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Markov Models and Hidden
Markov Models
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Dosage Compensation
and X-Inactivation

2 copies (mom/dad) of each chromosome 1-23

Mostly, both copies of each gene are expressed
E.g., A B O blood group defined by 2 alleles of | gene

Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:
* One X randomly inactivated in each cell
How!?
* Choice maintained in daughter cells

Calico: a2 major coat color gene is on X



Reminder: Proteins “Read” DNA

recognition
helix
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Figure 7-10 Molecular Biology of the Cell 5/e (© Garland Science 2008)
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DNA Methylation

CpG - 2 adjacent nts, same strand ~

~'N
(not Watson-Crick pair; “p” mnemonic for the | /g
phosphodiester bond of the DNA backbone) {}" O

C of CpG is often (70-80%) methylated in

mammals i.e., CH; group added (both strands) cytosine
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DNA Methylation—Why

: : N\
In vertebrates, it generally silences transcription | SN

EN

(Epigenetics) X-inactivation, imprinting, repression of mobile

elements, cancers, aging, and developmental differentiation 3 O
E.g., if a stem cell divides, one daughter fated .
to be liver, other kidney, need to Cytosine

(@) Turn off liver genes in kidney & vice versa,
(b) Remember that through subsequent divisions
How! One way:

(a) Methylate genes, esp. promoters, to silence them

(b) After +, DNA methyltransferases convert hemi- to fully-methylated
(not trivial: deleting methyltransferase is embrionic-lethal in mice)

Major exception: promoters of “housekeeping” genes



“CpG Islands™

CH,  NH,
Methyl-C mutates to T relatively easily ~ N
Net: CpG is less common than ”/&O
expected genome-wide: |
f(CPG) < f(C)*f(G) cytosme
BUT in some regions (e.g. active o /NH3
promoters), CpGs remain CHy
unmethylated, so CpG — TpG less | I
likely there: makes “CpG Islands™; N

often mark gene-rich regions thymine



CpG Islands

CpG Islands

More CpG than elsewhere (say, CpG/GpC>50%)
More C & G than elsewhere, too (say, C+G>50%)
Typical length: few 100 to few 1000 bp

Questions
Is a short sequence (say, 200 bp) a CpG island or not!?
Given long sequence (say, 10-100kb), find CpG islands?



Markov & Hidden
Markov Models

References (see also online reading page):

Eddy, "What is a hidden Markov model?" Nature
Biotechnology, 22, #10 (2004) 1315-6.

Durbin, Eddy, Krogh and Mitchison, “Biological
Sequence Analysis”, Cambridge, 1998 (esp. chs 3, 5)

Rabiner, "A Tutorial on Hidden Markov Models and
Selected Application in Speech Recognition,”
Proceedings of the IEEE, v 77 #2,Feb 1989,
257-286



Independence

A key issue: Previous models we've talked about
assume independence of nucleotides in different
positions - definitely unrealistic.

Markov models allow us to relax that
assumption.



Markov Chains

A sequence T1, X2, ...of random variables is a

k-th order Markov chain if, for all i, " value is

independent of all but the previous k values:

P(z; | z1,22,...,%i-1) = P(x; | Ti—k, Ti—kt1,- -, Ti-1)
<€ > <€ >
i- | k typically <« i-|
Example |: Uniform random ACGT Oth
Example 2: Weight matrix model order

Example 3: ACGT, but | Pr(G following C) } |5
order

14



A Markov Model (Ist order)

States: ACG,T
Emissions: corresponding letter
Transitions: a, = P(x; =t | x,; =5) «——Istorder



A Markov Model (Ist order)

States: ACG,T

Emissions: corresponding letter
Transitions: a, =P(x,=t|x, ;=)
Begin/End states



Pr of emitting sequence x

L

( N
P(wl) P(w2 Zl}l)P(CBn xn—lwﬂaml)
(

z1)  P(z2 | 21) + P(Tn | Tn1

P(wl) H?:_ll Ax;,2i41

1—[?:—01 Ay, xiin (with Begin state)



Training

Max likelihood estimates for transition

probabilities are just the frequencies of
transitions when emitting the training

sequences

A C G T

- O N >+

0.180 0.274 0.426 0.120
0.171 0.368 0.274 0.188
0.161 0.339 0.375 0.125
0.079 0.355 0.384 0.182

