RNA Search and Motif Discovery

CSEP 527

Computational Biology

Previous Lecture

Many biologically interesting roles for RNA RNA secondary structure prediction

proaches to Structure

Prediction

Maximum Pairing

+ works on single sequences
+ simple
- too inaccurate

Minimum Energy

+ works on single sequences
- ignores pseudoknots
- only finds "optimal" fold

Partition Function

+ finds all folds
- ignores pseudoknots

nal pairing of $r_{i} \ldots r_{j}$ " Two possibilities

j Unpaired:
Find best pairing of $r_{i} \ldots r_{j-1}$

j Paired (with some k):
Find best $r_{i} \ldots r_{k-1}+$ best $r_{k+1} \ldots r_{j-1}$ plus I

Why is it slow?
Why do pseudoknots matter?

-omputation Order

$B(i, j)=\#$ pairs in optimal pairing of $r_{i} \ldots r_{j}$

$B(i, j)=0$ for all i, j with $i \geq j-4$; otherwise
$B(i, j)=\max$ of:
$\left\{\begin{array}{l}B(i, j-I) \\ \max \{B(i, k-I)+I+B(k+I, j-I) \mid \\ \left.i \leq k<j-4 \text { and } r_{k}-r_{j} \text { may pair }\right\}\end{array}\right.$

Loop-based energy version is better; recurrences similar, slightly messier

Loop-based Energy Minimization

Detailed experiments show it's more accurate to model based on loops, rather than just pairs Loop types
I. Hairpin loop
2. Stack
3. Bulge
4. Interior loop
5. Multiloop

Single Seq Prediction Accuracy

Mfold, Vienna,... [Nussinov, Zuker, Hofacker, McCaskill] Estimates suggest $\sim 50-75 \%$ of base pairs predicted correctly in sequences of up to ~300nt

Definitely useful, but obviously imperfect

Approaches, II

Comparative sequence analysis

+ handles all pairings (potentially incl. pseudoknots)
- requires several (many?) aligned, appropriately diverged sequences
Stochastic Context-free Grammars
Roughly combines min energy \& comparative, but no pseudoknots
Physical experiments (x-ray crystalography, NMR)

Covariation is strong evidence for base pairing

A L19 (rplS) mRNA leader

B
P2

nucleotide identity	nucleotide present
N 97\%	- 97\%
N 90\%	- 90%
N 75\%	- 75\%
	$\begin{aligned} & \text { ○ } 50 \% \\ & \text { stem loop } \\ & \text { ways present } \end{aligned}$
\square com \square com	nsatory mutations tible mutations
G - C Watson-Crick base pair G•A other base interaction	

B. subtilis L19 mRNA leader

Mutual Information

x_{k} : letter from col $k ; f_{x k}$: its freq in col $k ; f_{x i, x j}$ pair freq

$$
M_{i j}=\sum_{x i x j} f_{x i, x j} \log _{2} \frac{f_{x i, x j}}{f_{x i} f_{x j}} ; \quad 0 \leq M_{i j} \leq 2 \quad(4 \text { letters } \Rightarrow 2 \text { bits })
$$

Max when no seq conservation but perfect pairing
MI $=\left\{\begin{array}{l}\text { given letter in col } i \text {, what is mate in col } j ? \\ \text { expected score gain from using a pair state (below) }\end{array}\right.$
Finding optimal MI, (i.e., opt pairing of cols) is hard(?)
Finding optimal MI without pseudoknots can be done by dynamic programming

M.I. Example (Artificial)

MI:	1	2	3	4	5	6	7	8	9
9	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0		
7	0	0	2	0.30	0	1			
6	0	0	1	0.55	1				
5	0	0	0	0.42					
4	0	0	0.30						
3	0	0							
2	0								
1									

Cols $1 \& 9,2 \& 8$: perfect conservation \& might be base-paired, but unclear whether they are. M.I. $=0$

Cols 3 \& 7: No conservation, but always W-C pairs, so seems likely they do base-pair. M.I. = 2 bits.

Cols 7->6: unconserved, but each letter in 7 has only 2 possible mates in 6 . M.I. $=1$ bit.

MI-Based Structure-Learning

Problem: Find best (max total MI) pseudo-knot-free subset of column pairs among i...j.

Solution: "Just like Nussinov/Zucker folding"

$$
S_{i, j}=\max \left\{\begin{array}{lr}
S_{i, j-1} & \text { j unpaired } \\
\max _{i \leq k<j-4} S_{i, k-1}+M_{k, j}+S_{k+1, j-1} & \text { j paired }
\end{array}\right.
$$

BUT, need the right data-enough sequences at the right phylogenetic distance

Computational Problems

How to predict secondary structureHow to model an RNA "motif"
(l.e., sequence/structure pattern)

Given a motif, how to search for instances
Given (unaligned) sequences, find motifs
How to score discovered motifs
How to leverage prior knowledge

Motif Description

RNA Motif Models

"Covariance Models" (Eddy \& Durbin 1994)
aka profile stochastic context-free grammars (Sakakibara 94)
aka hidden Markov models on steroids
Model position-specific nucleotide preferences and base-pair preferences

