?

Yes

K0= the set of programs that take
no input and halt

GIVEN:

Oracle
for K0

Hey, I ordered an
oracle for the

famous halting
set K, but when I

opened the
package it was an

oracle for the
different set K0.

But you can use this oracle for K0

to build an oracle for K.

GIVEN:

Oracle
for K0

P = [input I; Q]
Does P(P) halt?

BUILD:

Oracle
for K

Does [I:=<P>;Q] halt?

K0= the set of programs that take
no input and halt

We’ve reduced the problem of
deciding membership in K to

the problem of deciding
membership in K0.

Hence, deciding membership
for K0 must be at least as hard

as deciding membership for
K.

Thus if K0 were
decidable

then K would be as well.

We already know K is
not decidable, hence K0

is not decidable.

22

HELLO = the set of programs that
print hello and halt

GIVEN:

HELLO
Oracle

Does P halt?

BUILD:

Oracle
for K0

Let P’ be P with all print
statements removed.

(assume there are

no side effects)

Is [P’; print HELLO]

a hello program?

Hence, the set HELLO is
not decidable.

EQUAL = All <P,Q> such that P and Q have
identical output behavior on all inputs

GIVEN:

EQUAL

Oracle

Is P in set HELLO?

BUILD:

HELLO
Oracle

Let HI = [print HELLO]

Are P and HI equal?

Halting with input, Halting
without input, HELLO, and

EQUAL are all undecidable.

Diophantine Equations

Hilbert

Does polynomial 4X2Y + XY2 + 1 = 0 have an integer
root? I.e., does it have a zero at a point where all

variables are integers?

D = {multivariate integer polynomials P | P has
a root where all variables are integers}

Famous Theorem: D is undecidable!

[This is the solution to Hilbert’s 10th

problem]

Resolution of Hilbert’s 10th Problem:

Dramatis Personae

Martin Davis, Julia Robinson, Yuri Matiyasevich (1982)

23

Polynomials can Encode

Programs

There is a computable function

 F: Java programs that take no input

Polynomials over the integers

Such that

program P halts F(P) has an integer root

D = the set of all integer
polynomials with integer roots

GIVEN:

Oracle

for D

Does program P
halt?

BUILD:

HALTING
Oracle

F(P) has
integer root?

PHILOSOPHICAL
INTERLUDE

CHURCH-TURING THESIS

Any well-defined procedure that can be
grasped and performed by the human mind

and pencil/paper, can be performed on a
conventional digital computer with no bound

on memory.

The Church-Turing Thesis is

NOT a theorem. It is a statement

of belief concerning the universe

we live in.

Your opinion will be influenced by your

religious, scientific, and philosophical beliefs…

…mileage may vary

Empirical Intuition

No one has ever given a counter-example to

the Church-Turing thesis. I.e., no one has

given a concrete example of something

humans compute in a consistent and well

defined way, but that can’t be programmed

on a computer. The thesis is true.

24

Mechanical Intuition

The brain is a machine. The components of

the machine obey fixed physical laws. In

principle, an entire brain can be simulated

step by step on a digital computer. Thus,

any thoughts of such a brain can be

computed by a simulating computer. The

thesis is true.

Quantum Intuition

The brain is a machine, but not a classical

one. It is inherently quantum mechanical in

nature and does not reduce to simple

particles in motion. Thus, there are inherent

barriers to being simulated on a digital

computer. The thesis is false. However, the

thesis is true if we allow quantum

computers.

Some of the big ideas we’ve seen so far

• The Turing Machine model and the Church-Turing
thesis

• Universality via duality
• Some problems can’t be solved on computers
• Diagonalization and the different types of

infinity
• Notion of reduction.

Print thisPrint this

Print this

Print this twicePrint this twice

Print this twice Print this twice

Self-replication

25

James Watson – Francis Crick, 1953

