Cryptography

Five or six weeks later, she asked me if | had deciphered the
manuscript... | told her that | had.

“Without the key, sir, excuse me if | believe the thing impossible.”

““Do you wish me to name your key, madame?”
“If you please.”

| then told her the key-word which belonged to no language, and |
saw her surprise. She told me it was impossible, for she believed
herself the only possessor of that word which she kept in her

memory and which she had never written down.

| should have told her the truth -- that the same calculation which
had served me for deciphering the manuscript had enabled me to
learn the word -- but on a caprice it struck me to tell her that a genie
had revealed it to me. This false disclosure fettered Madame d’Urfe
to me. That day | became the master of her soul, and | abused my
power.

From the autobiography
of Casanova (1757)

Most of slides in today’s lecture courtesy of
Stephen Rudich and Martin Tompa
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Receiver’s Set-Up

* Choose 500-digit primes p and g (each 2
more than a multiple of 3).
p=59g=11

Receiver’s Set-Up

* Choose 500-digit primes p and g (each 2
more than a multiple of 3).

p=59g=11
* Letn=pq.
n=>55
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Receiver’s Set-Up

» Choose 500-digit primes p and g (each 2
more than a multiple of 3).

e Letn=pg.

o Lets=(1/3) (2(p-1)(q-1) +1).

Receiver’s Set-Up

« Choose 500-digit primes p and g (each 2 more
than a multiple of 3).

e Letn=pq.

Lets = (1/3) 2(p-1)(g-1) +1).

¢ Publish n.
Keep p, g, and s secret.

Encrypting a Message

* Break the message into chunks.

Encrypting a Message

* Break the message into chunks.
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Encrypting a Message

» Break the message into chunks.
H1 CHRIS

» Translate each chunk into an integer M
(0 < M < n) by any convenient method.
8 9 3 8 18 9 19

Encrypting a Message

« Break the message into chunks.
H1 CHRIS

« Translate each chunk into an integer M (0 <M <
n) by any convenient method.
8 9 3 818 9 19 ...

e Divide M3 by n. E(M) is the remainder.
M=8,n=55
83 =512 = 9x55 +17
E(8) =17

Decrypting a Cyphertext C

* Divide C* by n. D(C) is the remainder.
C=17, n=55, s=27
1727 =
1,667,711,322,168,688,287,513,535,727,415,47
3

30,322,024,039,430,696,136,609,740,498,463 x
55+8

D(17)=8

Decrypting a Cyphertext C

¢ Divide Cs by n. D(C) is the remainder.
C=17, n=55, s=27
17?7 = 1,667,711,322,168,688,287,513,535,727,415,473
= 30,322,024,039,430,696,136,609,740,498,463 x 55
+8
D(17)=8

¢ Translate D(C) into letters.
H

13



Why Does It Work?

Euler’s Theorem (1736): Suppose

 pand g are distinct primes,

* n=pq,

e 0<M<n,and

e k>0.

If Mk(P-D(@-D+1 js divided by n, the remainder is

M.

Why Does It Work?

Euler’s Theorem (1736): Suppose

* pand q are distinct primes,

e N= pq’

¢« 0<M<n,and

* k>0.

If Mk(p-D)(@-D+*1 s divided by n, the remainder is M.

(M3)s = (M3) W3Ee-1(a-1)+1)
= M2(p-1(@-1)+1

Leonhard Euler 1707-1783

... both Gauss and lesser mathematicians may be justified in rejoicing that there is

one science [number theory] at any rate... whose very remoteness from ordinary
human activities should keep it gentle and clean.

From the autobiography
A Mathematician’s Apology
of G.H. Hardy,
number theorist and pacifist,
1940
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Why Is It Secure?

» To find M = D(C), you seem to need s.

Why Is It Secure?

» To find M = D(C), you seem to need s.
» Tofind s, you seem to need p and g.

Why Is It Secure?

» To find M = D(C), you seem to need s.
» Tofind s, you seem to need p and q.
« All the cryptanalyst has is n = pg.

Why Is It Secure?

To find M = D(C), you seem to need s.

To find s, you seem to need p and q.

All the cryptanalyst has is n = pg.

How hard is it to factor a 1000-digit number n?
With the grade school method,

doing 1,000,000,000 steps per second

it would take ...
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Why Is It Secure?

e Tofind M = D(C), you seem to need s.
¢ Tofind s, you seem to need p and q.
« All the cryptanalyst has is n = pqg.

How hard is it to factor a 1000-digit number n?
With the grade school method,

doing 1,000,000,000 steps per second

it would take ... 10%%3 years,

State of the Art in Factoring

1977: Inventors encrypt a challenge using
“RSA129,” a 129-digit number n = pq.

1981: Pomerance invents Quadratic Sieve
factoring method.

1994: Using Quadratic Sieve, RSA129 is factored
over 8 months using 1000 computers on the
Internet around the world.

