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Gene Finding: Motivation
Sequence data flooding in
What does it mean?

protein genes, RNA genes, mitochondria, 
chloroplast, regulation, replication, structure, 
repeats, transposons, unknown stuff, …

More generally, how do you: learn from 
complex data in an unknown language, 
leverage what’s known to help discover 
what’s not
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Protein Coding Nuclear DNA
Focus of these slides
Goal: Automated annotation of new seq data
State of the Art: 

In Eukaryotes:
predictions ~ 60% similar to real proteins
~80% if database similarity used

Prokaryotes
better, but still imperfect

Lab verification still needed, still expensive
Largely done for Human; unlikely for most others

and non-coding is poorly understood even in human
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Biological Basics
Central Dogma:

DNA transcription RNA translation Protein

Codons: 3 bases code one amino acid
Start codon
Stop codons
3′, 5′ Untranslated Regions (UTR’s)



RNA
Transcription
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(This gene is 
heavily transcribed, 
but many are not.)
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Translation: mRNA ® Protein

Watson, Gilman, Witkowski, & Zoller, 1992
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Ribosomes

Watson, Gilman, Witkowski, & Zoller, 1992



8Darnell, p120

DNA  (thin lines), RNA Pol (Arrow), mRNA with 
attached Ribosomes (dark circles)



Codons & The Genetic Code
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Ala : Alanine 
Second Base Arg : Arginine

U C A G Asn : Asparagine
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Asp : Aspartic acid 
Phe Ser Tyr Cys C Cys : Cysteine 
Leu Ser Stop Stop A Gln : Glutamine
Leu Ser Stop Trp G Glu : Glutamic acid

C

Leu Pro His Arg U Gly : Glycine
Leu Pro His Arg C His : Histidine
Leu Pro Gln Arg A Ile : Isoleucine 
Leu Pro Gln Arg G Leu : Leucine

A

Ile Thr Asn Ser U Lys : Lysine
Ile Thr Asn Ser C Met : Methionine
Ile Thr Lys Arg A Phe : Phenylalanine 
Met/Start Thr Lys Arg G Pro : Proline

G

Val Ala Asp Gly U Ser : Serine
Val Ala Asp Gly C Thr : Threonine
Val Ala Glu Gly A Trp : Tryptophane
Val Ala Glu Gly G Tyr : Tyrosine

Val : Valine
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Idea #1: Find Long ORF’s
Reading frame: which of the 3 possible 
sequences of triples does the ribosome read?
Open Reading Frame: No internal stop codons
In random DNA

average ORF ~ 64/3 = 21 triplets
300bp ORF once per 36kbp per strand

But average protein ~ 1000bp
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A Simple ORF finder
start at left end
scan triplet-by-non-overlapping triplet for AUG
then continue scan for STOP
repeat until right end
repeat all starting at offset 1
repeat all starting at offset 2
then do it again on the other strand
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Scanning for ORFs

U U A A U G U G U C A U U G A U U A A G
A A U U A C A  C A G U A A C U A A U A C

1
2
3

4
5
6

*

* In bacteria, GUG is sometimes a start codon…
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Idea #2: Codon Frequency
In random DNA 

Leucine : Alanine : Tryptophan  = 6 : 4 : 1
But in real protein, ratios  ~ 6.9 : 6.5 : 1
So, coding DNA is not random
Even more: synonym usage is biased (in a 
species dependant way)
examples known with 90% AT 3rd base

Why? E.g. efficiency, histone, enhancer, splice interactions



Idea #3: Non-Independence
Not only is codon usage biased, but 
residues (aa or nt) in one position are not
independent of neighbors

How to model this?  Markov models
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A sequence                   of random variables 
is a k-th order Markov chain if, for all i, ith
value is independent of all but the previous k
values:

Example 1: Uniform random ACGT
Example 2: Weight matrix model
Example 3: ACGT, but ↓ Pr(G following C)

Markov Chains

0th

order}
}

i-1 k typically ≪ i-1

1st

order
15



A Markov Model (1st order)

States:  A,C,G,T
Emissions: corresponding letter
Transitions:ast = P(xi = t  | xi-1 = s) 1st order
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Pr of emitting sequence x

a law of probability

(“the chain rule”)

if 1st 

order MC
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Discrimination/Classification

From DEKM18

Log likelihood ratio of CpG model vs background model



CpG Island Scores

Figure 3.2  Histogram of length-normalized scores.  

