CSEP 527 Computational Biology Autumn 2020
 Lectures 2-4
 Sequence Alignment

20au Survey Results

Describe your experience in each of the following areas. ("None" is a ...

This week

Sequence alignment
Weekly "bio" interlude - DNA replication More sequence alignment

What is an alignment?

Compare two strings to see how "similar" they are
E.g., maximize the \# of identical chars that line up

But we'll see more
subtle measures

> ATGTTAT vs
> ATCGTAC

A	T	-	G	T	T	A	T
A	T	C	G	T	-	A	C

What is an alignment?

Compare two strings to see how "similar" they are
E.g., maximize the \# of identical chars that line up

But we'll see more
subtle measures

> ATGTTAT vs
> ATCGTAC

Sequence Alignment: Why

Biology
Among most widely used comp. tools in biology
DNA sequencing \& assembly
New sequence always compared to data bases
Similar sequences often have similar origin and/or function
Recognizable similarity after $10^{8}-10^{9} \mathrm{yr}$
Other
spell check/correct, diff, svn/git/..., plagiarism, ...

BLAST Demo

http://www.ncbi.nlm.nih.gov/blast/

click "protein blast"
get seq from: http://www.uniprot.org/uniprot/P15172 i.e.:
>sp|P15172|MYOD1_HUMAN Myoblast determination protein 1 OS=Homo sapiens GN=MYOD1 PE=1 SV=3
MELLSPPLRDVDLTÄPDGSLCSFATTDDFYDDPCFDSPDLRFFEDLDPRLMHVGALLKPE
EHSHFPAAVHPAPGAREDEHVRAPSGHHQAGRCLLWACKACKRKTTNADRRKAATMRERR
RLSKVNEAFETLKRCTSSNPNQRLPKVEILRNAIRYIEGLQALLRDQDAAPPGAAAAFYA PGPLPPGRGGEHYSGDSDASSPRSNCSDGMMDYSGPPSGARRRNCYEGAYYNEAPSEPRP GKSAAVSSLDCLSSIVERISTESPAAPALLLADVPSESPPRRQEAAAPSEGESSGDPTQS PDAAPQCPAGANPNPIYQVL
in blast window, paste "P15172" (or fasta above) in "query" box
adjust "alg parameters" to get top 1000 hits (or more)
click "BLAST" button.
scrolling to bottom of hits list \& click may download all alignments, (otherwise it seems to download only 4 or 5 more when you scroll to bottom)

Also check out the "Graphic Summary", "Alignments", "Taxonomy" tabs, + "Distance tree of results"

CSEP 527 Computational Biology Autumn 2020 Lecture 3
 Sequence Alignment

DNA, RNA, 3', 5', ...

https://en.wikipedia.org/wiki/Ribose

Nucleotides

What is an alignment?

Compare two strings to see how "similar" they are
E.g., maximize the \# of identical chars that line up

But we'll see more
subtle measures

> ATGTTAT vs
> ATCGTAC

Terminology

string ordered list of letters
consecutive
letters from
front, ≥ 0

subsequence any ordered, nonconsecutive letters,
i.e. AAA, TAG
suffix consecutive letters from back, ≥ 0
substring consecutive letters from anywhere

Formal definition of an alignment

An alignment of strings S, T is a pair of strings S^{\prime}, T ' with dash characters "-" inserted, so that

1. $\left|S^{\prime}\right|=\left|T^{\prime}\right|$, and $\quad\left(|S|=\right.$ "length of $\left.S^{\prime \prime}\right)$
2. Removing dashes leaves S, T

Consecutive dashes are called "a gap."
(NB: this is a defn for a general alignment, not necessarily optimal.)

