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5 – Motifs: Representation & Discovery
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Outline
Previously: Learning from data

  MLE: Max Likelihood Estimators
  EM: Expectation Maximization (MLE w/hidden data)

These Slides: 
    Bio: Expression & regulation

Expression: creation of gene products
Regulation: when/where/how much of each gene 
product; complex and critical

    Comp: using MLE/EM to find regulatory motifs in      
         biological sequence data
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Gene Expression & 
Regulation
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Gene Expression

Recall a gene is a DNA sequence for a protein 
To say a gene is expressed means that it

• is transcribed from DNA to RNA
• the mRNA is processed in various ways
• is exported from the nucleus (eukaryotes)
• is translated into protein

A key point: not all genes are expressed all the 
time, in all cells, or at equal levels
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Alberts, et al.

RNA 
Transcription
Some genes heavily transcribed 

(many are not)
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Regulation
In most cells, pro- or eukaryote, easily a 10,000-fold 
difference between least- and most-highly expressed 
genes
Regulation happens at all steps.  E.g., some genes are 
highly transcribed, some are not transcribed at all, 
some transcripts can be sequestered then released, 
or rapidly degraded, some are weakly translated, 
some are very actively translated, ...
All are important, but below, focus on 1st step only:  
  ✦ transcriptional regulation
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 E. coli growth 
on  glucose + lactose

http://en.wikipedia.org/wiki/Lac_operon
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(DNA)

(RNA)
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   site

no expression                  

no expression                  

LacI  
Repressor           

high expression                           

low (“basal”) expression                           

(CAP)



1965 Nobel Prize 
Physiology or Medicine

François Jacob,  Jacques Monod,  André Lwoff

1920-2013          1910-1976              1902-1994

9



The sea urchin Strongylocentrotus purpuratus
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Sea Urchin - Endo16
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DNA Binding Proteins

A variety of DNA binding proteins (so-called 
“transcription factors”;  a significant fraction, 
perhaps 5-10%, of all human proteins) 
modulate transcription of protein coding 
genes
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The Double Helix

Los Alamos Science
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In the 
groove
Different 
patterns of 
potential H 
bonds at 
edges of 
different base 
pairs, 
accessible esp. 
in major 
groove
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Helix-Turn-Helix DNA Binding Motif
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H-T-H Dimers

Bind 2 DNA patches, ~ 1 turn apart
Increases both specificity and affinity

17

(from lacZ ex.)



LacI Repressor + DNA
(a tetrameric HTH protein)

18https://en.wikipedia.org/wiki/Lac_operon; Image: SocratesJedi - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17148773



Zinc Finger Motif
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Overheard at the Halloween Party

WWW.PHDCOMICS.COM
© Jorge Cham 10/29/2008
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Leucine Zipper Motif

Homo-/hetero-dimers 
and combinatorial 

control

Alberts, et al.
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MyoD

http://www.rcsb.org/pdb/explore/jmol.do?structureId=1MDY&bionumber=1
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We understand some  
Protein/DNA interactions 
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But the overall DNA binding 
“code” still defies prediction

CAP

24CAP, LacI repressor, and others bend DNA



Summary

Proteins can “bind” DNA to regulate gene 
expression (i.e., production of proteins, 
including themselves)

This is widespread

Complex, combinatorial control is both 
possible and commonplace
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Sequence Motifs
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Sequence Motifs
Motif:  “a recurring salient thematic element”

Last few slides described structural motifs in 
proteins

Equally interesting are the sequence motifs in 
DNA to which these proteins bind - e.g. , one 
leucine zipper dimer might bind (with varying 
affinities) to dozens or hundreds of similar 
sequences
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DNA binding site 
summary

Complex “code”

Short patches (4-8 bp)

Often near each other (1 turn = 10 bp)

Often reverse-complements (dimer symmetry)

Not perfect matches
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Example: E. coli Promoters

“TATA Box”  ~ 10bp upstream of 
transcription start
How to define it?

Consensus is TATAAT
BUT all differ from it
Allow k mismatches?
Equally weighted?
Wildcards like R,Y?  ({A,G}, {C,T}, resp.)

TACGAT
TAAAAT
TATACT
GATAAT
TATGAT
TATGTT

29



E. coli Promoters
“TATA Box” - consensus TATAAT  
   ~10bp upstream of transcription start
Not exact: of 168 studied (mid 80’s)
– nearly all had 2/3 of TAxyzT
– 80-90% had all 3
– 50% agreed in each of x,y,z
– no perfect match

Other common features at -35, etc.
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TATA Box Frequencies

pos
base       1 2 3 4 5 6

A 2 95 26 59 51 1

C 9 2 14 13 20 3

G 10 1 16 15 13 0

T 79 3 44 13 17 96
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TATA Scores 
A “Weight Matrix Model” or “WMM”
pos

base       1 2 3 4 5 6

A -36 19 1 12 10 -46

C -15 -36 -8 -9 -3 -31

G -13 -46 -6 -7 -9 -46(?)

T 17 -31 8 -9 -6 19
score = 10 log2 foreground:background odds ratio, rounded 32

Arbitrary



A -36 19 1 12 10 -46
C -15 -36 -8 -9 -3 -31
G -13 -46 -6 -7 -9 -46
T 17 -31 8 -9 -6 19

A -36 19 1 12 10 -46
C -15 -36 -8 -9 -3 -31
G -13 -46 -6 -7 -9 -46
T 17 -31 8 -9 -6 19

A -36 19 1 12 10 -46
C -15 -36 -8 -9 -3 -31
G -13 -46 -6 -7 -9 -46
T 17 -31 8 -9 -6 19

Scanning for TATA

Stormo, Ann. Rev. Biophys.  Biophys Chem, 17, 1988, 241-263

= -91

= -90

= 85

A C T A T A A T C G

A C T A T A A T C G

A C T A T A A T C G
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Scanning for TATA 

A C T A T A A T C G A T C G A T G C T A G C A T G C G G A T A T G A T
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See also slide 66
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TATA Scan at 2 genes
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35 See slide 47



Score Distribution 
(Simulated)
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Weight Matrices: 
Statistics

Assume:

fb,i = frequency of base b in position i in TATA

fb  = frequency of base b in all sequences

Log likelihood ratio, given S = B1B2...B6:
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Neyman-Pearson

Given a sample x1, x2, ..., xn, from a distribution  
f(...|Θ) with parameter Θ, want to test 
hypothesis Θ = θ1 vs Θ = θ2.