CpG islands
Non-CpG

From DEKM19



A Gene Finding Example
All +-strand ORFs in a prokaryote
“Truth” based on stop codon matching a 
Genbank-annotated protein coding gene
Built ROC curve for classification by:

length
6-th order Markov model
both
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AA CA
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CGAG

CC

AT CT

GA

GC

GG

GT

TA

TC

TG

TT

2nd order Markov Model
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kth Order Markov Model

Axyz

xyzA

Cxyz

xyzC

Gxyz

xyzG

Txyz

xyzT

4k states, each in/out-degree 4, joined as follows: 

(where xyz is a length k-1 string over {A,C,G,T}, and, 
e.g., Axyz and xyzA are the same state when xyz=Ak-1)
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emit Temit A



23
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

TP
R

Mixed,   AUC = 0.9999
Length,  AUC = 0.9993
Markov, AUC = 0.9043

●

●

●

●

●

●

●

●

●

●

●

● ●

8703

1971

1506

1269

1098

957

807

669

537

411

291

171 51



24

0.0000 0.0005 0.0010 0.0015 0.0020

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

FPR

TP
R

Mixed,   AUC = 0.9999
Length,  AUC = 0.9993
Markov, AUC = 0.9043

●

●

●

●

807

669

537

411



250 2000 4000 6000 8000

−5
0

0
50

10
0

15
0

orfs$len[mask]

sc
or
es
[m
as
k]

* *

Length

Sc
or

e 
   

  



26

Summary
In prokaryotes, most DNA is coding

E.g. ~ 70% in H. influenzae

Long ORFs + codon/nucleotide stats do well
Can improve by modeling associated features 
(TATA boxes, promoters, etc.)

e.g. via WMM or higher-order Markov models

But obviously won’t be perfect
short genes, frame shifts, 5′ & 3′ UTR’s, …
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As in prokaryotes (but maybe more variable)
promoters
start/stop transcription
start/stop translation

Eukaryotes
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And then…

Nobel Prize of the week: P. Sharp, 1993, Splicing
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Mechanical Devices of the 
Spliceosome: Motors, 

Clocks, Springs, and Things

Jonathan P. Staley and Christine Guthrie 

CELL Volume 92, Issue 3 , 6 February 1998, Pages 315-326
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Figure 2. Spliceosome
Assembly, Rearrangement, 
and Disassembly Requires 
ATP, Numerous DExD/H 
box Proteins, and Prp24. 
The snRNPs are depicted 
as circles. The pathway for 
S. cerevisiae is shown. 
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E.g.: 
exchange of 

U1 for U6
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Tetrahymena thermophila

Hints to Origins?
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As in prokaryotes (but maybe more variable)
promoters
start/stop transcription
start/stop translation

New Features:
introns, exons, splicing
branch point signal
alternative splicing
polyA site/tail

Genes in Eukaryotes

5’ 3’
exon       intron        exon       intron

AG/GT   yyy..AG/G AG/GT
donor       acceptor       donor
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Characteristics of human genes 
(Nature, 2/2001, Table 21)

* 1,804 selected RefSeq entries were those with full-
length  unambiguous alignment to finished sequence

Median Mean Sample (size)

Internal exon 122 bp 145 bp RefSeq alignments to draft genome sequence, with 
confirmed intron boundaries (43,317 exons)

Exon number 7 8.8 RefSeq alignments to finished seq (3,501 genes)

Introns 1,023 bp 3,365 bp RefSeq alignments to finished seq (27,238 introns)

3′ UTR 400 bp 770 bp Confirmed by mRNA or EST on chromo 22 (689)

5′ UTR 240 bp 300 bp Confirmed by mRNA or EST on chromo 22 (463)

Coding seq 1,100 bp 1340 bp Selected RefSeq entries (1,804)*

(CDS) 367 aa 447 aa

Genomic span 14 kb 27 kb Selected RefSeq entries (1,804)*
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Big Genes
Many genes are over 100 kb long, 
Max known: dystrophin gene (DMD), 2.4 Mb. 
The variation in the size distribution of coding 
sequences and exons is less extreme, although 
there are remarkable outliers. 

The titin gene has the longest currently known 
coding sequence at 80,780 bp; it also has the 
largest number of exons (178) and longest single 
exon (17,106 bp).

RNApol rate: 1.2-2.5 kb/min ≥16 hours to transcribe DMD
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Nature 2/2001Exons

Introns

Introns



Intron          Exon
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a: Distribution of GC content 
in genes and in the genome. 
For 9,315 known genes mapped 
to the draft genome sequence, the 
local GC content was calculated in 
a window covering either the 
whole alignment or 20,000 bp
centered on midpoint of the 
alignment, whichever was larger. 
Ns in the sequence were not 
counted. GC content for the 
genome was calculated for 
adjacent nonoverlapping 20,000-
bp windows across the sequence. 
Both distributions normalized to 
sum to one. 

b: Gene density as a 
function of GC content
(= ratios of data in a. Less 
accurate at high GC because 
the denominator is small)

c: Dependence of mean 
exon and intron lengths 
on GC content.
The local GC content, based 
on alignments to finished 
sequence only, calculated 
from windows covering the 
larger of feature size or 
10,000 bp centered on it