Scoring an arbitrary alignment

Define a score for pairs of aligned chars, e.g.

$$
\sigma(x, y)=\left\{\begin{array}{lc|l}
\text { match } & 2 & \text { (Toy scores for } \\
\text { mismatch } & -1 & \text { examples in slides })
\end{array}\right.
$$

Apply that per column, then add.

$$
\begin{array}{cccccccc}
a & c & - & - & g & c & t & g \\
- & 1 & a & t & 1 & 1 & & \\
& \mathrm{c} & \mathrm{a} & \mathrm{t} & \mathrm{~g} & \mathrm{t} & - & - \\
-1 & +2 & -1 & -1 & +2 & -1 & -1 & -1
\end{array}
$$

Total Score $=-2$

More Realistic Scores: BLOSUM 62

(the " σ " scores)

		A	R	N	D		Q			G	H						F	P			W	Y	Y
A		4	-1	-2	-2		-1	-1		0	-2			-1	-1	1	-2	-1	1	0	-3	-2	20
R		-1	5	0	-2	-3	1	0		-2	0	-3	-2	2	2 -1	1	-3	-2	-1	-1	-3	-2	2
N		-2	0	6	1	-3	0	0		0	1	-3	-3	0	-2	2	-3	-2	1	0	-4	-2	
D		-2	-2	1	6	-3	0	0		-1	-1	-3	-4	1	-3	-	-3	-1		-1	-4	-3	-3
c		0	-3	-3	-3	9	-3	-4		-3	-3	-1	-1	-3	-1	1	-2	-3	-1	-1	-2	-2	-1
Q		-1	1	0	0	-3	5	5		-2	0	-3				0	-3			-1	-2	-1	- -2
E		-1	0	0	2	-4	2	5		-2	0	-3	-3	-	-2	-	-3			-1	-3	-2	-2
G		0	-2	0	-1	-3	-2	-2		6	-2	-4	-4	4 -2	-3	-	-3	-2		-2	-2	-3	-3
H		-2			-1	-3	0			-2	8	-3			-2	2	-1	-2	-1	-2			
1		-1	-3	-3	-3	-1	-3	-		-4	-3	4		-3		1	0	-3	-2	-1	-3	-1	
			-2	-3	-4		-2	-3	3	-4	-3			4 -2		2	0		-2	-		-1	
K		-1	2	0	-1	-3	1	1		-2	-1	-3	-2		5 -1		-3			-1		-2	2
				-2	-3	-1		-2		-3	-2			$2-1$			0			-1			
F		-2	-3	-3	-3	-2	-3	-3	-	-3	-1	0	0	0-3	0	0	6	-4	-2	-2		3	
P		-1	-2	-2	-1	-3	-1	-1	1	-2	-2	-3	-3	3-1	1 -2	2	-4	7	-1	-1	-4	-3	
S		1	-1	1	0	-1	0	0		0	-1	-2	-2	2	-1		-2	-1		1	-3		
T			-1	0	-1	-1	-1	1		-2	-2	-1		1 -1	-1		-2	-1		5	-2	-2	2
w			-3	-4	-4	-2	-2	-3			-2			2 -3	-1			-4					-
Y			-2	-2	-3		-1	-2						1 -2					-2	-2			
			-3											1 -2								1	

Optimal Alignment: A Simple Algorithm

for all subseqs A of S, B of T s.t. $|A|=|B|$ do align $A[i]$ with $B[i], 1 \leq i \leq|A|$ align all other chars to spaces compute its value retain the max end

$S=\operatorname{agct}$	$A=c t$
$T=w x y z$	$B=x z$
$-a g c-t$	$a-g c-t$
$w--x y z$	$-w-x y z$

output the retained alignment

Analysis

Assume $|\mathrm{S}|=|\mathrm{T}|=\mathrm{n}$
Cost of evaluating one alignment: $\geq \mathrm{n}$
$\begin{gathered}\text { How many alignments are there: } \\ \text { pick } \mathrm{n} \text { chars of } \mathrm{S}, \mathrm{T} \text { together }\end{gathered} \geq\binom{ 2 n}{n}$ say k of them are in S match these k to the k unpicked chars of T , rest to -
Total time: $\geq n\binom{2 n}{n}>2^{2 n}$, for $n>3$
E.g., for $n=20$, time is $>2^{40}$ operations

Polynomial vs Exponential Growth

Asymptotic Analysis

How does run time grow as a function of problem size?