Might as well look at likelihood ratio:

    f(x1, x2, ..., xn|θ1)  

    f(x1, x2, ..., xn|θ2) 

(or log likelihood ratio)

>  τ
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Score Distribution 
(Simulated)
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What’s best WMM?

Given, say, 168 sequences s1, s2, ..., sk of length 6, 
assumed to be generated at random 
according to a WMM defined by 6 x (4-1) 
unknown parameters θ, what’s the best θ?

E.g., what’s MLE for θ given data s1, s2, ..., sk?

Answer: like coin flips or dice rolls, count 
frequencies per position.   (Possible HW?)
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Weight Matrices: 
Biophysics

Experiments show ~80% correlation of log 
likelihood weight matrix scores to measured 
binding energies  [Fields & Stormo, 1994]

I.e., 
log prob ∝ energy

“independence assumption” ⇒ 

probabilities multiply & energies are additive
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ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG

Freq.  Col 1 Col 2 Col 3
A 0.625 0 0
C 0 0 0
G 0.25 0 1
T 0.125 1 0

LLR  Col 1 Col 2 Col 3
A 1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2
T -1 2 -∞

Another WMM example

log2
fxi,i

fxi

, fxi =
1
4

8 Sequences:

Log-Likelihood Ratio:
(uniform 
background)
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• E. coli - DNA approximately 25%  A, C, G, T

• M. jannaschi - 68% A-T,  32% G-C

LLR from previous  
example, assuming 

e.g., G in col 3 is 8 x more likely via WMM 
than background, so (log2) score = 3 (bits).

LLR  Col 1 Col 2 Col 3
A 0.74 -∞ -∞
C -∞ -∞ -∞
G 1 -∞ 3
T -1.58 1.42 -∞

Non-uniform Background

fA = fT = 3/8
fC = fG = 1/8
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Relative entropy 



AKA Kullback-Liebler Divergence,  
AKA Information Content

Given distributions P, Q 

Notes:  
   

Relative Entropy

H(P ||Q) =
∑

x∈Ω

P (x) log
P (x)
Q(x)

Undefined if 0 = Q(x) < P (x)

Let P (x) log
P (x)
Q(x)

= 0 if P (x) = 0 [since lim
y→0

y log y = 0]

≥ 0

Intuitively “distance”, 
but technically not, 
since it’s asymmetric

45
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• Intuition:  A quantitative measure of how much P “diverges” from 
Q.  (Think “distance,” but note it’s not symmetric.)
• If P ≈ Q everywhere, then log(P/Q) ≈ 0, so H(P||Q) ≈ 0
• But as they differ more, sum is pulled above 0 (next 2 slides)

• What it means quantitatively: Suppose you sample x, but aren’t 
sure whether you’re sampling from P (call it the “null model”) or 
from Q (the “alternate model”).  Then log(P(x)/Q(x)) is the log 
likelihood ratio of the two models given that datum.  H(P||Q) is 
the expected per sample contribution to the log likelihood ratio for 
discriminating between those two models.

• Exercise: if H(P||Q) = 0.1, say.  Assuming Q is the correct model, 
how many samples would you need to confidently (say, with 
1000:1 odds) reject P?

Relative Entropy
H(P ||Q) =

∑

x∈Ω

P (x) log
P (x)
Q(x)
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lnx ≤ x − 1

− lnx ≥ 1 − x
ln(1/x) ≥ 1 − x

lnx ≥ 1 − 1/x
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Theorem: H(P ||Q) ≥ 0

Furthermore:  H(P||Q) = 0 if and only if P = Q
Bottom line:  “bigger” means “more different”

H(P ||Q) =
∑

x P (x) log P (x)
Q(x)

≥
∑

x P (x)
(
1 − Q(x)

P (x)

)

=
∑

x(P (x) − Q(x))

=
∑

x P (x) −
∑

x Q(x)

= 1 − 1

= 0

Idea: if P ≠ Q, then

P(x)>Q(x) ⇒ log(P(x)/Q(x))>0 

and

P(y)<Q(y) ⇒ log(P(y)/Q(y))<0  

Q: Can this pull H(P||Q) < 0?  
A: No, as theorem shows.  
Intuitive reason: sum is 
weighted by P(x), which is 
bigger at the positive log ratios 
vs the negative ones.



WMM: How “Informative”? 
Mean score of site vs bkg?
For any fixed length sequence x, let 
P(x)  = Prob. of x according to WMM 
Q(x) = Prob. of x according to background
Relative Entropy: 

H(P||Q) is expected log likelihood score of a 
sequence randomly chosen from WMM (wrt background);  

-H(Q||P) is expected score of Background (wrt WMM)

Expected score difference: H(P||Q) + H(Q||P)

H(P ||Q) =
∑

x∈Ω

P (x) log2
P (x)
Q(x)

H(P||Q)-H(Q||P)

49



WMM Scores vs 
Relative Entropy
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-H(Q||P) = -6.8

H(P||Q) = 5.0

On average, foreground model scores > background by 11.8 bits 
(score difference of 118 on 10x scale used in examples above).   

211.8 ≈ 3566, which is good, since many more non-TATA than TATA 50
See slide 36



For a WMM: 

where Pi and Qi are the WMM/background 

distributions for column i.

Proof: exercise

Hint: Use the assumption of independence 
between WMM columns

H(P ||Q) =
∑

i H(Pi||Qi)
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Freq.  Col 1 Col 2 Col 3
A 0.625 0 0
C 0 0 0
G 0.25 0 1
T 0.125 1 0

LLR  Col 1 Col 2 Col 3
A 1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2
T -1 2 -∞

RelEnt 0.7 2 2 4.7

LLR  Col 1 Col 2 Col 3
A 0.74 -∞ -∞
C -∞ -∞ -∞
G 1 -∞ 3
T -1.58 1.42 -∞

RelEnt 0.51 1.42 3 4.93

WMM Example, cont.

