CSE P 527

Markov Models and Hidden Markov Models

http://upload.wikimedia.org/wikipedia/commons/b/ba/Calico_cat

Dosage Compensation and X-Inactivation

2 copies (mom/dad) of each chromosome I-22
Mostly, both copies of each gene are expressed
E.g., A B O blood group defined by 2 alleles of I gene
Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:

- One X randomly inactivated in each cell _ How?
- Choice maintained in daughter cells

Calico: a major coat color gene is on X

Reminder: Proteins "Read" DNA

Figure 7-10 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Down in the Groove

Different patterns of hydrophobic methyls, potential H bonds, etc. at edges of different base pairs. They're accessible, esp. in major groove

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA Methylation

- CpG 2 adjacent nts, same strand (not Watson-Crick pair; "p" mnemonic for the phosphodiester bond of the DNA backbone)
- C of CpG is often (70-80%) methylated in mammals i.e., CH₃ group added (both strands)

cytosine

Same Pairing

Methyl-C alters major groove profile (∴ TF binding), but not basepairing, transcription or replication

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

http://upload.wikimedia.org/wikipedia/commons/b/ba/Calico_cat

Calico cat story: patchwork coat-color in some female cats partially explained by X-inactivation And heavily methylating the inactive X is part of the mechanism of X-inactivation

And methylation is broadly important for other reasons, and sculpts the genome...

DNA Methylation–Why

In vertebrates, it generally silences transcription

(Epigenetics) X-inactivation, imprinting, repression of mobile elements, cancers, aging, and developmental differentiation

E.g., if a stem cell divides, one daughter fated to be liver, other kidney, need to

cytosine

(a) Turn off liver genes in kidney & vice versa, and

(b) Remember that through subsequent cell divisions

How? One way:

- (a) Methylate genes, esp. promoters, to silence them
- (b) After ÷, DNA methyltransferases convert hemi- to fully-methylated (not trivial: deleting methyltransferase is embrionic-lethal in mice)

Major exception: promoters of "housekeeping" genes

"CpG Islands"

Methyl-C mutates to T relatively easily Net: CpG is less common than expected genome-wide: $f(C_pG) < f(C)*f(G)$ BUT in some regions (e.g. active promoters), CpGs remain unmethylated, so $CpG \rightarrow TpG$ less likely there: makes "CpG Islands"; often mark gene-rich regions

cytosine

CpG Islands

CpG Islands

More CpG than elsewhere (say, CpG/GpC>50%)

More C & G than elsewhere, too (say, C+G>50%)

Typical length: few 100 to few 1000 bp

Questions

Is a short sequence (say, 200 bp) a CpG island or not? Given long sequence (say, 10-100kb), find CpG islands?

Markov & Hidden Markov Models

References (see also online reading page):

- Eddy, "What is a hidden Markov model?" Nature Biotechnology, 22, #10 (2004) 1315-6.
- Durbin, Eddy, Krogh and Mitchison, "Biological Sequence Analysis", Cambridge, 1998 (esp. chs 3, 5)
- Rabiner, "A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition," Proceedings of the IEEE, v 77 #2,Feb 1989, 257-286

Independence

A key issue: Previous models we've talked about assume *independence* of nucleotides in different positions - definitely unrealistic.

Markov models allow us to relax that assumption.

Markov Chains

A sequence x_1, x_2, \ldots of random variables is a *k-th order Markov chain* if, for all *i*, *i*th value is independent of all but the previous *k* values:

$$P(x_i \mid \underbrace{x_1, x_2, \dots, x_{i-1}}_{i-1}) = P(x_i \mid \underbrace{x_{i-k}, x_{i-k+1}, \dots, x_{i-1}}_{k \text{ typically } \ll i-1})$$

Example I: Uniform random ACGT Example 2: Weight matrix model Example 3: ACGT, but ↓ Pr(G following C)

A Markov Model (Ist order)

States: A,C,G,T Emissions: corresponding letter Transitions: $a_{st} = P(x_i = t | x_{i-1} = s)$ Ist order

A Markov Model (Ist order)

States: A,C,G,T Emissions: corresponding letter Transitions: $a_{st} = P(x_i = t | x_{i-1} = s)$ Begin/End states

Pr of emitting sequence x

Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences

E.g., from 48 CpG islands in 60k bp:

+	Α	С	G	т	-	Α	С	G	Т
Α	0.180	0.274	0.426	0.120	Α	0.300	0.205	0.285	0.210
С	0.171	0.368	<u>0.274</u>	0.188	С	0.322	0.298	<u>0.078</u>	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
т	0.079	0.355	0.384	0.182	т	0.177	0.239	0.292	0.292
	From DEKM 18								