$$
n^{2} \text { or } 100 n^{2}+100 n+100 \text { vs } 2^{2 n}
$$

Defn: $f(n)=O(g(n))$ iff there is a constant c s.t. $|f(n)| \leq c g(n)$ for all sufficiently large n.
$100 n^{2}+100 n+100=O\left(n^{2}\right) \quad$ e.g. $\left.c=101\right]$
$\mathrm{n}^{2}=\mathrm{O}\left(2^{2 \mathrm{n}}\right)$
$2^{2 n}$ is not $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Big-O Example

$$
f(n)=O(g(n))=O\left(g^{\prime}(n)\right)
$$

Utility of Asymptotics

"All things being equal," smaller asymptotic growth rate is better
All things are never equal
Even so, big-O bounds often let you quickly pick most promising candidates among competing algorithms
Poly time algs often practical; non-poly algs seldom are.
(Yes, there are exceptions.)

Fibonacci Numbers (recursion)

fibr(n) \{
if $(\mathrm{n}<=1)$ \{
return n;
\} else \{
return fibr(n-1) + fibr(n-2);
Simple recursion, but many repeated subproblems!!
\Rightarrow
Time $=\Omega\left(1.61^{n}\right)$
\}
\}

Call tree - start

Full call tree

Fibonacci, II (dynamic programming)

int fibd[n];

fibd[0] = 0 ;
fibd[1] $=1$;
for(i=2; i<=n; i++) \{
fibd[i] $=$ fibd[i-1] + fibd[[i-2];
\}

Avoid repeated subproblems by tabulating their solutions

$$
\Rightarrow
$$

Time $=O(n)$
(in this case)
return fibd[n];

When can we use Dynamic Programming?

1. Can we decompose into subproblems?
E.g., can we align smaller substrings (say, prefix/suffix in this case), then combine them somehow?
2. Do we have optimal substructure?
I.e., is optimal solution to a subproblem independent of context? E.g., is appending two optimal alignments also optimal? Perhaps, but some changes at the interface might be needed?

Optimal Substructure (In More Detail)

Optimal alignment ends in 1 of 3 ways: last chars of S \& T aligned with each other last char of S aligned with dash in T last char of T aligned with dash in S (assume $\sigma(-,-)<0$, so never align dash with dash)
In each case, the rest of S \& T should be optimally aligned to each other

Optimal Alignment in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ via "Dynamic Programming"

Input: S, T, $|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}$
Output: value of optimal alignment
Easier to solve a "harder" problem:
$V(i, j)=$ value of optimal alignment of S[1], ..., S[i] with T[1], ..., T[j] for all $0 \leq i \leq n, 0 \leq j \leq m$.

Base Cases

$\mathrm{V}(\mathrm{i}, \mathrm{O})$: first i chars of S all match dashes

$$
V(i, 0)=\sum_{k=1}^{i} \sigma(S[k],-)
$$

$\mathrm{V}(0, \mathrm{j})$: first j chars of T all match dashes

$$
V(0, j)=\sum_{k=1}^{j} \sigma(-, T[k])
$$

General Case

Opt align of $\mathrm{S}[1], \ldots, \mathrm{S}[i]$ vs $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$:

$\left[\begin{array}{cc}\sim \sim \sim & S[i] \\ \sim \sim \sim & T[j]\end{array}\right], \quad\left[\begin{array}{cc}\sim \sim \sim \sim & S[i] \\ \sim \sim \sim \sim & -\end{array}\right]$, or $\left[\begin{array}{cc}\sim \sim \sim \sim & - \\ \sim \sim \sim \sim & T[j]\end{array}\right]$

$$
\begin{aligned}
& \text { Opt align of } \\
& \mathrm{S}_{1} \ldots \mathrm{~S}_{\mathrm{i}-1} \text { \& } \\
& V(i, j)=\max \left\{\begin{array}{l}
V(i-1, j-1)+\sigma(S[i], T[j]) \\
V(i-1, j)+\sigma(S[i],-) \\
V(i, j-1)+\sigma(-, T[j])
\end{array}\right\},
\end{aligned}
$$

for all $1 \leq i \leq n, 1 \leq j \leq m$.