Uniform Non-uniform
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Pseudocounts

Are the -∞’s a problem?
Are you certain that a given residue never 
occurs in a given pos?  Then -∞ just right.
Else, it may be a small-sample artifact

Typical fix: add a pseudocount to each observed 
count–small constant (often 1.0; but needn't be) 

Sounds ad hoc; there is a Bayesian justification
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WMM Summary

Weight Matrix Model (aka Position Weight Matrix, PWM, 
Position Specific Scoring Matrix, PSSM, “possum”, 0th order 
Markov model)

Simple statistical model assuming independence 
between adjacent positions

To build: count (+ pseudocount) letter frequency per 
position, log likelihood ratio to background

To scan: add LLRs per position, compare to threshold
Generalizations to higher order models (i.e., letter 

frequency per position, conditional on neighbor) also 
possible, with enough training data (kth order MM)
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How-to Questions

Given aligned motif instances, build model?
Frequency counts (above, maybe w/ pseudocounts)

Given a model, find (probable) instances
Scanning, as above

Given unaligned strings thought to contain a 
motif, find it?  (e.g., upstream regions of co-
expressed genes)

Hard ... rest of lecture.
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Motif Discovery
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Motif Discovery

Based on the above, a natural 
approach to motif discovery, 
given, say, unaligned upstream 
sequences of genes thought to 
be co-regulated, is to find a set 
of subsequences of max relative 
entropy

57

cgatcTACGATaca…
  tagTAAAATtttc…
 ccgaTATACTcc…
   ggGATAATgagg…
 gactTATGATaa…
   ccTATGTTtgcc…

Unfortunately, this is NP-hard [Akutsu]



Motif Discovery:  
4 example approaches
Brute Force

Greedy search

Expectation Maximization

Gibbs sampler
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Brute Force
Input:

Motif length L, plus sequences s1, s2, ..., sk (all of length n+L-1, 
say), each with one instance of an unknown motif

Algorithm:
Build all k-tuples of length L subsequences, one from each of 
s1, s2, ..., sk (nk such tuples)
Compute relative entropy of each
Pick best
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Brute Force, II
Input:

Motif length L, plus seqs s1, s2, ..., sk (all of length n+L-1, say), 
each with one instance of an unknown motif

Algorithm in more detail:

Build singletons: each len L subseq of each s1, s2, ..., sk (nk sets)

Extend to pairs: len L subseqs of each pair of seqs (n2(  ) sets)

Then triples:  len L subseqs of each triple of seqs (n3(  ) sets)

Repeat until all have k sequences (nk(  ) sets)

(n+1)k in total; compute relative entropy of each; pick best
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Example

Three sequences (A, B, C), each with  
two possible motif positions (0,1)

A0 A1 B0 B1 C0 C1

A0,B0 A0,B1 A0, C0 A0, C1 A1, B0 A1, B1 A1,C0 A1, C1 B0, C0 B0, C1 B1,C0 B1,C1

∅

A0, B0, 
C0

A0, B0, 
C1

A0, B1, 
C0

A0, B1, 
C1

A1, B0, 
C0

A1, B0, 
C1

A1, B1, 
C0

A1, B1, 
C1

61
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Greedy Best-First 
[Hertz, Hartzell & Stormo, 1989, 1990]

Input:
Sequences s1, s2, ..., sk; motif length L; 

“breadth” d, say d = 1000
Algorithm:

As in brute, but discard all but best d  
relative entropies at each stage

us
ua

l  
“g

re
ed

y”
  p

ro
bl

em
s

X

XX

d=
2
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Yi,j =
{

1 if motif in sequence i begins at position j
0 otherwise

Expectation Maximization 
[MEME, Bailey & Elkan, 1995]

Input (as above):
Sequences s1, s2, ..., sk; motif length l; background 
model; again assume one instance per sequence 
(variants possible)

Algorithm: EM
Visible data: the sequences
Hidden data: where’s the motif 

Parameters θ: The WMM
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MEME Outline
Typical EM algorithm:

Parameters θ(t)
 at tth iteration,  used to estimate 

where the motif instances are (the hidden variables)

Use those estimates to re-estimate the parameters θ 
to maximize likelihood of observed data, giving θ(t+1)

Repeat

Key: given a few good matches to best motif, 
expect to pick more
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Cartoon Example

65

CATGACTAGCATAATCCGAT
TATAATTTCCCAGGGATAACA
TACAATAGGACCATAGAATGCGC

xATAyz

xATAAz
CATGACTAGCATAATCCGAT
TATAATTTCCCAGGGATAACA
TACAATAGGACCATAGAATGCGC

TAtAAT
    CATGACTAGCATAATCCGAT
             TATAATTTCCCAGGGATAACA
TACAATAGGACCATAGAATGCGC

CATAAT
CATGAC
GATAAC
TATAAT
CATAGA
TAGAAT
AATAGG
xATAAz

CATAAT
GATAAC
TATAAT
TAGAAT
TACAAT
TAtAAT



Ŷi,j = E(Yi,j | si, θt)

= P (Yi,j = 1 | si, θt)

= P (si | Yi,j = 1, θt)P (Yi,j=1|θt)
P (si|θt)

= cP (si | Yi,j = 1, θt)

= c′
∏l

k=1 P (si,j+k−1 | θt)

where c′ is chosen so that
∑

j Ŷi,j = 1.

E = 0 · P (0) + 1 · P (1)

Bayes

Expectation Step 
(where are the motif instances?)

1 3 5 7 9 11 ...

Sequence i

Ŷi,j}∑=1

Recall slide 34
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Q(θ | θt) = EY ∼θt [log P (s, Y | θ)]

= EY ∼θt [log
∏k

i=1 P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1 log P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log P (si, Yi,j = 1 | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log(P (si | Yi,j = 1, θ)P (Yi,j = 1 | θ))]

=
∑k

i=1

∑|si|−l+1
j=1 EY ∼θt [Yi,j ] log P (si | Yi,j = 1, θ) + C

=
∑k

i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Maximization Step 
(what is the motif?)

Find θ maximizing expected log likelihood: 

67
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Exercise: Show this is 
maximized by “counting” 
letter frequencies over all 
possible motif instances, 
with counts weighted by           

, again the “obvious” 
thing.

M-Step (cont.)
Q(θ | θt) =

∑k
i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Ŷi,j

s1 : ACGGATT. . .
. . .

sk : GC. . . TCGGAC

Ŷ1,1 ACGG
Ŷ1,2 CGGA
Ŷ1,3 GGAT

...
...

Ŷk,l−1 CGGA
Ŷk,l GGAC
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Initialization

1. Try every motif-length substring, and use as 
initial θ a WMM with, say, 80% of weight on 
that sequence, rest uniform

2. Run a few iterations of each

3. Run best few to convergence

(Having a supercomputer helps) 
http://meme-suite.org
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What Data?