E.g., from 48 CpG islands in 60k bp:

A C G T

- 00>

0.300 0.205 0.285 0.210-
0.322 0.298 0.07/8 0.302
0.248 0.246 0.298 0.208
0.177 0.239 0.292 0.292

From DEKM 18



Discrimination/Classification

Log likelihood ratio of CpG model vs background model

L
P dl ZC 1,L7
5(x) = log Lultmode Zlog ST N og B,y

| P(z|—model) Az, 1 .xs

72— (2 ) 1
Input \‘ Prev slide j
o A C G T

-0.740 0419 0.580 -0.803
-0913  0.302 1.812  -0.685
-0.624  0.461 0.331 -0.730
-1.169  0.573 0.393 -0.679

- O O D>l

From DEKM 19



CpG Island Scores

10] B
‘ - CpG islands
Non-CpG
S
0 , ~ !
04 03 <02 -01 0 0.1 0.2 0.3 0.4

Bits
Figure 3.2 Histogram of length-normalized scores.

From DEKM 20



Questions

Q/I: Given a short sequence, is it more likely from
feature model or background model! Above

Q2: Given a long sequence, where are the
features in it (if any)
Approach |: score 100 bp (e.g.) windows
Pro: simple
Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.



Combined Model

C = G
SO
XIS

QA‘.AA‘. CpG -

b N/ o }suli)model

Emphasis is “Which (hidden) state?” not “Which model?”



Hidden Markov Models

(HMMs; Claude Shannon, 1948)

States: 1,2,3,...

Paths: sequences of states m = (7, o, ..
Transitions: agy = P(mi=1|mi_-1=k)
Emissions: ex(b) = P(x; =b| m =k)

Observed data: emission sequence
Hidden data: state/transition sequence

)

23



The Occasionally
Dishonest Casino

1 fair die, -

“loaded” die, occasional

.95<C::;

1:1/6
2:1/6
3:1/6
4: 1/6
5:1/6
6:1/6

y swapped

.05

10

OOk, wWN =

:1/10
:1/10
:1/10
:1/10
:1/10
:1/2

“).90

24



Rolls
Die
Viterbi

Rolls
Die
Viterbi

Rolls
Die
Viterbi

Rolls
Die
Viterbi
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Viterbi
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Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.
Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).
Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM



Inferring hidden stuff

Joint probability of a given path 7 & emission

sequence X:
n

P(z,m) = g, H €n; (Ti) Qi ymita
1=1

But 1T is hidden; what to do! Some alternatives:
Most probable single path
m = argmax P(z, )

Sequence of most probable states

T = argm]?xP(m- =k | x)

Etc.

26



The Viterbi Algorithm:
The most probable path

Viterbi finds: 7" = arg max P(z, )

Possibly there are 10”7 paths of prob 10-%°
(If so, non-Viterbi approaches may be preferable.)

More commonly, one path (+ slight variants)
dominate others; Viterbi finds that

Key problem: exponentially many paths 7

27



Unrolling an HMM

3 3 6 6 2
00900
iaas LiLaLlaL
)
o t=0 t=| t=2 t=3

Conceptually, sometimes convenient

Note exponentially many paths

28



Viterbi

v;(1) = probability of the most probable path

emitting z1, z», . .., z; and ending in state {
Initialize: .
1 if |l = Begin state —
u(0) = { 0 otherwiseg g

General case:

v(i+1) =e(xis1) - mg.x(vk(i) ak1)

29



HMM Casino Example

HMM Parameters Show Viterbi: | FALSE
L F p(6)
B|0.52 0.48
L [0.60 0.40|0.50
F|10.17 0.83]0.17
= Rolls:| 316664 3 1 6
Q 0.052 x 0.60 x 0.10 = 0.0031 0.0031 x 0.60 x 0.50 = 9.36E-04
eR-N-NoNol
TS g L: @ 0.52 x 0.10 = 0.052 Max = 0.0031 Max = 9.41E-04
rANBY DO 0.080 x 0.17 x 0.10 = 0.0014 0.0111 x 0.17 x 0.50 = 9.41E-04
NE 5
0.052 x 0.40 x 0.17 = 0.0035 Y0.0031 x 0.40 x 0.17 = 2.08E-04
e
ST B F 0.48 0.48 x 0.17 = 0.080 Max = 0.0111 \ Max = 1.53E-03
O 0.080 x 0.83 x 0.17 = 0.0111 0.011 x 0.83 x 0.17 = 1.53E-03
T T T T 111 T 1 1 T
D Begin Transition ~ Emission Previous = Transition Emission Previous = Transition Emission