Calculating One Entry

$$
V(i, j)=\max \left\{\begin{array}{ll}
V(i-1, j-1)+\sigma(S[i], T[j]) \\
V(i-1, j) & +\sigma(S[i],-) \\
V(i, j-1) & +\sigma(-, T[j])
\end{array}\right\}
$$

Example

$$
\begin{aligned}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{aligned}
$$

i	j	0	1 c	2 a	3 t	4 g	5 t
0		0	-1	-2	-3	-4	-5
1	a	-1					
2	c	-2		c		(c,-	$=-1$
3	g	-3					
4	C	-4					
5	t	-5					
6	g	-6					

Example

$$
\begin{array}{ll}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{array}
$$

i	j	0	1 c	2 a	3 t	4 g	5 t
0		0	-1	-2	-3	-4	-5
1	a	-1					
2	c	-2					
3	g	-3	a	Sco	(-,a	-1	
4	c	-4					
5	t	-5					
6	g	-6					

Example

$$
\begin{array}{ll}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{array}
$$

i	j	0	1 c	2 a	3 t	4 g	5 t
0		0	-1	-2	-3	-4	-5
1	a	-1					
2	c	-2					
3	g	-3					
4	C	-4		Scor	(-,c		
5	t	-5	-1				
6	g	-6					

Example

$$
\begin{aligned}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{aligned}
$$

Example

$$
\begin{array}{ll}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{array}
$$

i	j	0	1	2 a	3 t	4 g	5 t	$\leftarrow T$
0		0	-1	-2	-3	-4	-5	
1	a	-1	-1	1				Time = O(mn)
2	c	-2	1					
3	g	-3						
4	c	-4						
5	t	-5						
6	g	-6						
	S							36

Example

$$
\begin{aligned}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{aligned}
$$

i	j	0	1 c	2 a	3 t	4 g	5 t	$\leftarrow T$
0		0	-1	-2	-3	-4	-5	
1	a	-1	-1	1	0	-1	-2	
2	c	-2	1	0	0	-1	-2	
3	g	-3	0	0	-1	2	1	
4	C	-4	-1	-1	-1	1	1	
5	t	-5	-2	-2	1	0	3	
6	g	-6	-3	-3	0	3	2	

Finding Alignments: Trace Back

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths = 3 optimal alignments

i	j	0	1 c	2 a	3 t	4 g	5 t	$\leftarrow T$
0		(0)	-1	-2	-3	-4	-5	
1	a	-1	-1	(1)	0	-1	-2	
2	c	-2	(1)	0	(0)	-1	-2	
3	g	-3	(0)	0	-1	(2)	1	
4	C	-4	-1	-1	-1	(1)	1	
5	t	-5	-2	-2	(1)	0	(3)	
6	g	-6	-3	-3	0	(3)	(2)	

Finding Alignments: Trace Back

Arrows $=$ (ties for) max in $V(i, j) ; 3$ LR-to-UL paths $=3$ optimal alignments

NB: trace back follows max terms (pink boxes; ngbr+ σ), not max neighbors (white boxes). E.g., TB from yellow cell is only diagonal (ngbr= -1 , term=1), not to the equally-good horizontal neighbor (term=-2)

Complexity Notes

Time $=\mathrm{O}(\mathrm{mn})$, (value and alignment)
Space $=O(m n)$
Easy to get value in Time $=O(m n)$ and Space $=O(\min (m, n))$

Possible to get value and alignment in Time $=O(m n)$ and Space $=O(\min (m, n))$, but tricky (DEKM 2.6)

CSEP 527 Computational Biology Autumn 2020

Lecture 4
Sequence Alignment, Part II
Local Alignment \& Gaps

Variations

Local Alignment
Preceding gives global alignment, i.e. full length of both strings;
Might well miss strong similarity of part of strings amidst dissimilar flanks
Gap Penalties
10 adjacent dashes cost 10 x one dash?
Many others
Similarly fast DP algs often possible