Pro: accurate
Con: model building hard, search slow

Eddy \& Durbin I994: What

A probabilistic model for RNA families
The "Covariance Model"
\approx A Stochastic Context-Free Grammar
A generalization of a profile HMM
Algorithms for Training
From aligned or unaligned sequences
Automates "comparative analysis"
Complements Nusinov/Zucker RNA folding
Algorithms for searching

Main Results

Very accurate search for tRNA
(Precursor to tRNAscanSE - a very good tRNA-finder)
Given sufficient data, model construction comparable to, but not quite as good as, human experts
Some quantitative info on importance of pseudoknots and other tertiary features

Probabilistic Model Search

As with HMMs, given a sequence:
You calculate likelihood ratio that the model could generate the sequence, vs a background model
You set a score threshold
Anything above threshold \rightarrow a "hit"

Scoring:

"Forward" / "Inside" algorithm - sum over all paths
Viterbi approximation - find single best path
(Bonus: alignment \& structure prediction)

Example:

number of hits

Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.
$\mathrm{M}_{\mathrm{j}}: \quad$ Match states (20 emission probabilities)
$\mathrm{l}: \quad$ Insert states (Background emission probabilities)
$\mathrm{D}_{\mathrm{j}}: \quad$ Delete states (silent - no emission)

How to model an RNA "Motif"?

Conceptually, start with a profile HMM:
from a multiple alignment, estimate nucleotide/ insert/delete preferences for each position
given a new seq, estimate likelihood that it could be generated by the model, \& align it to the model

How to model an RNA "Motif"?

Add "column pairs" and pair emission probabilities for base-paired regions

Figure 5.2 The transition structure of a profile HMM.
$\mathrm{M}_{\mathrm{j}}: \quad$ Match states (20 emission probabilities)
l : \quad Insert states (Background emission probabilities)
$\mathrm{D}_{\mathrm{j}}: \quad$ Delete states (silent - no emission)

CM Structure

A: Sequence + structure
B: the CM "guide tree"
C: probabilities of letters/ pairs \& of indels

Think of each branch being an HMM emitting both sides of a helix (but 3 ' side emitted in reverse order)

CM Viterbi Alignment (the "inside" algorithm)

$x_{i} \quad=i^{\text {th }}$ letter of input
$x_{i j} \quad=$ substring i, \ldots, j of input
$T_{y z}=P($ transition $y \rightarrow z)$
$E_{x_{i}, x_{j}}^{y}=P\left(\right.$ emission of x_{i}, x_{j} from state $\left.y\right)$
$S_{i j}^{y} \quad=\max _{\pi} \log P\left(x_{i j}\right.$ gen'd starting in state y via path $\left.\pi\right)$

CM Viterbi Alignment (the "inside" algorithm)

$S_{i j}^{y}=\max _{\pi} \log P\left(x_{i j}\right.$ generated starting in state y via path $\left.\pi\right)$

$S_{i j}^{y}=$	$\max _{z}\left[S_{i+1, j-1}^{z}+\log T_{y z}+\log E_{x_{i}, x_{i}}^{y}\right]$	match pair
	$\begin{cases}\max _{z}\left[S_{i+1, j}^{z}\right. & \left.+\log T_{y z}+\log E_{x_{i}^{y}}^{y}\right] \\ \max _{z}\left[S_{i, j-1}^{z}\right. & \left.+\log T_{y z}+\log E_{x_{j}}^{y}\right] \\ \max _{z}\left[S_{i, j}^{z}\right. & \left.+\log T_{v z}\right]\end{cases}$	match/insert left match/insert right delete
	$\max _{i<k s j}\left[S_{i, k}^{y_{k+k}}+S_{k+1, j}^{y_{k+k]}}\right]$	bifurcation

Primary vs Secondary Info
 $-$

	Avg.	Min Dataset	Max id	ClustalV id	1° info accuracy	2° info (bits)								
(bits)							$	$	TEST	.402	.144	1.00	64%	43.7
:---	:---	:---	:---	:---	:---									
SIM100	.396	.131	.986	54%	39.7									
SIM65	.362	.111	.685	37%	31.8									
\uparrow					$28.6-30.7$									

3 test sets from ED 94
disallowing / allowing pseudoknots

$$
\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \max _{\mathrm{j}} \mathrm{M}_{\mathrm{i}, \mathrm{j}}\right) / 2
$$

An Important Application: Rfam

A Database of RNA Families

RF00037:

Example Rfam Family

Input (hand-curated):

MSA "seed alignment"
SS_cons

Score Thresh T

Window Len W

Output:

CM
scan results \& "full alignment"
phylogeny, etc.