Figure 36 GC content Nature 2/2001

Genes vs
Genome

Gene
Density



Other Relevant Features
PolyA Tails

100-300 A’s typically added to the 3′ end of the 
mRNA after transcription–not templated by DNA

Processed pseudogenes
Sometimes mRNA (after splicing + polyA) is 
reverse-transcribed into DNA and re-integrated into 
genome
~14,000 in human genome
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Alternative Splicing
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Exon skipping/inclusion

Alternative 3′ splice site

Alternative 5′ splice site

Mutually exclusive exons 

Intron retention

These are regulated, not just errors



Other Features (cont)

Alternative start sites (5′ ends)
Alternative PolyA sites (near 3′ ends)
Alternative splicing

Collectively, these affect an estimated 95% of genes, 
with ~5 (a wild guess) isoforms per gene  
(but can be huge;  fly Dscam: 38,016, potentially)

Trans-splicing and gene fusions 
(rare in humans but important in some tumors)

40
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Computational Gene Finding?
How do we algorithmically account for all 
this complexity…



A Case Study – Genscan
C Burge, S Karlin (1997), “Prediction of 
complete gene structures in human 
genomic DNA”, Journal of Molecular 
Biology, 268: 78-94. 
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Training Data
238 multi-exon genes
142 single-exon genes
total of 1492 exons
total of 1254 introns
total of 2.5 Mb

NO alternate splicing, none > 30kb, ...
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Performance Comparison

After Burge&Karlin, Table 1.  Sensitivity, Sn = TP/AP; Specificity, Sp = TP/PP

Program Sn Sp Sn Sp Avg. ME WE
GENSCAN 0.93 0.93 0.78 0.81 0.80 0.09 0.05
FGENEH 0.77 0.88 0.61 0.64 0.64 0.15 0.12
GeneID 0.63 0.81 0.44 0.46 0.45 0.28 0.24
Genie 0.76 0.77 0.55 0.48 0.51 0.17 0.33
GenLang 0.72 0.79 0.51 0.52 0.52 0.21 0.22
GeneParser2 0.66 0.79 0.35 0.40 0.37 0.34 0.17
GRAIL2 0.72 0.87 0.36 0.43 0.40 0.25 0.11
SORFIND 0.71 0.85 0.42 0.47 0.45 0.24 0.14
Xpound 0.61 0.87 0.15 0.18 0.17 0.33 0.13
GeneID‡ 0.91 0.91 0.73 0.70 0.71 0.07 0.13
GeneParser3 0.86 0.91 0.56 0.58 0.57 0.14 0.09

per exonper nuc.
Accuracy           
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Generalized Hidden 
Markov Models
States: 1, 2, …
π: Initial state distribution
aij: Transition probabilities
One submodel per state
Outputs are strings generated by submodel
Given length L

Pick start state q1 (~π)
While 

Pick di & string si of length di ~ submodel for qi
Pick next state qi+1 (~aij)

Output s1s2…€ 

di < L∑

0.55
0.1

1.0
0.450.7

0.3

0.1

0.8

1

2

4

3
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A “parse” f of seq s = s1s2…sL is a pair 
d = d1d2…dk , q = q1q2…qk with ådi ≥ L

A Viterbi-like alg calculates prob of most 
probable path emitting s; traceback gives f
Similarly, forward/backward-like algs can find, e.g.

Pr(emit s1s2…si & end in state j)

(summing over possible predecessor states, possible 
dk, etc.)

Decoding
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GHMM Structure
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CG-rich avg:  518

(a) Introns (b) Initial
exons

(c) Internal
exons

(d) Terminal
exons
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Effect of G+C Content
Group I II III IV
C + G% range <43 43-51 51-57 >57
Number of genes 65 115 99 101
Est. proportion single-exon genes 0.16 0.19 0.23 0.16
Codelen: single-exon genes (bp) 1130 1251 1304 1137
Codelen: multi-exon genes (bp) 902 908 1118 1165
Introns per multi-exon gene 5.1 4.9 5.5 5.6
Mean intron length (bp) 2069 1086 801 518
Est. mean transcript length (bp) 10866 6504 5781 4833
Isochore L1+L2 H1+H2 H3 H3
DNA amount in genome (Mb) 2074 1054 102 68
Estimated gene number 22100 24700 9100 9100
Est. mean intergenic length 83000 36000 5400 2600
Initial probabilities:
Intergenic (N) 0.892 0.867 0.54 0.418
Intron (I+, I- ) 0.095 0.103 0.338 0.388
5′ Untranslated region (F+, F-) 0.008 0.018 0.077 0.122
3′ Untranslated region (T+, T-) 0.005 0.011 0.045 0.072
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Submodels
5′ UTR