(1999: Using a new method, RSA140 is factored.)

State of the Art in Factoring

1977: Inventors encrypt a challenge using
“RSA129,” a 129-digit number n = pq.

1981: Pomerance invents Quadratic Sieve
factoring method.

1994: Using Quadratic Sieve, RSA129 is factored
over 8 months using 1000 computers on the
Internet around the world.

(1999: Using a new method, RSA140 is factored.)

Using Quadratic Sieve, a 250-digit number would
take 800,000,000 months instead of 8.

One  Reawy NEAT  TWING
ABouT RSA.

UNLTKE THE CLaSSZIC
PRIVATE - KEY CRYPTOS YSTEM,
Avzce AV Bos Dow'r
EVER HewE T™O MEET =V
prIvatE To 5€ <TT.

RSA s Av BPmNE * A

PUBLIZ- KEY

I

CRY PTOSYSTEM
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Public Key Cryptography

We stand today on the brink of a revolution in cryptography.

Diffie and Hellman, 1976

Another famous example: the first proposed public key
cryptosystem.
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Generates A & Zp .
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Cool things we can do with RSA:
Unforgeable Signatures

Signed Messages

* How A sends a message to B
A B
C=Eg(M) € .

M = Dg(C)

Signed Messages

¢ How A sends a message to B
A B
C =Eg(M) ¢
M = Dg(C)
¢ How A sends a message to B
A B
C = D,(M) c
M = E,(C)
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Signed and Secret Messages

¢ How A sends a secret message to B ...

A B
C=Ey(M) o
M = Dg(C)
* How A sends a signed secret message to B ...
A B

C=Eo(DM)

M = E, (Dg(C))

Flipping a Coin Over the Phone
A B

Chogse random x.
Yy =Ea(X)

>

Guess if x is even or odd.
“even”
“odd”

X >

Check y = E5(X).

« B wins if the guess about x was right, or y = E,(x).

More cool things we can do with RSA:
Dating for shy people

Final Application -- Dating

« Alice and Bob want to figure out if they’re interested in dating each
other, but don’t want to reveal it in case other one isn’t interested.

« Use RSA if you don’t have a trusted mutual friend that won’t spill the
beans

«  First, some remarks:

— The mere fact that they are carrying out this protocol might be seen as
evidence that they are interested. Instead, imagine they are at a singles
party where every pair of people has to carry out protocol.

— If one player is interested and the other one isn’t, can’t avoid having the
interested party learn that other isn’t.

— One player can always pretend to be interested and then say “ha ha”.
« Can’t ask crypto to solve problem of heartbreak or people being jerks.
« Just ensure that players can’t learn if the other is interested without
declaring their own interest.
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Dating Protocol

« Alice picks 2 large primes such that p-1 and g-1 aren’t divisible by 3,
then sets N=pg. Sends Bob N, together with X=x3mod N and Y=y?3
mod N, where x = 0+ random garbage added, y = “whether she’s
interested” + random garbage

« Since RSA is secure, X and Y look random to Bob. He picks random r
from 0 to N-1. If he’s not interested in Alice, he sends her x3r® mod N.
If he is interested he sends y3r® mod N

« Alice takes cube root of what Bob sent. Which will be either xr mod N
or yr mod N, either way looks random, since she doesn’t know r.

« Alice sends result back to Bob.

« Since Bob knows r, he divides it out. If he wasn’t interested he gets X,
which reveals nothing. If he was interested, he gets y.

Dating Protocol

« Example of “secure multiparty computation”.

« Similar ideas can be used for example:

— To help 2 people figure out who makes more money,
without either of them learning anything else about
each other’s wealth

— To help a group of people figure out how much money

they have in total, without any individual revealing her
own amount.

General Comments About
Public-Key Cryptosystems
* Slow.

» Vulnerable to exhaustive search, and
chosen-ciphertext attacks.

Hybrid Cryptosystems

« In practice, public-key crypto used to secure and distribute
, which are then used with private-key crypto to secure message
traffic.

« Bob sends Alice his public key.

« Alice generates random session key K, encrypts it using Bob’s public
key, and sends it to Bob.

« Bob decrypts Alice’s message using his private key to recover session
key.
« Both encrypt their communications using same session key.

Public-key crypto solves important key-management problem.
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The Complexity Perspective

Pseudorandom generators and CPRG
One-way functions

Trapdoor one-way functions
NP-completeness and cryptography
Zero-knowledge Proofs
Impagliazzo’s Five Worlds

The Complexity Perspective

The existence of hard problems is usually viewed as a
negative

Bright side: hard problems can be put to work for us. This
was the insight of Diffie and Hellman when they
suggested complexity-based cryptography.

RSA is based on intractability of factoring.

More abstractly, using hard problems seems to require
ability to generate lots of hard instances, which are
difficult to invert.