IRE (partial seed alignment):
Hom.sap. GUUCCUGCUUCAACAGUGUUUGGAUGGAAC Hom.sap. UUUCUUC. UUCAACAGUGUUUGGAUGGAAC Hom.sap. UUUCCUGUUUCAACAGUGCUUGGA.GGAAC Hom.sap. UUUAUC. . AGUGACAGAGUUCACU. AUAAA Hom.sap. UCUCUUGCUUCAACAGUGUUUGGAUGGAAC Hom.sap. AUUAUC. . GGGAACAGUGUUUCCC. AUAAU Hom.sap. UCUUGC. .UUCAACAGUGUUUGGACGGAAG Hom.sap. UGUAUC. . GGAGACAGUGAUCUCC.AUAUG Hom.sap. AUUAUC. . GGAAGCAGUGCCUUCC. AUAAU Cav.por. UCUCCUGCUUCAACAGUGCUUGGACGGAGC Mus.mus. UAUAUC. . GGAGACAGUGAUCUCC.AUAUG Mus.mus. UUUCCUGCUUCAACAGUGCUUGAACGGAAC Mus.mus. GUACUUGCUUCAACAGUGUUUGAACGGAAC Rat.nor. UAUAUC. .GGAGACAGUGACCUCC.AUAUG Rat.nor. UAUCUUGCUUCAACAGUGUUUGGACGGAAC SS_cons <<<<<<...<<<<<<......>>>>>.>>>>>

Rfam - an RNA family DB

 Griffiths-Jones, et al., NAR '03, '05, '08, 'II, 'I2Was biggest scientific comp user in Europe - 1000 cpu cluster for a month per release
Rapidly growing:

Rel I.0, I/03:	25 families, 55 k instances	DB size:
Rel 7.0, 3/05:	503 families, 363 k instances	$\sim 8 \mathrm{~GB}$
Rel 9.0, 7/08: 603 families, 636 k instances		
Rel I0.0, I/I0: 1446 families, 3193 k instances	$\sim 160 \mathrm{~GB}$	
Rel II.0, 8/I2: 2208 families, 6125 k instances	$\sim 320 \mathrm{~GB}$	
Rel I2.0, 9/I4: 2450 families, 19623 k instances		
Rel I2.I, 4/I6: 2474 families, 9 m instances		
Rel I3.0, 9/I7: 2686 families		

CM Summary

Covariance Models (CMs) represent conserved RNA sequence/structure motifs
They allow accurate search
But
a) search is slow
b) model construction is laborious

An Important Need: Faster Search

Homology search

"Homolog" - similar by descent from common ancestor Sequence-based

Smith-Waterman
FASTA
BLAST

For RNA, sharp decline in sensitivity at $\sim 60-70 \%$ identity

So, use structure, too

B
Open Promoter
Complex (RP_{o})
DNA Template

6S mimics an

 open promoter

Barrick et al. RNA 2005
Trotochaud et al. NSMB 2005 Willkomm et al. NAR 2005

Faster Genome Annotation of Non-coding RNAs Without Loss of Accuracy

Zasha Weinberg
\& W.L. Ruzzo
Recomb ‘04, ISMB ‘04, Bioinfo ‘06

CM's are good, but slow

Our Work

~ 2 months,
1000 computers

Rfam Goal

CM to HMM

25 emisions per state

5 emissions per state, $2 x$ states

Key Issue: 25 scores \rightarrow IO

Need: log Viterbi scores $C M \leq H M M$

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{AA}} \leq \mathrm{L}_{\mathrm{A}}+\mathrm{R}_{\mathrm{A}} & \mathrm{P}_{\mathrm{CA}} \leq \mathrm{L}_{\mathrm{C}}+\mathrm{R}_{\mathrm{A}} \\
\mathrm{P}_{\mathrm{AC}} \leq \mathrm{L}_{\mathrm{A}}+\mathrm{R}_{\mathrm{C}} & \mathrm{P}_{\mathrm{CC}} \leq \mathrm{L}_{\mathrm{C}}+\mathrm{R}_{\mathrm{C}} \\
\mathrm{P}_{\mathrm{AG}} \leq \mathrm{L}_{\mathrm{A}}+\mathrm{R}_{\mathrm{G}} & \mathrm{P}_{\mathrm{CG}} \leq \mathrm{L}_{\mathrm{C}}+\mathrm{R}_{\mathrm{G}} \\
\mathrm{P}_{\mathrm{AU}} \leq \mathrm{L}_{\mathrm{A}}+\mathrm{R}_{\mathrm{U}} & \mathrm{P}_{\mathrm{CU}} \leq \mathrm{L}_{\mathrm{C}}+\mathrm{R}_{\mathrm{U}} \leq \mathrm{L}_{\mathrm{A}}+\mathrm{R}_{-} \\
\mathrm{P}_{\mathrm{C}} \leq \mathrm{L}_{\mathrm{C}}+\mathrm{R}_{-}
\end{array}
$$

Assignment of scores/ "probabilities"

Convex optimization problem
Constraints: enforce rigorous property
Objective function: filter as aggressively as
possible
Problem sizes:
1000-I0000 variables
10000-100000 inequality constraints

"Convex" Optimization

Convex: local max = global max; simple "hill climbing" works (but better ways, often)

Nonconvex:
can be many local maxima, << global max; "hill-climbing" fails

Estimated Filtering Efficiency (I39 Rfam 4.0 families)

	Filtering fraction	\# families (compact)	\# families (expanded)
	$<10^{-4}$	105	110
	$10^{-4}-10^{-2}$	8	17
	. $01-.10$	11	3
	. $10-.25$	2	2
	. $25-.99$	6	4
	. 99 - 1.0	7	3

Averages 283 times faster than CM

Results: new ncRNAs (?)