Discrimination/Classification

Log likelihood ratio of CpG model vs background model

$S(x) = \int_{nput}^{nput}$	$=\log \frac{P(x -x)}{P(x -x)}$	⊢model) -model) =	$=\sum_{i=1}^{L}\log$	$\sum_{i=1,x_i}^{a_{x_{i-1},x_i}} \frac{a_{x_{i-1},x_i}}{a_{x_{i-1},x_i}}$	$-\sum_{i=1}^{10}$	$g \beta_{x_{i-1},x_i}$
seq	β	Α	С	G	т	
	Α	-0.740	0.419	0.580	-0.803	
	С	-0.913	0.302	1.812	-0.685	
	G	-0.624	0.461	0.331	-0.730	
	т	-1.169	0.573	0.393	-0.679	

From DEKM 19

CpG Island Scores

Figure 3.2 Histogram of length-normalized scores.

From DEKM 20

Questions

QI: Given a *short* sequence, is it more likely from feature model or background model? Above

Q2: Given a *long* sequence, where are the features in it (if any)

Approach I: score 100 bp (e.g.) windows

Pro: simple

Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.

Emphasis is "Which (hidden) state?" not "Which model?"

Hidden Markov Models (HMMs; Claude Shannon, 1948)

States: Paths: Transitions: Emissions:

Observed data: Hidden data: 1, 2, 3, ... sequences of states $\pi = (\pi_1, \pi_2, ...)$ $a_{k,l} = P(\pi_i = l \mid \pi_{i-1} = k)$ $e_k(b) = P(x_i = b \mid \pi_i = k)$

emission sequence state/transition sequence

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Figure 3.5

Rolls: Visible data–300 rolls of a die as described above. Die: Hidden data–which die was actually used for that roll (F = fair, L = loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM 25

Inferring hidden stuff

Joint prob of a given path π & emission sequence x:

$$P(x,\pi) = a_{0,\pi_1} \prod_{i=1}^n e_{\pi_i}(x_i) \cdot a_{\pi_i,\pi_{i+1}}$$

But π is hidden; what to do? Some alternatives:

Most probable single path $\pi^* = \arg \max_{\pi} P(x, \pi)$ Sequence of most probable states $\hat{\pi}_i = \arg \max_k P(\pi_i = k \mid x)$ Etc.

Notation:

max_xF(x) = the maximum <mark>y-value</mark> attained by F()

arg max_xF(x) = the x-value where that occurs

The Viterbi Algorithm: The most probable path

- Viterbi finds: $\pi^* = \arg \max_{\pi} P(x, \pi)$
- Possibly there are 10⁹⁹ paths of prob 10⁻⁹⁹ (If so, non-Viterbi approaches may be preferable.)
- More commonly, one path (+ slight variants) dominate others; Viterbi finds that
- Key problem: exponentially many paths π

Unrolling an HMM

Conceptually, sometimes convenient Note exponentially many paths

Viterbi

 $v_l(i) = \text{probability of the most probable path}$ emitting x_1, x_2, \dots, x_i and ending in state ℓ

Initialize:

HMM Casino Example

(Excel spreadsheet on web; download & play...)

HMM Casino Example

(Excel spreadsheet on web; download & play...)

Viterbi Traceback

Above finds *probability* of best path To find the path itself, trace *backward* to the state k attaining the max at each stage

$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) a_{k,l})$$

Figure 3.5

Rolls: Visible data–300 rolls of a die as described above. Die: Hidden data–which die was actually used for that roll (F = fair, L = loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM 33

Most probable path ≠ Sequence of most probable states

Another example, based on casino dice again:

Suppose p(fair \leftrightarrow loaded) transitions are 10⁻⁹⁹ and roll sequence is 1111166...666; then fair state is more likely all through 1's & into the run of 6's, but eventually loaded wins, and the improbable $F \rightarrow L$ transitions make Viterbi = *all* L.

Is Viterbi "best"?

Viterbi finds $\pi^* = \arg \max_{\pi} P(x, \pi)$

Most probable (Viterbi) *path* goes through 5, but most probable *state* at 2nd step is 6 (I.e., Viterbi is not the only interesting answer.)

An HMM (unrolled)

Emissions/sequence positions _____
Viterbi: best path to each

state

37

Another Q: What's P(x)?