Local Alignment: Motivations

"Interesting" (evolutionarily conserved, functionally related) segments may be a small part of the whole
"Active site" of a protein
Scattered genes or exons amidst "junk", e.g. retroviral insertions, large deletions
Don't have whole sequence
Global alignment might miss them if flanking junk outweighs similar regions

Local Alignment

Optimal local alignment of strings S \& T: Find substrings A of S and B of T having max value global alignment

$$
\begin{array}{ll}
S=\operatorname{abc} \times d e x & A=c \times d e \\
T=x x x c d e & B=c-d e \text { value }=5(\text { toy } \sigma)
\end{array}
$$

Local Alignment: "Obvious" Algorithm

for all substrings A of S and B of T :
Align A \& B via dynamic programming Retain pair with max value
end ;
Output the retained pair
Time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ choices for $\mathrm{A}, \mathrm{O}\left(\mathrm{m}^{2}\right)$ for B , $\mathrm{O}(\mathrm{nm})$ for DP, so $\mathrm{O}\left(\mathrm{n}^{3} \mathrm{~m}^{3}\right)$ total.
[Best possible? Lots of redundant work...]

Local Alignment in $\mathrm{O}(\mathrm{nm})$ via Dynamic Programming

Input: $\mathrm{S}, \mathrm{T},|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}$
Output: value of optimal local alignment
Better to solve a "harder" problem for all $0 \leq i \leq n, 0 \leq j \leq m$:
$\mathrm{V}(\mathrm{i}, \mathrm{j})=$ max value of opt (global) alignment of a suffix of S[1], ..., S[i] with a suffix of T[1], ..., T[j]
Report best i, j

Base Cases

Assume $\sigma(\mathrm{x},-)<0, \sigma(-, \mathrm{x})<0$
$\mathrm{V}(\mathrm{i}, 0)$: some suffix of first i chars of S ; all match dashes in T; best suffix is empty
$V(i, 0)=0$
$V(0, j)$: similar
$V(0, j)=0$

General Case Recurrences

Opt suffix align $\mathrm{S}[1], \ldots, \mathrm{S}[i]$ vs $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$:

Opt align of
 suffix of $S_{1} \ldots S_{i-1}$ \& $T_{1} \ldots T_{j-1}$

for all $1 \leq i \leq n, 1 \leq j \leq m$.

Scoring Local Alignments

	j	0	1	2	3	4	5	6
i			x	x	x	c	d	e
0		0	0	0	0	0	0	0
1	a	0						
2	b	0						
3	c	0						
4	x	0						
5	d	0						
6	e	0						
7	x	0						

Again, arrows
Finding Local Alignments
follow max
term (not max
neighbor)

	I	j	0	1 \times	2 \times	3 \times	4 c	5 d	6 e	$\leftarrow T$
	0		0	0	0	0	0	0	0	
One align-	1	a	0	0	0	0	0	0	0	
ment	2	b	0	0	0	(0)	0	0	0	
is:	3	C	0	0	(0)	0	(2)	1	0	
cxde	4	x	0	2	2	(2)	(1)	1	0	
What's	5	d	0	1	1	1	1	(3)	2	
the other?	6	e	0	0	0	0	0	2	(5)	
	7	\times	0	2	2	2	1	1	4	
		S								50

Notes

Time and Space $=0(m n)$
Space $O(\min (m, n))$ possible with time $\mathrm{O}(\mathrm{mn})$, but finding alignment is trickier

Local alignment: "Smith-Waterman"
Global alignment: "Needleman-Wunsch"

Sequence Evolution

"Nothing in Biology Makes Sense Except in the Light of Evolution" - Theodosius Dobzhansky, 1973

Changes happen at random
Deleterious/neutral/advantageous changes unlikely/possibly/likely spread widely in a population
Changes are less likely to be tolerated in positions involved in many/close interactions, e.g.
enzyme binding pocket
protein/protein interaction surface

