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He who asks is a fool for five
minutes, but he who does not
ask remains a fool forever.

-- Chinese Proverb
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Course Mechanics & Grading

Web

http://courses.cs.washington.edu/courses/csep527/20au

Reading

In class discussion

Homeworks o
reading blogs
paper exercises
programming

No exams, but possible oversized last
homework in lieu of final
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Moore's Law
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Growth of GenBank (Base Pairs)
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Cost per Human Genome
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Modern DNA Sequencing

A box the size of a

double oven
(but costs a bit more ... ;-)

can generate

~3 x 1072 BP of DNA
seqg/day; l.e.,

15t 30 yrs of genbank
1000 x your genome

E—
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Big Data: Astronomical or Genomical?

Stephens, et al. (2015). PLoS Biol 13(7): €1002195. doi:10.1371/journal.pbio.1002195

Table 1. Four domains of Big Data in 2025.

In each of the four domains, the projected annual storage and computing needs are presented across the data lifecycle.

Data Phase Astronomy Twitter YouTube Genomics
Acquisition 25 zetta-bytes/year  0.5-15 billion 500-900 million 1 zetta-bases/year
tweets/year hours/year
Storage 1 EB/year 1-17 PB/year 1-2 EB/year 2-40 EB/year
Analysis In situ data reduction Topic and Limited requirements Heterogeneous data and
sentiment mining analysis
Real-time processing Metadata analysis Variant calling, ~2 trillion CPU
hours
Massive volumes All-pairs genome alignments,
~10,000 trillion CPU hours
Distribution Dedicated lines from Small units of Major component of Many small (10 MB/s) and
antennae to server distribution modern user’s fewer massive (10 TB/s) data
(600 TB/s) bandwidth (10 MB/s) movements

@.PLOS ‘ BIOLOGY 13
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The Human Genome Project
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Goals

Basic biology

Drug discovery, validation & development
Disease diagnosis/prognosis/treatment
ndividualized/precision medicine
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What's all the fuss?

The human genome is “finished”...
Even if it were, that's only the beginning

Explosive growth in biological data is
revolutionizing biology & medicine

“All pre-genomic lab
techniques are obsolete”

(and computation and mathematics are
crucial to post-genomic analysis)
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CS Points of Contact &
Opportunities

Scientific visualization

Gene expression patterns, development, immune response, ...
Databases

Integration of complex, disparate, overlapping data sources

Distributed genome annotation in face of shifting underlying genomic
coordinates, individual variation, ...

Al/NLP/Text Mining

Information extraction from text with inconsistent nomenclature,
indirect interactions, incomplete/inaccurate models, ...

Machine learning

System level synthesis of cell behavior from low-level heterogeneous
data (DNA seq, gene expression, protein interaction, mass spec,...)

Algorithms

20



Computers in biology:

Trends In Biochemical Sciences .-~
Voume 12, 1987, Pages 279-280

Y __ACGGGTAA |
AC GGTAA |

Snpyright 9ONES Suheshe 'I” Flepy pr Se e e g ‘

Microfile

Sequence alignment by word processor

D. Ross Boswell

Pepartment of Hacmatolagical Medicine, University of Cambridlge Scheol of Clinicai Mediciue, Addenbrovke's |
Rnad, Cambridge B2 2Q)1., [IK
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UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly
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Course Focus & Goals

Mainly sequence analysis

Algorithms for alignment, search, & discovery
Specific sequences, general types (“genes’, etc.)
Single sequence and comparative analysis

Techniques: HMMs, EM, MLE, Gibbs, Viterbi...

Enough bio to motivate these problems
including very light intro to modern biotech supporting them

Math/stats/cs underpinnings thereof
Applied to real data
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Why Take This Course?

IT and Genomics are, and probably will remain,
the 2 most explosively transformative
technologies of your lifetimes

Even if you don’t choose to work at that
interface, having some knowledge of it will be
valuable

Hopefully, you will learn useful alg, ML, stats
techniques and ideas for how to apply them
In novel domains

25



A VERY Quick Intro To
Molecular Biology



The Genome

The hereditary info present in every cell

DNA molecule -- a long sequence of
nucleotides (A, C, T, G)

Human genome -- about 3 x 10° nucleotides

The genome project -- extract & interpret
genomic information, apply to genetics of
disease, better understand evolution, ...
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The Double Helix

Phosphate =~

to 3' carbon ‘
of sugar group \
residue
| {
CI)
O— T:’O
9
to 3' carbon
of sugar

residue

As shown, the two strands coil

about each other in a fashion such that all
the bases project inward toward the helix
axis. The two strands are held together by
hydrogen bonds (pink rods) linking each
base projecting from one backbone to its
so-called complementary base projecting
from the other backbone. The base A
always bonds to T (A and T are comple-

Deoxyribose residue

™ Nucleotide

Shown in (b)
is an uncoiled fragment of (a
three complementary base pali
chemist's viewpoint, each stral
a polymer made up of four re
called deoxyribonucleotides

Los Alamos Science S



DNA

Discovered 1869
Role as carrier of genetic information — 1940’s
4 “bases”:
adenine (A), cytosine (C), guanine (G), thymine (T)
The Double Helix - Watson & Crick (& Franklin) 1953

Complementarity
A>T C«>G

Visualization:
http://www.rcsb.org/pdb/explore.do?structureld=123D
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http://www.rcsb.org/pdb/explore.do?structureId=123D
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OH OH
OH OH OH _H
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Ribose\’ Deoxyribose

https://en.wikipedia.org/wiki/Ribose
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https://en.wikipedia.org/wiki/Ribose
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https://en.wikipedia.org/wiki/Nucleotide