Upstream regions of many genes (find widely 
shared motifs, like TATA)

Upstream regions of co-regulated genes (find 
shared, but more specific, motifs involved in 
that regulation)

ChIP seq data (find motifs bound by specific 
proteins)  (slide 90) 
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The Gibbs Sampler 

Lawrence, et al.  “Detecting Subtle Sequence Signals:  A 
Gibbs Sampling Strategy for Multiple Sequence 

Alignment,” Science 1993

Another Motif 
Discovery Approach
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Geman & Geman, IEEE PAMI 1984

Hastings, Biometrika, 1970

Metropolis, Rosenbluth, Rosenbluth, Teller & 
Teller, “Equations of State Calculations by Fast 
Computing Machines,” J. Chem. Phys. 1953

Josiah Williard Gibbs, 1839-1903,  American 
physicist, a pioneer of thermodynamics

Some History
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An old problem: 
k random variables:
Joint distribution (p.d.f.): 
Some function:     
Want Expected Value:

x1, x2, . . . , xk

P (x1, x2, . . . , xk)

E(f(x1, x2, . . . , xk))
f(x1, x2, . . . , xk)

How to Average
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Approach 1: direct integration  
   (rarely solvable analytically, esp. in high dim)
Approach 2: numerical integration  
   (often difficult, e.g., unstable, esp. in high dim)
Approach 3: Monte Carlo integration 
    sample                                   and average:

E(f(x1, x2, . . . , xk)) =∫

x1

∫

x2

· · ·
∫

xk

f(x1, x2, . . . , xk) · P (x1, x2, . . . , xk)dx1dx2 . . . dxk

E(f(!x)) ≈ 1
n

∑n
i=1 f(!x(i))

!x(1), !x(2), . . . !x(n) ∼ P (!x)

How to Average
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• Independent sampling also often hard, but not 
required for expectation

• MCMC                                 w/ stationary dist = P

• Simplest & most common: Gibbs Sampling 

• Algorithm 
for t = 1 to ∞ 
   for i = 1 to k do : 

P (xi | x1, x2, . . . , xi−1, xi+1, . . . , xk)

xt+1,i ∼ P (xt+1,i | xt+1,1, xt+1,2, . . . , xt+1,i−1, xt,i+1, . . . , xt,k)

t+1    t

!Xt+1 ∼ P ( !Xt+1 | !Xt)

Markov Chain Monte 
Carlo (MCMC)

77



1 3 5 7 9 11 ...

Sequence i

Ŷi,j
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Input: again assume sequences s1, s2, ..., sk 

with one length w motif per sequence

Motif model:  WMM

Parameters:  Where are the motifs? 
for 1 ≤ i ≤ k, have 1 ≤ xi ≤ |si|-w+1
“Full conditional”:  to calc 

build WMM from motifs in all sequences 
except i, then calc prob that motif in ith seq 
occurs at j by usual “scanning” alg.  

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)
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Randomly initialize xi’s 

for t = 1 to ∞ 
   for i = 1 to k  
      discard motif instance from si;  

      recalc WMM from rest 
      for j = 1 ... |si|-w+1 

         calculate prob that ith motif is at j: 

         pick new xi according to that distribution 

Similar to 
MEME, but it 
would 
average over, 
rather than 
sample from

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)

Overall Gibbs Alg
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Burnin - how long must we run the chain to 
reach stationarity?

Mixing - how long a post-burnin sample must 
we take to get a good sample of the 
stationary distribution?  In particular:

Samples are not independent; may not  
“move” freely through the sample space
E.g., may be many isolated modes

Issues
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“Phase Shift” - may settle on suboptimal 
solution that overlaps part of motif. 
Periodically try moving all motif instances a 
few spaces left or right.

Algorithmic adjustment of pattern width: 
Periodically add/remove flanking positions to 
maximize (roughly) average relative entropy 
per position

Multiple patterns per string

Variants & Extensions
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13 tools

Real ‘motifs’ (Transfac)

56 data sets (human, mouse, fly, yeast)

‘Real’, ‘generic’, ‘Markov’

Expert users, top prediction only

“Blind” – sort of

Methodology
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$ Greed
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Lessons
Evaluation is hard (esp. when “truth” is unknown)

Accuracy low

partly reflects limitations in evaluation 
methodology (e.g. ≤ 1 prediction per data set; 
results better in synth data)

partly reflects difficult task, limited knowledge (e.g. 
yeast > others)

No clear winner re methods or models
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ChIP-seq
Chromatin ImmunoPrecipitation 

Sequencing
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ChIP-seq
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TF Binding Site Motifs 
From ChIPseq

LOTS of data

E.g. 103–105 sites, hundreds of reads each  
(plus perhaps even more nonspecific)

Motif variability

Co-factor binding sites
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ABSTRACT

Motivation: High-throughput ChIP-seq studies typically identify thou-

sands of peaks for a single transcription factor (TF). It is common for

traditional motif discovery tools to predict motifs that are statistically

significant against a naı̈ve background distribution but are of question-

able biological relevance.

Results: We describe a simple yet effective algorithm for discovering

differential motifs between two sequence datasets that is effective in

eliminating systematic biases and scalable to large datasets. Tested

on 207 ENCODE ChIP-seq datasets, our method identifies correct

motifs in 78% of the datasets with known motifs, demonstrating

improvement in both accuracy and efficiency compared with

DREME, another state-of-art discriminative motif discovery tool.

More interestingly, on the remaining more challenging datasets, we

identify common technical or biological factors that compromise the

motif search results and use advanced features of our tool to control

for these factors. We also present case studies demonstrating the

ability of our method to detect single base pair differences in DNA

specificity of two similar TFs. Lastly, we demonstrate discovery of

key TF motifs involved in tissue specification by examination of

high-throughput DNase accessibility data.

Availability: The motifRG package is publically available via the

bioconductor repository.

Contact: yzizhen@fhcrc.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The emergence of high-throughput sequencing technology for
genome-wide profiling of transcription factor binding sites
(TFBS) has made precise categorization of their DNA motifs
possible. Harnessing the power of large quantities of data gen-
erated by this technology presents many computational chal-
lenges. Motif discovery is a classical bioinformatics problem
and has been an active area of research for decades. Existing

tools can be roughly classified as profile-based, such as MEME
(Bailey and Elkan, 1995), or pattern-based like CONSENSUS
(Hertz and Stormo, 1999) [see (Tompa et al., 2005) for a review
and performance study of popular motif discovery tools]. Most
of these tools, however, do not easily scale to large datasets.
Users typically limit the motif search to top ranking peaks,
thus sacrifice the power of the data, which may be critical for
accurate modeling of the TFBS and for identification of cofac-
tors. Large amounts of data also increase the power to detect
various non-random signals, many of which may not be directly
related to the problem of interest. The new challenge is to under-
stand the nature of motif signals and determine the relevant ones.
We propose to test the motif enrichment in a foreground dataset
against an explicitly stated background dataset, rather against a
non-informative null distribution. The background dataset
should be carefully selected to represent the systematic biases
present in the foreground.
Discriminative motif discovery is not a new approach.