- Given an HMM and a sequence x, Viterbi finds the single path π having the greatest probability of emitting x (and implicitly finds that probability $P(x, \pi)$)
- What if I don't care about π ? E.g., what is the probability P(x) of emitting x, on some path?
- Of course, $P(x) = \sum_{\pi} P(x, \pi)$, i.e. sum over all paths, but exponentially many, so nontrivial ...
- Answer to this and related Qs is easiest to think about by focusing on intermediate states

The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with previous emissions

The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with subsequent emissions, conditional on that state.

In state k at step i?

 $P(x, \pi_i = k)$

$$= P(x_1, ..., x_i, \pi_i = k) \cdot P(x_{i+1}, ..., x_n \mid x_1, ..., x_i, \pi_i = k)$$

= $P(x_1, ..., x_i, \pi_i = k) \cdot P(x_{i+1}, ..., x_n \mid \pi_i = k)$
= $f_k(i) \cdot b_k(i)$

$$P(\pi_i = k \mid x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

Posterior Decoding, I

Alternative 1: what's the most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Note: the most likely sequence of states (a path) ≠ the sequence of most likely states.

That may even be an illegal path! (E.g. 1,2,6,7 below)

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Figure 3.5

Rolls: Visible data–300 rolls of a die as described above. Die: Hidden data–which die was actually used for that roll (F = fair, L = loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM 44

Posterior Decoding

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding, II

Alternative 1: what's most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Alternative 2: given some function g(k) on states, what's its expectation. E.g., what's probability of "+" model in CpG HMM (g(k)=1 iff k is "+" state)?

$$G(i \mid x) = \sum_{k} P(\pi_i = k \mid x) \cdot g(k)$$

CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48 CpG islands of about 1kbp each
Viterbi: Post-process:
Found 46 of 48 46/48
plus 121 "false positives" 67 false pos
Posterior Decoding:
same 2 false negatives 46/48
plus 236 false positives 83 false pos

Post-process: merge within 500; discard < 500 47

Training

Given model topology & training sequences, learn transition and emission probabilities

If π known, then MLE is just frequency observed in training data

$$a_{k,l} = rac{ ext{count of } k o l ext{ transitions}}{ ext{count of } k o anywhere ext{ transitions}} e_k(b) = \dots$$

If π hidden, then use EM: given θ , estimate π ; given π estimate θ ; repeat 2^{way}

pseudocounts?

Viterbi Training given θ , estimate π ; given π estimate θ ; repeat

Make initial estimates of parameters θ Find Viterbi path π for each training sequence Count transitions/emissions on those paths, getting new θ Repeat

Not rigorously optimizing desired likelihood, but still useful & commonly used. (Arguably good if you're doing Viterbi decoding.)

(And see note about "classification EM," ~#45 in MLE-EM slides.)

Viterbi Training, II

given θ , estimate π ; given π estimate θ ; repeat

Not rigorously optimizing desired likelihood What it IS doing is finding θ to maximize *contribution* to likelihood from the most probable paths

As noted earlier, with 10^{99} paths each with prob near 10^{-99} , this may not be useful, but if a few paths dominate the landscape, then it may be – learned θ hopefully captures this

51

AKA "the forwardbackward alg"

Baum-Welch Training

EM: given θ , estimate π ensemble; then re-estimate θ

$$P(\pi_i = k, \pi_{i+1} = l \mid x, \theta)$$

=
$$\frac{f_k(i \mid \theta) a_{k,l} e_l(x_{i+1}) b_l(i+1 \mid \theta)}{P(x \mid \theta)}$$

Estimated # of $k \rightarrow l$ transitions $\hat{A}_{k,l}$ on set of seqs x^j

$$= \sum_{\text{training seqs } x^j} \sum_i P(\pi_i = k, \ \pi_{i+1} = l \mid x^j, \theta)$$

New estimate $\hat{a}_{k,l} = \frac{\hat{A}_{k,l}}{\sum_l \hat{A}_{k,l}}$

Emissions: similar

Log-odds (vs all F) per roll True model 0.101 bits 300-roll est. 0.097 bits 30k-roll est. 0.100 bits (NB: overestimated)

From DEKM 52

HMMs in Action: Pfam http://pfam.xfam.org

Proteins fall into families, both across & within species

Ex: Globins, Zinc fingers, Leucine zippers, GPCRs, ...

Identifying family very useful: suggests function, etc.