Genetics - the study of heredity

A gene -- classically, an abstract heritable
attribute existing in variant forms (alleles)

ABO blood type—1 gene, 3 alleles
Mendel

Each individual has two copies of each gene

Each parent contributes one (randomly)

Independent assortment (approx, but useful)
Genotype vs phenotype

l.e., genes vs their outward manifestation

AA or AO genotype —"“type A" phenotype
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Cells

Chemicals inside a sac - a fatty layer called the
plasma membrane

Prokaryotes (bacteria, archaea) - little
recognizable substructure

Eukaryotes (all multicellular organisms, and
many single celled ones, like yeast) - genetic
material in nucleus, other organelles for other
specialized functions
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Chromosomes

1 pair of (complementary) DNA molecules
(+ protein wrapper)

Most prokaryotes: just 1 chromosome

most
Eukaryotes - git’cells have same number

of chromosomes, e.g. fruit flies 8, humans
& bats 46, rhinoceros 84, ...
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Mitosis/Melosis

Most eukaryotes are diploid - have homologous
pairs of chromosomes, one maternal, other
paternal (exception: sex chromosomes)

Mitosis - cell division, duplicate each
chromosome, 1 copy to each daughter cell

Meiosis - 2 specialized divisions form 4 haploid
gametes (egg/sperm)

Recombination/crossover -- exchange
maternal/paternal segments
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Proteins

Chain of amino acids, of 20 kinds

Proteins: the major functional elements in cells
Structural/mechanical
Enzymes (catalyze chemical reactions)

Receptors (for hormones, other signaling molecules,
odorants,...)

Transcription factors

3-D Structure is crucial: the protein folding
problem
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The “Central Dogma”

(Genes encode proteins

DNA transcribed into messenger RNA
MRNA translated into proteins

Triplet code (codons)
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Transcription: DNA — RNA

RNA
sense ;
strand 3
HEEEEEEEEEER
3’ antisense N 5° DNA
strand u
/ s Enhance,
RNA polymerase P

Repressor

Coding
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Codons & The Genetic Code

Second Base
U C A G

Phe Ser Tyr Cys U

U Phe Ser Tyr Cys C

Leu Ser Stop Stop A

Leu Ser Stop Trp G

Leu Pro His Arg U
C Leu Pro His Arg C "
o Leu Pro GIn Arg Ao
;‘3 Leu Pro Gln Arg G | m
Wl |le Thr Asn Ser u s
if A lle Thr Asn Ser C &

lle Thr Lys Arg A

Met/Start| Thr Lys Arg G

Val Ala Asp Gly U

G Val Ala Asp Gly C

Val Ala Glu Gly A

Val Ala Glu Gly G

Ala
Arg
Asn
Asp
Cys
GIn
Glu
Gly
His
lle
Leu
Lys
Met
Phe
Pro
Ser
Thr
Trp
Tyr
Val

: Alanine

: Arginine

: Asparagine

. Aspartic acid

: Cysteine

: Glutamine

: Glutamic acid
: Glycine

: Histidine

. Isoleucine

: Leucine

: Lysine

: Methionine

: Phenylalanine
: Proline

: Serine

: Threonine

: Tryptophane

: Tyrosine

: Valine 39



Translation: mRNA — Protein

Beginning of protein

{amino terminus)

Ribosome § &

. 4505

Watson, Gilman, Witkowski, & Zoller, 1992
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Ribosomes

tRNA anticodon binds
to mRNA codon

3,

Watson, Gilman, Witkowski, & Zoller, 1992
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Gene Structure

MRNA built 5’ to 3’

Promoter region and transcription factor
binding sites (usually) precede 5’ end

Transcribed region includes 5 and 3’
untranslated regions

In eukaryotes, most genes also include
Introns, spliced out before export from
nucleus, hence before translation
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Genome Sizes

Bases (Genes
SARS-CoV-2 29,903 12
Mycoplasma genitalium 580,073 483
Pandora Virus 2,900,000 2,500
E. coli 4,639,221 4,290
Saccharomyces cerevisiae 12,495,682 5,726
Caenorhabditis elegans 95,500,000 19,820
Arabidopsis thaliana 115,409,949 | 25,498
Drosophila melanogaster 122,653,977 13,472
Humans 3.3x10°| ~21,000

Amoeba dubia

~ 200 x human
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Genome Surprises

Humans have < 1/3 as many genes as expected

But perhaps more proteins than expected, due to alternative
splicing, alt start, alt end

Protein-wise, all mammals are just about the same
But more individual variation than expected

Many other non-coding regions are highly conserved, e.g., across
all vertebrates

Subset of DNA being transcribed is >> 2% coding, giving many
non-coding RNAs -- more than protein-coding genes, by some

estimates

Complex, subtle “epigenetic” information

45



... and much more ...

Read one of the many intro surveys or
books for much more info.
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Homework #0, part 2

Meet your professor!

I'd like to schedule a 5-10 minute zoom
with each of you over the next few days.

Just chat, no nefarious agenda,
ungraded.

Sign up via Google Doc linked from class
web page.
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Homework #1 (summary)

Read Hunter’s "bio for cs” primer;
Find & read another

Post a few sentences saying

What you read (give me a link or citation)
Critique it for your meeting your needs
Who would it have been good for, if not you

See class web (coming-soon) for full details
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Bio Concept Summary

cells
DNA

base pairing
genome
replication, transcription, translation
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