Pioneering work includes, but is not limited to, DME (Smith
et al., 2006), DIPS (Sinha, 2006) and DEME (Redhead and
Bailey, 2007). These methods find a discriminative position
weight matrix (PWM) to optimize an objective function, which
for the case of DEME and DME, is the likelihood of the data
given the model and sequence class. However, the optimization
procedures of many of these methods are computationally
expensive, making them unsuitable for large datasets. Recent
works designed for high-throughput datasets use more simplified
statistical models. For example, DREME [MEME suite (Bailey,
2011)] and oligo-diff [RSAT suite (Thomas-Chollier et al., 2012)]
use Fisher’s exact test and PeakRegressor (Pessiot et al., 2010)
applies a linear regression model to fit peak scores by motif
counts.
In this study, we propose a new discriminative motif discovery

algorithm motifRG that distinguishes two sequence datasets.
We measure the discriminative power of a motif by a logistic
regression model, which shows some similarity to DREME
and PeakRegressor, but offers a better combination of robust-
ness and flexibility. We also provide an effective and efficient
iterative process for motif refinement and extension and apply
a bootstrap robustness test to avoid over-fitting in the optimiza-
tion process. The logistic regression framework offers direct*To whom correspondence should be addressed.
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measurement of statistical significance, and we demonstrate by
permutation tests that the associated z statistics reflect the prob-
ability of occurrence by chance. This framework also provides
flexibility to handle existing bias between the two datasets, and to
weight the sequences according to their importance, both import-
ant features when dealing with some challenging datasets (see
Section 3 for details). The method is implemented in R (R
Development Core Team, 2010) Bioconductor Core Team, and
is publicly available via the Bioconductor (Gentleman et al.,
2004) repository.
We applied this method in a comprehensive motif study of 207

ENCODE ChIP-seq datasets for TFBS. Under the default set-
ting, motifRG successfully discovered accurate motifs in 78% of
the datasets with known motifs, demonstrating its flexibility
in handling diverse applications. In many cases, biologically
plausible cofactor motifs are also discovered. Compared with
DREME, motifRG had comparable performance at identifying
the core motif, and generally ran about 40% faster. Its advan-
tages over DREME in terms of both accuracy and efficiency are
more obvious for longer motifs and motifs with degenerate
flanking sequences, probably due to a more effective refinement
procedure. By exploring the cases where we fail to detect known
motifs, we identify several common factors likely to compromise
the motif search results and propose strategies that exploit the
flexibility of motifRG to deal with these challenges. Using one
in-depth case study, we demonstrate the power of discriminative
motif analysis for the study of DNA binding specificity of similar
members of one protein family. We also show that this tool can
be applied to DNaseI accessibility datasets to identify TFBS that
are enriched at cell type specific accessible sites, which may act as
key regulators of cell lineage specific chromatin remodeling.
Ourmethod, and discriminativemotif discovery in general, rep-

resents powerful tools to exploit various types of high-throughput
datasets to answer many fundamental biological questions.

2 METHODS

2.1 Logistic regression modeling of motifs
We cast the problem of discriminative motif discovery in the framework
of logistic regression. For a given motif, let x be the motif count in each
sequence. The basic assumption of logistic regression is that sequences
with equal motif counts have equal probabilities P of containing binding
sites, and that the logarithm of the odds ratio is linearly related to the
count:

log
p

1! p
¼ !0 þ !1x

More generally, we fit

log
p

1! p
¼ !0 þ !1xþ !2w

where w represents $1 optional terms reflecting other biases such as GC
content. Model parameters (!i) are estimated by the principle of max-
imum likelihood. The statistical significance of each coefficient !i is esti-

mated by a Wald test, which calculates Z-statistics: Z ¼ ~!i
se, where

~!i is the

maximum likelihood estimate of !i and se the estimated standard error of
!i. The z value is then squared, yielding a Wald statistic with a chi-square
distribution (Hosmer and Lemeshow, 2000; Sinha, 2006). Our motif
search optimization goal is to find a motif representation with maximum
absolute z-value. As motif counts have few unique values, we tabulate the

all values of x and fit the model with only the unique values, weighting
each unique value by its count. For applications in which the sequences
are weighted, the weight for each unique value is the sum of all weights of
the sequences with the given value. This reduced representation speeds up
the logistic regression model significantly for large datasets.

Regression was introduced to motif search by pioneering work of
Bussemaker et al. (2001), which models the correlation of motif occur-
rences and gene expression by linear regression. A similar model was
adopted by PeakRegressor for applications for ChIP-Seq datasets,
which uses peak scores as response. A potential pitfall of this model is
sensitivity to outliers. PeakRegressor tried to avoid the problem of out-
liers by using different regularization techniques such as L1-norm, ridge
regression and so forth, which involve additional parameterization.
Recent study suggests that other factors such as chromatin accessibility
(John et al., 2011; Neph et al., 2012) are likely to have greater effect on
intensities of ChIP-Seq signal than motif counts. We believe logistic
regression is an appropriate choice for this application because it offers
a good combination of flexibility and robustness.

2.2 Search strategy

We start by enumerating all nmers with a given width n, fitting the above
regression model and sorting the nmers by the absolute z-value. The most
significant nmer is chosen as the seed motif. To address the concern that
candidates with small enrichment can be highly statistical significant in
large datasets, we set an enrichment ratio threshold for the seed motif to
ensure that the enrichment is biologically meaningful. We further refine
the seed motif by extension and small perturbations by testing all variants
with Hamming distance of one over the full IUPAC nucleotide alphabet.
The general flow chart of this method is shown in Figure 1.

To extend the seed, we append a given number f of Ns at both sides of
the motif and enumerate all replacements of one N letter by a more
specific letter in the IUPAC alphabet. We choose the one with maximum
absolute z-value, which becomes the new motif if it improves the z-value,
and repeat this process. If no further improvement can be made at the
current motif length, append additional Ns to both ends so that each side
still has f Ns. If no replacement of Ns yields a better motif, terminate
and trim all flanking Ns. This process is illustrated in Supplementary
Figure S1B.