So, search & alignment are both important

Q. Why not just use Blast/Smith-Waterman?

A. There is more info in *multiple* examples (e.g., psiBLAST)

One very successful approach: profile HMMs

Helix	AAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCC
HBA_HUMAN	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESF
MYG_PHYCA	VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP	DPVGILYAVFKADPSIMAKFTQF
	PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU	
GLB1_GLYDI	GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus	Ls vaWkv g.Lf.P. FF

Helix	DDDDDDEEEEEEEEEEEEEEEEEEE	FFFFFFFFFFFF
HBA_HUMAN	-DLSHGSAQVKGHGKKVADALTNAVAHVD	DMPNALSALSDLHAHKL-
HBB_HUMAN	GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	NLKGTFATLSELHCDKL-
MYG_PHYCA	KHLKTEAEMKASEDLKKHGVTVLTALGAILKKK-G	HHEAELKPLAQSHATKH-
	AG-KDLESIKGTAPFETHANRIVGFFSKIIGELP	
	KGLTTADQLKKSADVRWHAERIINAVNDAVASMDDTE	
LGB2_LUPLU	LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVV	VTDATLKNLGSVHVSKG-
GLB1_GLYDI	SGASDPGVAALGAKVLAQIGVAVSHLGDEG	KMVAQMKAVGVRHKGYGN
Consensus	. tvHg kv. a al d	.аl.l н.

Helix ннннннннннннннннннн HBA_HUMAN -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLA HBB HUMAN -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVOA**A**Y<mark>O</mark>KVVAGVANALAHK MYG_PHYCA KYLEFISEAIIHVLHSRHPGDFGADAOG<mark>A</mark>MNKALELFRKDIAAKY GLB3_CHITP -DFA-GAEAAWGATLD GLB5_PETMA OVD DAGFE LGB2_LUPLU ELNSAWT GLB1_GLYDI KHIKA AAAKDAWA Consensus aa. skv

Alignment of 7 globins. A-H mark 8 alpha helices. Consensus line: upper case = 6/7, lower = 4/7, dot=3/7. Could we have a profile (aka weight matrix) w/ indels?

Figure 5.2 The transition structure of a profile HMM.

- M_j: Match states (20 emission probabilities)
- I: Insert states (Background emission probabilities)
- D_j: Delete states (silent no emission)

Silent States

Using Profile HMM's

Search

Forward or Viterbi

Scoring

Log likelihood (length adjusted)

Log odds vs background

Z scores from either

Alignment

Viterbi

next slides

Likelihood vs Odds Scores

Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.

From DEKM 58

Z-Scores

Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

From DEKM 59

herp://xfam.org Pfam Model Building

Hand-curated "seed" multiple alignments Train profile HMM from seed alignment Hand-chosen score threshold(s) Automatic classification/alignment of all other

protein sequences

% of human proteins containing ≥ 1 PFAM domain

Version	Date	#Families	Coverage
25.0	3/2011	12273	75
27.0	3/2013	I 483 I	90
31.0	3/2017	16712	
32.0	9/2018	17929	
33.1	5/2020	18259	

refinements

Pseudocounts (with 20 aa's & few training seqs, count = 0 common; adding A > 0 helps)

$$e_i(a) = rac{C_{i,a} + A \cdot q_a}{\sum_a C_{i,a} + A}, \ A \sim 20, \ q_a = \ {
m background} \ {
m (~50 \ training \ sequences)}$$

Pseudocount "mixtures", e.g. separate pseudocount vectors for various contexts (hydrophobic regions, buried regions,...)

(~10-20 training sequences)

Weighting: may need to down weight highly similar sequences to reflect phylogenetic or sampling biases, etc.

Match/insert assignment: Simple threshold, e.g. "> 50% gap ⇒ insert", may be suboptimal. Can use forward-algorithm-like dynamic programming to compute max *a posteriori* assignment.

Products of many probabilities → 0
For Viterbi: just add logs
For forward/backward: also work with logs, but you need sums of products, so need
"log-of-sum-of-product-of-exp-of-logs", e.g., by table/interpolation
Keep high precision and perhaps scale factor
Working with log-odds also helps.

Define it as well as you can.

In principle, you can allow all transitions and hope to learn their probabilities from data, but it usually works poorly – too many local optima

More general: possible (but slower)

HMM Summary

Inference

- Viterbi best single path
- Forward sum over all paths
- Backward similar
- Posterior decoding
- Model building
 - Semi-supervised typically fix architecture (e.g. profile
 - HMM), then learn parameters
 - Baum-Welch training via EM and forward/backward
 - (aka the forward/backward algorithm)
 - Viterbi training also "EM-like", but Viterbi-based

(max of products)

(sum of products)

HMM Summary (cont.)

Search: Viterbi or forward Scoring: Odds ratio to background Z-score E-values, etc., too Excellent tools available (HMMer, Pfam, ...) Very widely used for bioseq analysis (& elsewhere)