These are

Pseudorandomness

A fresh view of randomness
“Indistinguishable things are identical” -- Leibniz

Pseudo-random generator (PRG): efficient deterministic
procedure for stretching short random strings into long
“random-looking” strings.
Applications:

— Cryptography

— Derandomization e.g. P= BPP

Theories of Randomness

Shannon: randomness represents lack of information --
modeled as probability distribution on possible values of
missing data.

Kolmogorov-Chaitin: randomness represents lack of
structure -- represented by length of most succinct and
effective description of object.

Rooted in computability theory: measures randomness in
terms of the shortest program that can generate the object.
(not decidable)

Modern complexity view: views randomness relative to
observer’s computational view. Objects are equal if they
cannot be told apart by any efficient procedure.

21



Thought Experiment

Alice and Bob play game in one of 4 ways. In each, Alice flips an
unbiased coin and Bob is asked to guess its outcome before the coin
hits the floor. Alternatives differ by knowledge Bob has before
making his guess.

1. Bob has to write down guess before Alice flips coin. Bob wins with
probability 1/2.

2. Bob announces his guess while coin is spinning in air. Although
outcome determined in principle by motion of coin, Bob doesn’t
have accurate information on motion. We believe Bob wins with
prob 1/2.

3. Like 2, but Bob has sophisticated equipment capable of providing
accurate info on coin motion as well as environment. However, Bob
cannot process this info in time to improve his guess.

4. Bob’s recording equipment is directly connected to a powerful
computer programmed to solve motion equations and output
prediction. Conceivable that Bob could substantially improve his
guess at outcome.

Conclusion

Randomness is an event relative to information and
computing resources at our disposal.

Even events fully determined by public information may be
perceived as random by an observer lacking relevant info
and/or ability to process it.

Our focus in complexity theory is on lack of sufficient
processing power

Which may be due to either formidable amount of
computation required for analyzing the event in question
or to fact that observer is very limited.

Pseudo-random generators

APRGisa
function: seed --> longer, seemingly random string
« Examples:
In most programming languages: start with x,
* X, =(aX,+b)modN
* X, =(ax, +b)modN
* X3=(ax, +b)modN

« Good for non-cryptographic applications, but adversary could easily
distinguish sequence from random.

< "Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin.” von Neumann

« "The generation of random numbers is too important to be left to
chance.” R. Coveyou

Cryptographic Pseudo-random
generators

ACPRGisa
. {0,1}" --> {0,1}'® st.
« fis computable in polynomial time
« For all poly time algorithms A
|Pr (A(y) accepts when y is random r(n) bit string) - Pr (A(f(x))
accepts when x is random n bit string)| is negligibly small.
« l.e. output looks random to any poly time algorithm.
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Cryptographic Pseudo-random
generators

ACPRGisa
. {0,1} --> {0,1}®

St

« fis computable in polynomial time

«  For all poly time algorithms A
|Pr (A(y) accepts when y is random r(n) bits) - Pr (A(f(x)) accepts when x is
random n bit string)| is negligibly small.

« le. output looks random to any poly time algorithm.

« Can use CPRG to get private-key cryptosystem with a
small key.

« Can use CPRG for derandomization (when have right
parameters)

One way functions

A f is a function
f: {0,13"-> {0,1}*™ such that
« fis computable in polynomial time
« For all poly time algorithms A
Pr (A can find x” such that f(x") = f(x) when x is random n bit string) is
negligible.
l.e. average-case hardness

Conjecture: One way functions exist.
¢ Theorem: Any CPRG is also a OWF.
« Theorem: If there are OWFs, there are CPRG.

For public key cryptography we need a : There is
some extra information (the trapdoor), such that with that information, the
function f is easy to invert.

NP-completeness and crypto

* We don’t know how to base cryptography on an NP-
complete problem.

* We need average-case hardness rather than worst-case
hardness.

« Another issue is that many problems in crypto belong to
NP and coNP. Example: is the first bit of the plaintext 1?

* Problems in NP and coNP can’t be NP-complete unless
NP= coNP.

Zero-Knowledge Proofs

Recall the protocol to show that 2 graphs are not isomorphic.

Observation: Verifier was convinced without gaining any knowledge
about two graphs. In particular, she learned nothing that enabled her to
prove to anyone else that they’re not isomorphic.

In particular, if verifier trusted the prover, she could have simulated
the entire interaction with the prover on her own, without ever
involving the prover.

Zero-knowledge proof system: prover only tells the verifier things she
already knew. P is perfect ZK for L if for every V (probabilistic poly
time), there is an A (probabilistic poly time) s.t. (P,V)(x) = A(x) for
all xinL
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Zero-Knowledge Proofs --
General Theorem

If there are one way functions, then every
language in NP has a zero knowledge proof.