Next, we try to refine the motif by small perturbations. We enumerate
all candidates with Hamming distance of one that are compatible with the
seed and not previously tested. We then choose the candidate with the
most improved z-value as the new motif. Repeat this process until no
improvement can be made. This process is illustrated in Supplementary
Figure S1C.

If there are any changes made to the seed at extension or permutation
steps, the whole refinement process is repeated. Conceptually, we can
examine all extension and perturbation candidates at the same time.
We find that separating the two steps yields better performance and

Fig. 1. motifRG method outline (see also Supplementary Fig. S1)
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cuts down memory usage by decreasing the search space. We perform the
extension step first, as we think it is more important to determine the full-
length signature of the motif. In the extension step, the maximum number
of candidates tested is 2fM where f is the number of flanking Ns on each
side, and M the size of IUPAC alphabet. In the perturbation step, the
maximum number is lM, where l is the length of the pattern. The per-
turbed patterns must be compatible with the initial seed motif, and we
filter the candidates by requiring either an increase of total foreground
counts or a decrease of total background counts, so the number of
allowed candidates is a lot smaller. Using this strategy we can afford to
extend the motif as long as needed.

The refinement step can be subject to over-fitting, as a small z-value
improvement may not be meaningful. To improve robustness, we per-
form the following bootstrap test to determine the significance of the im-
provement: randomly sample the whole sequence dataset (including
positive and negative sequences) with replacement for a few times (default
5 times), calculate the z-values for the new and the original motif for
each sampling and compute the P-value by applying t-tests on two sets
of z-values. Accept the new motif if the P-value is under a given thresh-
old. Although the number of bootstraps we performed is small, we found
the variance estimate is reasonably accurate and informative to guide
refinement to be more aggressive or conservative (see Section 3 for
details).

Candidate enumeration, evaluation and bootstrap validation can be
performed in parallel in each iteration, and parallelization is implemented
by the ‘parallel’ package of Bioconductor. After refining the top motif, we
mask all of its occurrences and repeat the process to find the next motif.

3 RESULTS

3.1 motifRG accurately predicted annotated motifs

To assess the performance of our method for de novo motif dis-
covery in a real world application under different conditions, we
tested it on 207 ENCODE ChIP-seq datasets collected from two
groups, HAIB_TFBS by HudsonAlpha and SYDH_TFBS by
Yale and UCD (see Supplementary Table S1 for the complete
list). This dataset covers 82 unique TFs and 25 cell types with
different characteristics: the number of peaks varies from a few
hundreds to hundreds of thousands, the average GC content
ranges from 0.40 to 0.66 and median peak width varies from
100 to 1000 nucleotides (Supplementary Fig. S2). We made a
number of decisions to standardize/simplify the analysis and be-
lieve they have no real effect on the outcome. If the number of
peaks exceeded 50K, we randomly sampled 50K peaks. This
approach was further justified by the analysis presented below
in section ‘Motif significance and sample size’, which examines
the effect of number of peaks on motif prediction. For each peak
in each dataset, we first chose one corresponding background
sequence from the flanking regions, randomly chosen from
either side 0–200 nt from the edge of the peak, and with the
same width as the peak. We then predicted up to five enriched
motifs. Our software also identifies depleted motifs, but they
were ignored here. To find the annotated motif of the ChIP-ed
TF, we matched TF names/aliases with the motif names in the
motif databases Jaspar (Bryne et al., 2008; Redhead and Bailey,
2007) and Uniprobe (Newburger and Bulyk, 2009). If no exact
matches were found, we used the motif of a homolog; e.g. we
annotated Atf3 using the Atf1 motif. We then compared the
PWMs derived from the top five predicted motifs against the
motif database using Tomtom (Tanaka et al., 2011) with default

settings. We claimed success in finding the annotated motif if it
was among the Tomtom reported matches. We compared our
results to DREME, which was run on the same sets of fore-
ground and background sequences under the default setting
with maximum of five output motifs.
Among 148 ENCODE datasets with annotated motifs for the

TF, motifRG identifies a match to the annotated motif in 115
and does not identify a match in 33. By this criterion, we suc-
ceeded in finding the right motifs in 78% of datasets. In com-
parison, DREME found annotated motif in 116 datasets, almost
the same set as ours.
We hypothesized that the annotated motifs are not enriched

significantly in the datasets where motifRG and/or DREME
failed. To test this hypothesis, we scanned for the best PWM
match of the annotated motif in each sequence in both the fore-
ground and the corresponding background datasets, and com-
puted AUC (the area under the receiver operating characteristic
curve) (Brown, 2006) by varying the PWM threshold to discrim-
inate foreground from background. The datasets for which we
failed to find the motifs generally have low AUC, which suggest
low enrichment of the annotated motif relative to the control
(Fig. 2A). Therefore, we believe that failure to discover the
annotated motifs was likely due to the lack of the TF motif
enrichment in the datasets, rather than to the failure of the al-
gorithms. We plot the P-values inferred by Tomtom for motifs
predicted by motifRG and DREME against each other in
Figure 2B. The two methods predict similar motifs most of the

Fig. 2. Performance evaluation of motifRG and DREME. (A) AUC
scores for datasets with known motifs. The ROC curve is calculated
using the best PWM scores of each sequence based on the annotated
motif and measuring the discrimination between foreground and back-
ground as the PWM score threshold is varied. The datasets in which both
motifRG and DREME found motifs matching to the database are
marked by circle, DREME only by plus, motifRG only by triangle
and neither by cross. (B) Accuracy for matches of predicted motifs to
annotated motifs based on P-values inferred by Tomtom in–log10 trans-
formation. Datasets corresponding to the same TF are marked by the
same colors and symbols. The TFs of datasets in which motifRG and
DREME performed significantly differently are shown. (C) Comparison
of running time (in seconds) for motifRG and DREME
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flanking preference of CAGCTG E-box of these factors
(Fig. 4 B3).