Name	\# Known $($ BLAST + CM)	\# New (rigorous filter + CM)
Pyrococcus snoRNA	57	123
Iron response element	201	12 I
Histone 3' element	1004	102^{*}
Retron msr	11	48
Hammerhead I	167	26
Hammerhead III	25 I	13
U6 snRNA	1462	2
U7 snRNA	312	1
cobalamin riboswitch	170	7

13 other families	$5-1107$	0

CM Search Summary

Still slower than we might like, but dramatic speedup over raw CM is possible with:

No loss in sensitivity (provably), or
Even faster with modest (and estimable) loss in sensitivity

Motif Discovery

RNA Motif Discovery

CM's are great, but where do they come from?
Key approach: comparative genomics
Search for motifs with common secondary structure in a set of functionally related sequences.
Challenges
Three related tasks
Locate the motif regions.
Align the motif instances.
Predict the consensus secondary structure.
Motif search space is huge!
Motif location space, alignment space, structure space.

RNA Motif Discovery

Would be great if: given 100 complete genomes from diverse species, we could automatically find all the RNAs.
State of the art: that's hopeless
Hope: can we exploit biological knowledge to narrow the search space?

RNA Motif Discovery

More promising problem: given a 10-20 unaligned sequences of a few kb , most of which contain instances of one RNA motif of 100-200bp -- find it.
Example: 5' UTRs of orthologous glycine cleavage genes from γ-proteobacteria
Example: corresponding introns of orthogolous vertebrate genes

Orthologs = counterparts in different species

Approaches

Align-First: Align sequences, then look for common structure

Fold-First: Predict structures, then try to align them

Joint: Do both together

"Align First" Approach:

Predict Struct from Multiple Alignment

Compensatory mutations reveal structure (core of "comparative sequence analysis") but usual alignment algorithms penalize them (twice)

Pitfall for sequence-alignmentfirst approach

Structural conservation \neq Sequence conservation

Alignment without structure information is unreliable

CLUSTALW alignment of SECIS elements with flanking regions

Abstract

------------------------------------- CCCCCCCCAGGCTCCTGGTGCCGG--ATGATGACGACCTGGGTG-GAA-A----CCTACCCTGTGGGCACCC-ATGTCCGA-GCCCCCTGGCATT GGGATCATTGCAAGAGCAGCGTG--ACTGACATTA---TGAAGGCCTGTACTGAAGACAGCAA--GCTGTTAGTACAGACC---AGATG----CTTTCTTGGCAGGCTCGTTGTACCTCTTGGAAAACCTCAAT AGGTTTGCATTAATGAGGATTACACAGAAAACCTTT-GTTAAGGGTTTGTGTCGATCTGCTAA--TTGGCAAATTTTTATTTTTTAAAAT---ATTCTTACAGAAGAGTTCCATTTAAGAATGTTCGTGTATAGG AGTGTGCGGATGATAACTACTGACGAAAGAGTCATCGACTCAGTTAGTGGITGGATGTAGTCACATTAGTTTGCCTCTCCCCATCTTTG----TCTCCCTGGCAAGGAGAATATGCGGGACATGATGCTAAGAG TGGACTGATAGGTA-GCCATGGC--TTCATCTGTC---ATG--TCTGCTTCTTTTTATATTTG--TGTATGATGGTCACAGTGTAAA-G----TTCCCACAGCTGTGACTTGATTTTTAA-AAATGTCGGAAGA TAAACTCGAACTCGAGCGGGCAATTGCTGATTACGA-TTAACCACTGATTCCTGGGTCGCTGC--TTCGTGGCCGTCGTCGGTTCCA------TTTATCAACTATTAGCTCCAATACATAGCTACAGGTTTTT AAATTCTCGCTATATGACGATGGCAATGTCAAATGT-TCATIGGTTGCCATTTGATGAAATCAGTTTTGTGTGCACCTGATTGCAGAATTTTGTTTACCTTGCTCATTTTTTTCATTGAA-ACCACTTCTCAGA GGGGCGGGAGTACAAGGTGCGTGTGACTGGAGCCA---CCCACTCCGACTCTGCAGGTGTTTG--CAAATGACGACCGATTTTGAAATG----GTCTCACGGCCAAAAACTCGTGTCCGACATCAACCCCCTTC TTCTCCAGTGTTCTAGTTACATTGATGAGAACAGAA-ACATAAACTATGACCTAGGGGTTTCT--GTTGGATAGCTCGTAATTAAGAACGGAGAAAGAACAACAAAGACATATTTTCCAGTTTTTTTTTCTTTAC CAAACTGATGGATA-GCCATTGGTATTCATCTATT---TTAACTCTGTGTCTTTACATATTTG--TTTATGATGGCCACAGCCTAAA-G----TACACACGGCTGTGACTTGATTCAAAA-GAAA-TGAGCAACTTGTCT-GATGACTGGGAAAGGAGGAC---CTGCAACCATCTGACTTGGTCTCTG--TTAATGACGTCTCTCCCTCTAA-A----CCC-CATTAAGGACTGGGAGAGGCAGA-GCAAGCCTCAGAG GATTACTGGCTGCACTCTGGGGGGCGGTTCTTCCA---TGATGGTGTTTCCTCTAAATTTGCA--CGGAGAAACACCTGATTTCCAGGAAA-ATCCCCTCAGATGGGCGCTGGTCCCATCCATTCCCGATGCCT AGACCAGGCAAGACAACTGTGAGC-GCGATGGCCG---TGTACCCCAGGTCAGGGGTGGTGTC--TCTATGAAGGAGGGGCCCGAAG-----CCCTTGTGGGCGGGCCTCCCCIGAGCCCGTCTGTGGTGCCAG CACTTCAGAAGGCT-TCTGAATGGAACCATCTCTT---GACA-TTTGTTTCTATA-ATATTTG--T-CATGACAGTCACAGCATAAA-G----CGCAGACGGCTGTGACCTGATTTTAGA-AAATATTTTTAGA