ZK Proof Idea for
3 Coloring

Prover picks 3 coloring and randomly permutes the colors in that 3-coloring.
Prover writes the color of each vertex on a slip of paper and place it in magic
box that’s labelled with that vertex’s number.

Give magic boxes to verifier. Magic box = verifier can’t open it.

Verifier picks any 2 neighboring vertices, prover opens up the boxes for those
2 vertices. Verifier rejects if they aren’t colored differently.

Otherwise the verifier accepts.

Repeat whole protocol.

Verifier learns nothing, since colors permuted randomly and reshuffled each
time.

Magic boxes = encrypted messages.
When verifier asks for boxes, prover decrypts the messages.

Impagliazzo’s 5 possible worlds

« Algorithmica, Heuristica, Pessiland, Minicrypt and Cryptomania

« Possible worlds = There is an oracle relative to which this world exists
= Not currently known to be false.

«  Among other things, we’ll consider impact on sad story of Professor
Grouse, teacher of young Gauss who asked children to add up 1 +2
+... +100. Professor Grouse became obsessed with getting his
revenge by humiliating Gauss in front of the whole class, by inventing
problems Gauss could not solve. In real life, this led to Grouse being
committed and to Gauss developing a life-long interest in number-
theoretic algorithms.

« How would story have ended if Grouse was an expert in complexity?

Algorithmica

World in which P = NP
Almost any type of optimization problem would become easy and automatic,
e.g.

— VLSI design would no longer use heuristics -- could produce optimal layouts.

- Inductive learning systems would work well.

— Could produce Mr. Spock-like estimates for all sorts of complicated events.

— “Computer assisted mathematics” would be redundant, since computers could find

proofs for any theorem in time roughly the length of the proof.

- Capacity of computers will become that currently depicted in science fiction.
No security: no way to allow some people access to information without
making it available to everyone. Any means of identification would have to be
based on unforgeable physical measurement.
Grouse would no success at stumping Gauss, since he would need to give
Gauss a problem that Grouse could later present an answer to the class for
==> could only present problems with succinct, easily verifiable solutions, l.e.
NP.

But since P=NP, Gauss could solve those problems easily.
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Heuristica

World where NP problems are intractable in worst-case, but tractable
on average.

There exist hard instances of NP problems, but to find such hard
instances is itself intractable.

Grouse might be able to find problems Gauss cannot answer, but it
might take Grouse a year to find a problem that Gauss couldn’t solve
in a day, or 10 years to find a problem that Gauss couldn’t solve in a
month (Gauss has a polynomial advantage over Grouse since he is a
genius.)

Many practical optimization problems would become easy and
automatic.

Still no security: eavesdroppers would be able to solve problems in
about the same amount of time that it would take legitimate users to
think up problems to uniquely identify them.

Pessiland

No one way functions.

Easy to generate hard instances of NP-complete problems, but no way
to efficiently generate hard solved instances.

In Pessiland, Grouse could pose to Gauss problems that he couldn’t
solve. But Grouse couldn’t solve them either, so Gauss’s humiliation
would not be so great.

Problems for many domains will have no easy solutions.

There does not seem to be a way to make use of the hard problems in
Pessiland in cryptography.

Arguably the worst of all possible worlds.

Minicrypt

There are one-way functions (so we can do private key crypto) but no
trapdoor one-way functions (so no public key crypto).

One way function could be used to generate hard, solved problems:
generator would pick x, compute y=f(x) and pose the search problem -
- Find any x” with f(x*) =y.

Therefore Grouse can best Gauss in front of the class.

No positive algorithmic aspects, but can get pseudorandom generators
that can be used to derandomize algorithms.

Cryptomania

Public key cryptography is possible -- two parties can agree on a
secret message using only publicly accessible channels.

Gauss is humiliated -- using conversations in class, Grouse and his
pet student could jointly choose a problem that they would both know
the answer to, but which Gauss could not solve. In fact, Grouse could
arrange that all the students but Gauss would be able to solve all
problems in class!

Almost all cryptographic tasks imaginable can be done.

This is where we think we live right now.

But we could be wrong!!!
— Public key sizes keep growing

— Number-theoretic problems that are the basis for public key crypto are
solvable in poly time on a quantum computer!
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Impagliazzo’s 5 worlds

Algorithmica: P=NP or at least fast probabilistic algorithms exist to
solve all NP problems.

Heuristica: P is not = NP, but while NP problems are hard in the worst
case, they are easy on average.

Pessiland: NP-complete problems are hard on average, but one-way
functions don’t exist, hence no cryptography

Minicrypt: One way functions exist, but trapdoor one-way functions
don’t exist. Hence private-key crypto, PRG, etc, but no public-key
crypto

Cryptomania: Public-key crypto exists -- there are trapdoor one-way
functions.

Reigning belief: we live in Cryptomania or at very least Minicrypt.
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