3.3 Application to cell type specific accessible sites

Discriminative motif analysis can be applied to any high-
throughput sequence datasets besides ChIP-Seq data. We used
this method to identify key TFs that are involved in regulation of
cell type-specific chromatin remodeling using DNaseI hypersen-
sitivity data. We collected 211 DNaseI hypersensitivity datasets
from the ENCODE Web site. Combining highly similar ones
yielded 77 profiles. We defined cell type-specific accessible sites

as the sites that are shared by !5 profiles. To predict motifs in
each set of cell type specific sites, we chose background as the
random sampling of the cell type-specific sites in all cell types
that do not overlap with the foreground. The predicted motifs
for a set of well-studied cell types are shown in Figure 5 (full
results in Supplementary Table S4). We found many key TFs
that are known to regulate the given cell type. For example, we
found motifs for Oct4 (annotated as Pou2f2), Sox2 and GC-rich
motifs that mimic KLF4 (annotated as MZF1 and ASCL2) in
Nt2d1, an embryonic cell line. All these factors are well known to
be markers of cell pluripotency. We found motifs for IRF1 in B
cells, a key factor for immune response. In various lymphocyte
cells, we found motifs for E2A (annotated as TCFE2A), Runx
and ETS family TFs (annotated as SPIB, ELF5, SFPI1), all of
which are critical immune system regulators. For various differ-
ential epithelial cells in kidney, colon, lung, breast, pancrease and
prostate, FOX family motifs are dominant and motifs for HNF
family are enriched in kidney and colon. Similarly, we found
significant enrichment of various Homeobox, NeuroD and
Zic2 motifs in nervous system and MyoD motifs in skeletal
muscle. A recent ENCODE study (Neph et al., 2012) used
motifs in curated databases or de novo predicted motifs to scan
accessible regions and compute enrichment in the given cell type.
We offer a more direct alternative by combining motif prediction
and discriminative analysis. The predicted motifs are conse-
quently optimized to highlight the distinction between fore-
ground and background, thus likely to be more informative in
this setting.

3.4 Motif significance and sample size

We have shown that our method can discover biologically rele-
vant motifs in a wide range of biological samples and application
settings. Here, we also give evidence that the z-value calculated
by our software is a true indication of a motif’s statistical signifi-
cance, and that the method is robust to variation in sample size
and motif enrichment level. To quantify motif significance, we
use the z-value statistic from the logistic regression model as the
‘motif score.’ To test its validity, we performed the following
experiment on the MyoD ChIP-seq dataset: we randomly
sampled 1–64K sequences from the combined foreground and
background datasets and then randomly permuted the class
labels within each sample. We repeated the permutation
5 times. The z-values for all enumerated 6mers in each permuta-
tion are approximately normally distributed, as shown by quan-
tile–quantile plots (Supplementary Fig. S5A), indicating an
accurate reflection of true statistical significance.
To determine how the z-scores of enriched motifs change with

sample size, we plotted the distribution of z-values for all 6mers
using samples from 1 to 64K, and highlight CAGCTG, which is
identified as the most significant 6mer using all the data.
CAGCTG is consistently the most significant motif for each
sample size (Fig. 6A), and the motif score is linear with the
square root of the sample size (Supplementary Fig. S5B), in
accord with the central limit theorem. We also tested how the
motif scores correlate with motif enrichment level. For each sam-
pling with size from 1 to 64K, we randomly kept 20, 40 to 100%
of the original foreground samples and replaced the remaining
foreground sequences with background sequences while keeping

Fig. 4. Predicting the specificity of similar bHLH TFs. (A1) Predicted
PWMs for MyoD (left) and NeuroD2 (right), (A2) Discriminative motifs
based on direct comparison of MyoD sites (foreground) with NeuroD2
sites (background), suggesting MyoD and NeuroD2 preferred ebox and
cofactor motifs. (B1 and B2) Comparison of MyoD and MSC. Similar to
A1 and A2. (B3) Gel shift demonstrating that MSC/E12 heterodimer
binds strongly at CCAGCTGG and MyoD/E12 binds weakly, whereas
GCAGCTGC binds strongly to both MyoD/E12 and MSC/E12. MSC
homodimer also binds stronger at CCAGCTGG than GCAGCTGC
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flanking preference of CAGCTG E-box of these factors
(Fig. 4 B3).

3.3 Application to cell type specific accessible sites

Discriminative motif analysis can be applied to any high-
throughput sequence datasets besides ChIP-Seq data. We used
this method to identify key TFs that are involved in regulation of
cell type-specific chromatin remodeling using DNaseI hypersen-
sitivity data. We collected 211 DNaseI hypersensitivity datasets
from the ENCODE Web site. Combining highly similar ones
yielded 77 profiles. We defined cell type-specific accessible sites

as the sites that are shared by !5 profiles. To predict motifs in
each set of cell type specific sites, we chose background as the
random sampling of the cell type-specific sites in all cell types
that do not overlap with the foreground. The predicted motifs
for a set of well-studied cell types are shown in Figure 5 (full
results in Supplementary Table S4). We found many key TFs
that are known to regulate the given cell type. For example, we
found motifs for Oct4 (annotated as Pou2f2), Sox2 and GC-rich
motifs that mimic KLF4 (annotated as MZF1 and ASCL2) in
Nt2d1, an embryonic cell line. All these factors are well known to
be markers of cell pluripotency. We found motifs for IRF1 in B
cells, a key factor for immune response. In various lymphocyte
cells, we found motifs for E2A (annotated as TCFE2A), Runx
and ETS family TFs (annotated as SPIB, ELF5, SFPI1), all of
which are critical immune system regulators. For various differ-
ential epithelial cells in kidney, colon, lung, breast, pancrease and
prostate, FOX family motifs are dominant and motifs for HNF
family are enriched in kidney and colon. Similarly, we found
significant enrichment of various Homeobox, NeuroD and
Zic2 motifs in nervous system and MyoD motifs in skeletal
muscle. A recent ENCODE study (Neph et al., 2012) used
motifs in curated databases or de novo predicted motifs to scan
accessible regions and compute enrichment in the given cell type.
We offer a more direct alternative by combining motif prediction
and discriminative analysis. The predicted motifs are conse-
quently optimized to highlight the distinction between fore-
ground and background, thus likely to be more informative in
this setting.