same-colored boxes should be aligned

Approaches

Align-first: align sequences, then look for

 common structureFold-first: Predict structures, then try to align them
single-seq struct prediction only $\sim 60 \%$ accurate; exacerbated by flanking seq; no biologicallyvalidated model for structural alignment
Joint: Do both together
Sankoff - good but slow
Heuristic

Our Approach: CMfinder RNA motifs from unaligned sequences

Simultaneous local alignment, folding and CM-based motif description via an EM-style learning procedure

Sequence conservation exploited, but not required Robust to inclusion of unrelated and/or flanking sequence Reasonably fast and scalable
Produces a probabilistic model of the motif that can be directly used for homolog search

Yao, Weinberg \& Ruzzo, Bioinformatics, 2006

CMFinder

Simultaneous alignment, folding \& motif description Yao, Weinberg \& Ruzzo, Bioinformatics, 2006

CMfinder Accuracy

(on Rfam families with flanking sequence)

Discovery in Bacteria

A Computational Pipeline for HighThroughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes

Zizhen Yao ${ }^{1 *}$, Jeffrey Barrick ${ }^{2 \pi}$, Zasha Weinberg ${ }^{3}$, Shane Neph ${ }^{1,4}$, Ronald Breaker ${ }^{2,3,5}$, Martin Tompa ${ }^{\text {1,4 }}$, Walter L. Ruzzo ${ }^{1,4}$

Published online 9 July 2007
Identification of $\mathbf{2 2}$ candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline
Zasha Weinberg ${ }^{1, \star}$, Jeffrey E. Barrick ${ }^{2,3}$, Zizhen Yao ${ }^{4}$, Adam Roth ${ }^{2}$, Jane N. Kim ${ }^{1}$, Jeremy Gore ${ }^{1}$, Joy Xin Wang ${ }^{1,2}$, Elaine R. Lee ${ }^{1}$, Kirsten F. Block ${ }^{1}$, Narasimhan Sudarsan ${ }^{1}$, Shane Neph ${ }^{5}$, Martin Tompa ${ }^{4,5}$, Walter L. Ruzzo ${ }^{4,5}$ and Ronald R. Breaker ${ }^{1,2,3}$

A pipeline for RNA motif genome scans

Yao, Barrick, Weinberg, Neph, Breaker, Tompa and Ruzzo. A Computational Pipeline for High Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes. PLoS Comput Biol. 3(7): e126, July 6, 2007.

Semi-automated Example

Started with 16 genes orthologous to folC in B. subtilis
Found 9 sharing good structural motif
Searched all bacterial genomes for this motif
Found 234 hits
Realigned these to refine structural motif
Found 367 hits (Based on hand-curated
257 match RFAM's T-box alignment of 67 knowns)

62/IIO "false positives" are probable true positives
(upstream of annotated tRNA-synthetase genes)

Geobacter metallireducens Geobacter sulphurreducens

γ-Proteobacteria
β-Proteobacteria
α-Proteobacteria
ε-Proteobacteria
Spirochaetes
Chlamydiae
Actinobacteria
(high GC)
Cyanobacteria

Firmicutes
(low GC)

Overall Pipeline \& Processing Times

Input from ~70 complete Firmicute genomes available in late 2005-early 2006, totaling ~200 megabases