Alignment With Gap Penalties

A Gap: maximal run of dashes in S^{\prime} or T^{\prime}

$$
\begin{array}{ll}
\text { ag--ttc-t } & 2 \text { gaps in } S^{\prime} \\
a---t t c g t & 1 \text { gap in } T^{\prime}
\end{array}
$$

Motivations, e.g.: mutation might insert/delete several or even many residues at once some parts of proteins less critical matching mRNA (no introns) to genomic DNA (exons and introns)

A Protein Structure: (Dihydrofolate Reductase)

Alignment of 5 Dihydrofolate reductase proteins

mouse	P 00375
human	P 00374
chicken	P 00378
fly	P 17719
yeast	P 07807

P00375
P00374
P00378
P17719
P07807

P00375
P00374
P00378
P17719
P07807

P00375
P00374

P00378
P17719
P07807
----MVRPLNCIVAVSQNMGIGKNGDLPWPPLRNEFKYFQRMTTTSSVEGKQNLVIMGRK ----MVGSLNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKK -----VRSLNS IVAVCQNMGIGKDGNLPWPPLRNEYKYFQRMTSTSHVEGKQNAVIMGKK ----MLR-FNLIVAVCENFGIGIRGDLPWR-IKSELKYFSRTTKRTSDPTKQNAVVMGRK MAGGKIPIVGIVACLQPEMGIGFRGGLPWR-LPSEMKYFRQVTSLTKDPNKKNALIMGRK

TWFSIPEKNRPLKDRINIVLSRELKEP----PRGAHFLAKSLDDALRLIEQPELASKVDM TWFSIPEKNRPLKGRINLVLSRELKEP----PQGAHFLSRSLDDALKLTEQPELANKVDM TWFSIPEKNRPLKDRINIVLSRELKEA----PKGAHYLSKSLDDALALLDSPELKSKVDM TYFGVPESKRPLPDRLNIVLSTTLQESDL--PKG-VLLCPNLETAMKILEE---QNEVEN TWES IPPKFRPLPNRMNVIISRS FKDDFVHDKERSIVQSNSLANAIMNLESN-FKEHLER *: . : . ${ }^{* * * ~ . *: *: ~: ~: ~: ~: ~ . ~ . ~ . ~ . ~ . ~}{ }^{*}$: : VWIVGGSSVYQEAMNQPGHLRLFVTRIMQEFESDTFFPEIDLGKYKLLPEYPG-------VWIVGGSSVYKEAMNHPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPG-------VWIVGGTAVYKAAMEKPINHRLFVTRILHEFESDTFFPEIDYKDFKLLTEYPG-------IWIVGGSGVYEEAMASPRCHRLYITKIMQKFDCDTFFPAIP-DSFREVAPDSD------IYVIGGGEVYSQIFSITDHWLITKINPLDKNATPAMDTFLDAKKLEEVFSEQDPAQLKEF $:::^{* *} \star \star . \quad$: \quad. : . $: ~ . ~: ~$

VLSEVQ------------EEKGIKYKFEVYEKKD---VLSDVQ------------EEKGIKYKFEVYEKND---VPADIQ------------EEDGIQYKFEVYQKSVLAQ MPLGVQ------------EENGIKFEYKILEKHS---LPPKVELPETDCDQRYSLEEKGYCFEFTLYNRK----

CLUSTAL W (1.82) multiple sequence alignment http://pir.georgetown.edu/cgibin/multialn.pl 2/11/2013

Topoisomerase I

Affine Gap Penalties

Gap penalty $=g+e^{*}($ gaplen -1$), g \geq e \geq 0$
Note: no longer suffices to know just the score of best subproblem(s) - state matters: do they end with '-' or not.