3.4 Motif significance and sample size

We have shown that our method can discover biologically rele-
vant motifs in a wide range of biological samples and application
settings. Here, we also give evidence that the z-value calculated
by our software is a true indication of a motif’s statistical signifi-
cance, and that the method is robust to variation in sample size
and motif enrichment level. To quantify motif significance, we
use the z-value statistic from the logistic regression model as the
‘motif score.’ To test its validity, we performed the following
experiment on the MyoD ChIP-seq dataset: we randomly
sampled 1–64K sequences from the combined foreground and
background datasets and then randomly permuted the class
labels within each sample. We repeated the permutation
5 times. The z-values for all enumerated 6mers in each permuta-
tion are approximately normally distributed, as shown by quan-
tile–quantile plots (Supplementary Fig. S5A), indicating an
accurate reflection of true statistical significance.
To determine how the z-scores of enriched motifs change with

sample size, we plotted the distribution of z-values for all 6mers
using samples from 1 to 64K, and highlight CAGCTG, which is
identified as the most significant 6mer using all the data.
CAGCTG is consistently the most significant motif for each
sample size (Fig. 6A), and the motif score is linear with the
square root of the sample size (Supplementary Fig. S5B), in
accord with the central limit theorem. We also tested how the
motif scores correlate with motif enrichment level. For each sam-
pling with size from 1 to 64K, we randomly kept 20, 40 to 100%
of the original foreground samples and replaced the remaining
foreground sequences with background sequences while keeping

Fig. 4. Predicting the specificity of similar bHLH TFs. (A1) Predicted
PWMs for MyoD (left) and NeuroD2 (right), (A2) Discriminative motifs
based on direct comparison of MyoD sites (foreground) with NeuroD2
sites (background), suggesting MyoD and NeuroD2 preferred ebox and
cofactor motifs. (B1 and B2) Comparison of MyoD and MSC. Similar to
A1 and A2. (B3) Gel shift demonstrating that MSC/E12 heterodimer
binds strongly at CCAGCTGG and MyoD/E12 binds weakly, whereas
GCAGCTGC binds strongly to both MyoD/E12 and MSC/E12. MSC
homodimer also binds stronger at CCAGCTGG than GCAGCTGC
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flanking preference of CAGCTG E-box of these factors
(Fig. 4 B3).

3.3 Application to cell type specific accessible sites

Discriminative motif analysis can be applied to any high-
throughput sequence datasets besides ChIP-Seq data. We used
this method to identify key TFs that are involved in regulation of
cell type-specific chromatin remodeling using DNaseI hypersen-
sitivity data. We collected 211 DNaseI hypersensitivity datasets
from the ENCODE Web site. Combining highly similar ones
yielded 77 profiles. We defined cell type-specific accessible sites

as the sites that are shared by !5 profiles. To predict motifs in
each set of cell type specific sites, we chose background as the
random sampling of the cell type-specific sites in all cell types
that do not overlap with the foreground. The predicted motifs
for a set of well-studied cell types are shown in Figure 5 (full
results in Supplementary Table S4). We found many key TFs
that are known to regulate the given cell type. For example, we
found motifs for Oct4 (annotated as Pou2f2), Sox2 and GC-rich
motifs that mimic KLF4 (annotated as MZF1 and ASCL2) in
Nt2d1, an embryonic cell line. All these factors are well known to
be markers of cell pluripotency. We found motifs for IRF1 in B
cells, a key factor for immune response. In various lymphocyte
cells, we found motifs for E2A (annotated as TCFE2A), Runx
and ETS family TFs (annotated as SPIB, ELF5, SFPI1), all of
which are critical immune system regulators. For various differ-
ential epithelial cells in kidney, colon, lung, breast, pancrease and
prostate, FOX family motifs are dominant and motifs for HNF
family are enriched in kidney and colon. Similarly, we found
significant enrichment of various Homeobox, NeuroD and
Zic2 motifs in nervous system and MyoD motifs in skeletal
muscle. A recent ENCODE study (Neph et al., 2012) used
motifs in curated databases or de novo predicted motifs to scan
accessible regions and compute enrichment in the given cell type.
We offer a more direct alternative by combining motif prediction
and discriminative analysis. The predicted motifs are conse-
quently optimized to highlight the distinction between fore-
ground and background, thus likely to be more informative in
this setting.

3.4 Motif significance and sample size

We have shown that our method can discover biologically rele-
vant motifs in a wide range of biological samples and application
settings. Here, we also give evidence that the z-value calculated
by our software is a true indication of a motif’s statistical signifi-
cance, and that the method is robust to variation in sample size
and motif enrichment level. To quantify motif significance, we
use the z-value statistic from the logistic regression model as the
‘motif score.’ To test its validity, we performed the following
experiment on the MyoD ChIP-seq dataset: we randomly
sampled 1–64K sequences from the combined foreground and
background datasets and then randomly permuted the class
labels within each sample. We repeated the permutation
5 times. The z-values for all enumerated 6mers in each permuta-
tion are approximately normally distributed, as shown by quan-
tile–quantile plots (Supplementary Fig. S5A), indicating an
accurate reflection of true statistical significance.
To determine how the z-scores of enriched motifs change with

sample size, we plotted the distribution of z-values for all 6mers
using samples from 1 to 64K, and highlight CAGCTG, which is
identified as the most significant 6mer using all the data.
CAGCTG is consistently the most significant motif for each
sample size (Fig. 6A), and the motif score is linear with the
square root of the sample size (Supplementary Fig. S5B), in
accord with the central limit theorem. We also tested how the
motif scores correlate with motif enrichment level. For each sam-
pling with size from 1 to 64K, we randomly kept 20, 40 to 100%
of the original foreground samples and replaced the remaining
foreground sequences with background sequences while keeping

Fig. 4. Predicting the specificity of similar bHLH TFs. (A1) Predicted
PWMs for MyoD (left) and NeuroD2 (right), (A2) Discriminative motifs
based on direct comparison of MyoD sites (foreground) with NeuroD2
sites (background), suggesting MyoD and NeuroD2 preferred ebox and
cofactor motifs. (B1 and B2) Comparison of MyoD and MSC. Similar to
A1 and A2. (B3) Gel shift demonstrating that MSC/E12 heterodimer
binds strongly at CCAGCTGG and MyoD/E12 binds weakly, whereas
GCAGCTGC binds strongly to both MyoD/E12 and MSC/E12. MSC
homodimer also binds stronger at CCAGCTGG than GCAGCTGC
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Motif Discovery 
Summary

Important problem: a key to understanding gene regulation

Hard problem: short, degenerate signals amidst much noise

Many variants have been tried, for representation, search, 
and discovery.  We looked at only a few:

Weight matrix models for representation & search

Relative Entropy for evaluation/comparison

Greedy, MEME and Gibbs for discovery

Still room for improvement.  E.g., ChIP-seq and Comparative 
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