Table I: Motifs that correspond to Rfam families

Rank RAV CMF FP	Score	$\begin{gathered} \# \\ \text { RAV CMF } \end{gathered}$	ID Gene	Description CDD	Rfam
43107	3400	36711	9904 livB	Thiamine pyrophosphate-requiring enzymes	RF00230 T-box
$10 \quad 344$	3115	9622	13174 COG3859	Predicted membrane protein	RF00059 THI
$\begin{array}{llll}2 & 77 & 1284\end{array}$	2376	1126	11125 MetH	Methionine synthase I specific DNA methylase	RF00162 S_box
305	2327	$30 \quad 26$	9991 COG0116	Predicted N6-adenine-specific DNA methylase	RF00011 RNaseP bact b
$4 \quad 6 \quad 66$	2228	4918	4383 DHBP	3,4-dihydroxy-2-butanone 4-phosphate synthase	RF00050 RFN
$\begin{array}{llll}7 & 145 & 952\end{array}$	1429	51	10390 GuaA	GMP synthase	RF00167 Purine
$\begin{array}{llll}8 & 17 & 108\end{array}$	1322	2913	10732 GcvP	Glycine cleavage system protein P	RF00504 Glycine
$37 \quad 749$	1235	28	24631 DUF149	Uncharacterised BCR, YbaB family COG0718	RF00169 SRP_bact
$\begin{array}{llll}10 & 1231358\end{array}$	1222	36	10986 CbiB	Cobalamin biosynthesis protein CobD/CbiB	RF00174 Cobalamin
201371133	899	32	9895 LysA	Diaminopimelate decarboxylase	RF00168 Lysine
$\begin{array}{llll}21 & 36 & 141\end{array}$	896	$22 \quad 10$	10727 TerC	Membrane protein TerC	RF00080 yybP-ykoY
$39 \quad 202684$	664	25	11945 MgtE	$\mathrm{Mg} / \mathrm{Co} / \mathrm{Ni}$ transporter MgtE	RF00380 ykoK
$\begin{array}{llll}40 & 26 & 74\end{array}$	645	1918	10323 GlmS	Glucosamine 6-phosphate synthetase	RF00234 glmS
$53 \quad 208192$	561	21	10892 OpuBB	ABC-type proline/glycine betaine transport systems	RF00005 tRNA ${ }^{1}$
12299239	413	107	11784 EmrE	Membrane transporters of cations and cationic drug	RF00442 ykkC-yxkD
255392281	268	8	10272 COG0398	Uncharacterized conserved protein	RF00023 tmRNA

Table 1: Motifs that correspond to Rfam families. "Rank": the three columns show ranks for refined motif clusters after genome scans ("RAV"), CMfinder motifs before genome scans ("CMF"), and FootPrinter results ("FP"). We used the same ranking scheme for RAV and CMF. "Score"

	Rfam	Membership			Overlap			Structure		
		$\#$	Sn	Sp	$n t$	Sn	Sp	bp	Sn	Sp
RF00174	Cobalamin	183	0.74^{1}	0.97	152	0.75	0.85	20	0.60	0.77
RF00504	Glycine	92	0.56^{1}	0.96	94	0.94	0.68	17	0.84	0.82
RF00234	glmS	34	0.92	1.00	100	0.54	1.00	27	0.96	0.97
RF00168	Lysine	80	0.82	0.98	111	0.61	0.68	26	0.76	0.87
RF00167	Purine	86	0.86	0.93	83	0.83	0.55	17	0.90	0.95
RF00050	RFN	133	0.98	0.99	139	0.96	1.00	12	0.66	0.65
RF00011	RNaseP_bact_b	144	0.99	0.99	194	0.53	1.00	38	0.72	0.78
RF00162	S_box	208	0.95	0.97	110	1.00	0.69	23	0.91	0.78
RF00169	SRP_bact	177	0.92	0.95	99	1.00	0.65	25	0.89	0.81
RF00230	T-box	453	0.96	0.61	187	0.77	1.00	5	0.32	0.38
RF00059	THI	326	0.89	1.00	99	0.91	0.69	13	0.56	0.74
RF00442	ykkC-yxkD	19	0.90	0.53	99	0.94	0.81	18	0.94	0.68
RF00380	ykoK	49	0.92	1.00	125	0.75	1.00	27	0.80	0.95
RF00080	yybP-ykoY	41	0.32	0.89	100	0.78	0.90	18	0.63	0.66
mean		145	0.84	0.91	121	0.81	0.82	21	0.75	0.77
median		113	0.91	0.97	105	0.81	0.83	19	0.78	0.78

Tbl 2: Prediction accuracy compared to prokaryotic subset of Rfam full alignments. Membership: \# of seqs in overlap between our predictions and Rfam's, the sensitivity (Sn) and specificity (Sp) of our membership predictions. Overlap: the avg len of overlap between our predictions and Rfam's (nt), the fractional lengths of the overlapped region in Rfam's predictions (Sn) and in ours (Sp). Structure: the avg \# of correctly predicted canonical base pairs (in overlapped regions) in the secondary structure (bp), and sensitivity and specificity of our predictions. ${ }^{1}$ After 2nd RaveNnA scan, membership Sn of Glycine, Cobalamin increased to 76% and 98% resp., Glycine Sp unchanged, but Cobalamin Sp dropped to 84%.