Global Alignment with Affine Gap Penalties

$V(i, j)=$ value of opt alignment of S[1], ..., S[i] with T[1], ..., T[j]
$G(i, j)=\ldots$, s.t. last pair matches $S[i] \& T[j]$
$F(i, j)=\ldots$, s.t. last pair matches $S[i] \&-$
$E(i, j)=\ldots$, s.t. last pair matches $-\& T[j]$

\mathbf{S}	\mathbf{T}
$\mathbf{x /}$	$\mathrm{x} /$
-	-

Affine Gap Algorithm

Gap penalty $=g+e^{*}($ gaplen-1 $), g \geq e \geq 0$
$\mathrm{V}(\mathrm{i}, 0)=\mathrm{E}(\mathrm{i}, 0)=\mathrm{V}(0, \mathrm{i})=\mathrm{F}(0, \mathrm{i})=-\mathrm{g}-(\mathrm{i}-1)^{*} \mathrm{e}$
$V(i, j)=\max (G(i, j), F(i, j), E(i, j))$
$G(i, j)=V(i-1, j-1)+\sigma(S[i], T[j])$
$F(\mathrm{i}, \mathrm{j})=\max (\mathrm{F}(\mathrm{i}-1, \mathrm{j})-\mathrm{e}, \mathrm{V}(\mathrm{i}-1, \mathrm{j})-\mathrm{g})$
$E(i, j)=\max (E(i, j-1)-e, V(i, j-1)-g)$ old gap new gap

\mathbf{S}	\mathbf{T}
$\mathrm{x} /$	$\mathrm{x} /$
-	-
\mathbf{x}	x
X	-
-	x

Q. Why is the " V " case a "new gap" when V includes E \& F ?

Other Gap Penalties

Score $=\mathrm{f}$ (gap length)
Kinds, \& best known alignment time

Summary: Alignment

Functionally similar proteins/DNA often have recognizably similar sequences even after eons of divergent evolution
Ability to find/compare/experiment with "same" sequence in other organisms is a huge win
Surprisingly simple scoring works well in practice: score positions separately \& add, usually w/ fancier affine gaps
Simple dynamic programming algorithms can find optimal alignments under these assumptions in poly time (product of sequence lengths)
This, and heuristic approximations to it like BLAST, are workhorse tools in molecular biology, and elsewhere.

Summary: Dynamic Programming

Keys to D.P. are to
a) Identify the subproblems (usually repeated/overlapping)
b) Solve them in a careful order so all small ones solved before they are needed by the bigger ones, and
c) Build table with solutions to the smaller ones so bigger ones just need to do table lookups (no recursion, despite recursive formulation implicit in (a))
d) Implicitly, optimal solution to whole problem devolves to optimal solutions to subproblems

A really important algorithm design paradigm

Significance of Alignment Scores

Is "42" a good score?
Compared to what?

Usual approach: compared to a specific "null model", such as "random sequences"

More on this later; a taste now, for use in next HW

Overall Alignment Significance, I Empirical p-values (via randomization)

You just searched with x, found "good" score for x:y Generate N random " y-like" sequences (say $\mathrm{N}=10^{3}-10^{6}$) Align x to each \& score
If k of them have score than better or equal to that of x to y, then the (empirical) probability of a chance alignment as good as your observed x : y alignment is $(\mathrm{k}+1) /(\mathrm{N}+1)$
e.g., if 0 of 99 are better, you can say "estimated $p \leq .01$ "

How to gen "random y-like" seqs? Scores depend on:
Length, so use same length as y
Sequence composition, so uniform $1 / 20$ or $1 / 4$ is a bad idea; even background p_{i} can be dangerous (if y unusual)
Better idea: permute y N times: exactly preserves len \& composition

Generating Random Permutations

for ($\mathrm{i}=\mathrm{n}-1$; $\mathrm{i}>0 ; \mathrm{i}--)\{$
j = random(0..i);
swap $X[i]$ <-> $X[j]$;
\}

All n ! permutations of the original data equally likely: A specific element will be last with prob $1 / n$; given that, another specific element will be next-to-last with prob $1 /(n-1), \ldots$; overall: $1 /(n!)$
C.f. http://en.wikipedia.org/wiki/Fisher-Yates shuffle and (for subtle way to go wrong) http://www.codinghorror.com/blog/2007/12/the-danger-of-naivete.htm|