L ~ geometric(769 bp), s ~ MM(5)
3′ UTR

L ~ geometric(457 bp), s ~ MM(5)
Intergenic

L ~ geometric(GC-dependent), s ~ MM(5)
Introns

L ~ geometric(GC-dependent), s ~ MM(5)
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Submodel: Exons
Inhomogenious 3-periodic 5th order 
Markov models

Separate models for low GC (<43%), 
high GC

Track “phase” of exons, i.e. reading 
frame.
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Signal Models I: WMM’s
Polyadenylation

6 bp, consensus AATAAA
Translation Start

12 bp, starting 6 bp before start codon
Translation stop

A stop codon, then 3 bp WMM
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Signal Models II: more WMM’s
Promoter

70% TATA
15 bp TATA WMM
s ~ null, L ~ Unif(14-20)
8 bp cap signal WMM

30% TATA-less
40 bp null
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Signal Models III: W/WAM’s
Acceptor Splice Site (3’ end of intron)

[-20..+3]  relative to splice site modeled by “1st order 
weight array model”

Branch point & polypyrimidine tract
Hard.  Even weak consensus like YYRAY found in [-
40..-21] in only 30% of training
“Windowed WAM”: 2nd order WAM, but averaged 
over 5 preceding positions 
“captures weak but detectable tendency toward YYY triplets 
and certain branch point related triplets like TGA, TAA, …”
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intron

5′ exon

3′ exon

What do splice sites look like?

donor  

acceptor
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Signal Models IV: Maximum 
Dependence Decomposition
Donor splice sites (5′ end of intron) show 
dependencies between non-adjacent 
positions, e.g. poor match at one end 
compensated by strong match at other 
end, 6 bp away
Model is basically a decision tree
Uses c2 test to quantitate dependence



Many 
dependencies, 
such as 5′/3′ 
compensation, 
e.g. G-1 vs G5/H5
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c2 test : Are events A & B 
independent ?

B not B
A 8 4 12
not A 2 6 8

10 10 20

χ2 = (observedi−expectedi )
2

expectedii∑

“Expected” means expected assuming independence, 
e.g. expect B 10/20; A 12/20; both 120/400*20 = 6, etc.

Significance: table look up (or approximate as normal)

Event 
counts 
plus 
marginals

←
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c2 test for independence of 
nucleotides in donor sites

i Con j:     -3 -2 -1 +3 +4 +5 +6 Sum
-3 c/a --- 61.8* 14.9  5.8  20.2* 11.2  18.0* 131.8*
-2 A 115.6* --- 40.5* 20.3* 57.5* 59.7* 42.9* 336.5*
-1 G 15.4  82.8* --- 13.0  61.5* 41.4* 96.6* 310.8*

+3 a/g 8.6  17.5* 13.1  --- 19.3* 1.8  0.1  60.5*
+4 A 21.8* 56.0* 62.1* 64.1* --- 56.8* 0.2  260.9*
+5 G 11.6  60.1* 41.9* 93.6* 146.6* --- 33.6* 387.3*
+6 t 22.2* 40.7* 103.8* 26.5* 17.8* 32.6* --- 243.6*

* means chi-squared  p-value  < .001

Technically – build a 2 x 4 table for each (i,j) pair: 
Pos i does/does not match consensus vs pos j is A, C, G, T
calculate c2 as on previous slide, e.g. c2 for +6 vs -1 = 103.8
If independent, you’d expect c2 ≤ 16.3 all but one in a 1000 times.
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GHMM Structure

60
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Summary of Burge & Karlin
Coding DNA & control signals are 
nonrandom

Weight matrices, WAMs, etc. for controls
Codon frequency, etc. for coding

GHMM nice for overall architecture
Careful attention to small details pays
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Problems with BK training set
1 gene per sequence
Annotation errors
Single exon genes over-represented?
Highly expressed genes over-represented?
Moderate sized genes over-represented?  
(none > 30 kb) …
Similar problems with other training sets, too
(Of course we can now do better for human, mouse, etc., but 
what about cockatoos or cows or endangered frogs, or …)
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Problems with all methods
Pseudo genes (~ 14,000 in human)
Short ORFs
Sequencing errors
Non-coding RNA genes & spliced UTR’s
Overlapping genes
Alternative TSS/polyadenylation/splicing
Hard to find novel stuff – not in training
Species-specific weirdness – spliced leaders, 
polycistronic transcripts, RNA editing…
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Other important ideas
Database search - does gene you’re 
predicting look anything like a known 
protein?  If that protein is an important 
player in some pathway, are related 
genes also present?

Comparative genomics - what does this 
region look like in related organisms?