Rank	\#	CDD
6	69	28178
15	33	10097
19	36	10234
22	32	10897
27	27	9926
29	11	15150
31	31	10164
41	26	10393
44	30	10332
46	33	25629
50	11	5638
51	19	9965
55	7	26270
69	9	13148
72	28	4174
74	9	9924
86	6	12328
88	19	24072
100	21	23019
103	8	9916
117	5	13411
120	10	10075
121	9	10132
129	4	23962
130	9	25424
131	9	16769
136	7	10610
140	12	8892
157	25	24415
160	27	1790
164	6	9932
174	8	13849
176	7	10199
182	9	10207
187	11	27850
190	11	10094
194	9	10353

Annotation

PyrR attenuator [22]
L10 r-protein leader; see Supp
S6 r-protein leader
6S RNA [25]
S10 r-protein leader; see Supp
IF-3 r-protein leader; see Supp S4 r-protein leader; see Supp [30] HrcA DNA binding site [46]
L21 r-protein leader; see Supp [47]
S10 r-protein leader

S2 r-protein leader
S12 r-protein leader
CtsR DNA binding site [48]

L15 r-protein leader
IF-1 r-protein leader
S12 r-protein leader
L3 r-protein leader
ylbH putative RNA motif [4]
Blal, Mecl DNA binding site [49]
L13 r-protein leader; Fig 3
L19 r-protein leader; Fig 2

L32 r-protein leader

RpmF: Ribosomal protein L32
LDH: L-lactate dehydrogenases
CspR: Predicted rRNA methylase
FusA: Translation elongation factors
Ribosomal L19: Ribosomal protein L19
GapA: Glyceraldehyde-3-phosphate dehydrogenase/erythrose COG4708: Predicted membrane protein COG0325: Predicted enzyme with a TIM-barrel fold

DHOase Ila: Dihydroorotase
RpIL: Ribosomal protein L7/L1
RpsF: Ribosomal protein S6
COG1179: Dinucleotide-utilizing enzymes
RpsJ: Ribosomal protein S10
Resolvase: N terminal domain
InfC: Translation initiation factor 3
RpsD: Ribosomal protein S4 and related proteins GroL: Chaperonin GroEL
Ribosomal L21p: Ribosomal prokaryotic L21 protein
Cad: Cadmium resistance transporter
RpIB: Ribosomal protein L2
RNA pol Rpb2 1: RNA polymerase beta subunit
COG3830: ACT domain-containing protein
Ribosomal S2: Ribosomal protein S2
RpsG: Ribosomal protein S7
COG2984: ABC-type uncharacterized transport system
CtsR: Firmicutes transcriptional repressor of class III
Formyl trans N : Formyl transferase
PurE: Phosphoribosylcarboxyaminoimidazole
COG4129: Predicted membrane protein
RpIO: Ribosomal protein L15
RpmJ: Ribosomal protein L36
Cna B: Cna protein B-type domain
Ribosomal S12: Ribosomal protein S12
Ribosomal L4: Ribosomal protein L4/L1 family
COG0742: N6-adenine-specific methylase
Pencillinase R: Penicillinase repressor
Ribosomal S9: Ribosomal protein S9/S16
Ribosomal L19: Ribosomal protein L19

EF-G r-protein leader

A L19 (rplS) mRNA leader

B
P2

nucleotide identity	nucleotide present
N 97\%	- 97\%
N 90\%	- 90%
N 75\%	- 75\%
	$\begin{aligned} & \text { ○ } 50 \% \\ & \text { stem loop } \\ & \text { ways present } \end{aligned}$
\square com \square com	nsatory mutations tible mutations
G - C Watson-Crick base pair G•A other base interaction	

B. subtilis L19 mRNA leader

R安
ENOME $_{\text {ESEARCH }}$

The identification and functional annotation of RNA structures conserved in vertebrates

Stefan E. Seemann, ${ }^{1,2}$ Aashiq H. Mirza, ${ }^{1,3,10}$ Claus Hansen, ${ }^{1,4,10}$ Claus H. Bang-Berthelsen, ${ }^{1,5,10,11}$ Christian Garde, ${ }^{1,6,10}$ Mikkel Christensen-Dalsgaard, ${ }^{1,4}$ Elfar Torarinsson, ${ }^{1}$ Zizhen Yao, ${ }^{7}$ Christopher T. Workman, ${ }^{1,6}$ Flemming Pociot, ${ }^{1,3}$ Henrik Nielsen, ${ }^{1,4}$ Niels Tommerup, ${ }^{1,4}$ Walter L. Ruzzo, ${ }^{1,8,9}$ and Jan Gorodkin ${ }^{1,2}$

Genome Res. 2017 27: 1371-1383 originally published online May 9, 2017
Access the most recent version at doi:10.1101/gr.208652.116

Outline

There is A LOT of noncoding expression
Significance remains controversial
What could help clarify? - conserved 2^{d} structure (not seq)
Several groups have tried

+ genome-wide, rather than cell type/state-specific RNAseq
- high FDR

Our improved screen:
better scoring, better null, realignment
Results -
selection, conserved expression, conserved structures, SNP association
\Rightarrow enhancer/promoter
Conclusion

Motivation

$<2 \%$ of the human genome codes for protein
$<25 \%$ is in protein coding genes (cds+introns)
But recent estimates say 50-90\% transcribed

Functional? Or "transcriptional noise"?

Lots of ncRNA

GENCODE version 23 (March 2015):

- 19,797 protein-coding genes
- 15,931 long non-coding RNAs; 9,882 small non-coding RNAs

Lots of ncRNA;but low expr

GENCODE version 23 (March 2015):

- 19,797 protein-coding genes
- 15,931 long non-coding RNAs; 9,882 small non-coding RNAs
a Most RNA-seq coverage is low level
Mean FPKM equivalent

[Eddy (2013) Annu Rev Biophys]

Lots of ncRNA;but low expr, consv

GENCODE version 23 (March 2015):

- 19,797 protein-coding genes
- 15,931 long non-coding RNAs; 9,882 small non-coding RNAs
a Most RNA-seq coverage is low level

b Most IncRNAs are nonconserved

Conservation

Above is Sequence-level conservation
But secondary structure plays an important role in biogenesis and/or activity of most ncRNAs (that we understand)
What about conservation of structure?

Previous screens for RNA structure prediction in vertebrate genomes:

- AliFoldZ [Washiet (2007) Genome Res]
- RNAz [Gruber (2010) Pacific Symposium on Biocomputing]
- Evofold [Parker (2011) Genome Res]
- RNAz + SISSIz [Smith (2013) NAR]
+ whole genome
- high FDR

Limitation of comparative analysis based on multiple sequence alignments:

促	(.)) .	Base matches	Basepair matches
Sequence alignment	CAGUCUCAGGUGGUUGGGCU-UAC-CUGAGGUG-UCGUGCUA	13	2
Structural alignment	$\dot{\text { CAGUCUCAGGUGGUUG-GGCU }}$	6	7

New genome-wide screen: Methods

I7-way vertebrate alignments from MultiZ Ignore nucleotide-level alignment but hope alignment blocks will contain orthologous regions
Align with Cmfinder
Score motifs (phylogenetically informed scores based on separate substitution matrices for single- and double-stranded positions)
Estimate FDR base on di-nucleotide controlled shuffling of alignments, with regression-based correction of important effects like GC content

... thousands of CPU years pass ...

Genome-wide screen of human for conserved RNA structures

Input:

- human centered 17-way MULTIZ alignments
- 50% of human genome
- 50% have low conservation according to PhastCons

Prediction results:

- 780k conserved RNA structures (CRSs) from 520k regions
- estimated FDR $\sim 15 \%$ (GC content range 20\%-65\%)
- sequence identity: 60.2%
- length: 69bp (longest: 497bp)

Broad Conservation

Genomic annotation of CRSs

Absolute:

Relative:

CRSs are enriched to overlap

- known ncRNAs (e.g. pre-miRNAs, tRNA, snoRNAs and IncRNAs)
- protein binding sites (CLIP RBP)

Genome-Wide Identification of Human Functional DNA Using a Neutral Indel Model Gerton Lunter, Chris P. Ponting, Jotun Hein, PLoS Comput Biol 2006, 2(1): e5.

Overlap w/ Indel Purified Segments

IPS presumed to signal purifying selection Majority (64\%) of candidates have $>45 \%$ G+C Strong P-value for their overlap w/ IPS

G+C	data	P	N	Expected	Observed	P-value	$\%$
$0-35$	igs	0.062	380	23	24.5	0.430	5.8%
$35-40$	igs	0.082	742	61	70.5	0.103	11.3%
$40-45$	igs	0.082	1216	99	129.5	0.00079	18.5%
$45-50$	igs	0.079	1377	109	162.5	$5.16 \mathrm{E}-08$	20.9%
$50-100$	igs	0.070	2866	200	358.5	$2.70 \mathrm{E}-31$	43.5%
all	igs	0.075	6581	491	747.5	$1.54 \mathrm{E}-33$	100.0%

CRSs are located in cis-regulatory regions

Enriched in cis-regulatory regions

Transcribed enhancer RNAs are enriched for CRSs

Prostate

Brain

$6 k$ structured enhancers are compared to 37 k non-structured enhancers; expression is measured by CAGE in FANTOM5 [Andersson (2014) Nature]

CRSs putatively serve active regulatory function

Intergenic M1695693 is potential enhancer RNA (SI=46\%; FDR=9.93)

Overlaps RNA binding site of FMR1 (fragile X mental retardation 1; CLIP-seq)

Disease-associated SNPs potentially alter RNA structure

- Vast majority of disease variants (SNPs) identified by GWAS are noncoding
- disease-associated SNPs $_{[\text {Farh (2014)] }}$ are enriched for CRSs (OR=89)
- 21% of these SNPs significantly change local RNA structure (RNAsnp [Sabarinathan (2013) Hum Mutat, http://rth.dk/resources/rnasnp/]; $\mathrm{p}<0.1$)
- An example: CRS/rs2359796 overlaps enhancer region

Seemann et al. Summary

After careful control of FDR,
Widespread structured RNA prediction
Evidence for conservation
Evidence for expression
Evidence for elevated expression of structured vs non-structured in CDS contexts
Hypothesis: cis-regulatory roles at these loci

ncRNA Summary

ncRNA is a "hot" topic
For family homology modeling: CMs
Training \& search like HMM (but slower)
Dramatic acceleration possible
Automated model construction possible
New computational methods yield new discoveries
Many open problems