(Excel spreadsheet on web; download & play...)
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HMM Parameters Show Viterbi: TRUE
L F p(6)
B|0.52 0.48
L |0.60 0.401(0.50
F|0.17 0.8310.17
S Rolls:| 316664 3 1 6
O 0.052 x 0.60 x 0.10 = 0.0031 0.0031 x 0.60 x 0.50 = 9.36E-04
[cNoNoloNe /
Tt ¥ L: @ 0.52 x 0.10 = 0.052 Max = 0.0031 Max = 9.41E-04
A OF 0O 0.080 x 0.17 x 0.10 = 0.0014 0.0111 x 0.17 x 0.50 = 9.41E-04
3 )e B
Y0.052 x 0.40 x 0.17 = 0.0035 Y0.0031 x 0.40 x 0.17 = 2.08E-04
COOLO®
NG Y S G F: 0.48 0.48 x 0.17 = 0.080 Max = 0.0111 \ Max = 1.53E-03
O 0.080 x 0.83 x 0.17 = 0.0111 0.011 x 0.83 x 0.17 = 1.53E-03
= 1 1 t T ) () i) 1
(2] Begin Transition Emission Previous  Transition Emission Previous Transition Emission
Viterbi Path: 1 1 0

HMM Casino Example

(Excel spreadsheet on web; download & play...)
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Viterbi Traceback

Above finds probability of best path

To find the path itself, trace backward to the
state k attaining the max at each stage

[
!

v(t+1) =e(z;t1) - ml?x(vk (2) a.1)

32



Rolls
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Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.
Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).
Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM



Most probable path != sequence
of most probable states

Another example, based on casino dice again:

Suppose p(fair < loaded) transitions are 10-%?
and roll sequenceis | I 11166...666; then fair state
is more likely all through |’s & well into the run of
6’s, but eventually loaded wins, and the
improbable F — L transitions make Viterbi = all L.

* = max prob

% [ *
X X = Viterbi

e

34



Is Viterbi “best’’?

Viterbi finds 7* = argmax P(z, )

Most probable (Viterbi) path goes through 5, but
most probable state at 2nd step is 6
(l.e., Viterbi is not the only interesting answer.)

35



An HMM (unrolled)

States

O Oy Oy Oy, ©
AN AN AN A
L NAK N NT N

NS N
Xl X2 X3 X4

PN\

Emissions/sequence positions — .



Viterbi: best path to each
state

N
X

"\\"/h.ﬁ\'vlh t%n“’/hb ‘ﬁ'/h

) ; oy & )
SN SN DT S

Xl X2 X3 X4 X5

Viterbi score: Ul(i + 1) = €] (Iz'_|-1) . m}?X(UIs (Z) ak,l)

Viterbi back;(i + 1) = arg max(vg(?) ak1)
pathR: &



The Forward Algorithm

For each _, () () '® ()
state/time N \v \v \v
wa nt/ total | \'i‘}\v'%ék\\?{“}\'%e}"%.

X
h Sy O8ye SN v Oyye Oy

babil NPT NAT N NPT NADY
ol oath . M’fé‘.,’{‘«v“‘g‘““.," “".\

e O S VAV AV

cading to 1t, NW 2\ AW\ 2\

wingen 473 AT
X X2 X3 X4

P(xl...xi, WZ:]C)
flE+1) = el(iv1) )y fr(i)ak,

P(z) = 2. Plm) = ) fe(n)aked



The Backward Algorithm

Similar:

OO O OIS
for each I/‘}\'I/‘}\XJ‘\\?M

Y ANV
state/time, ‘vv/h. vvlh. v,ll..g\,/.l‘. ‘\v
want total \*'6"‘ \‘*"l \‘"’o’ VA o \*"0’

S-S Skl KR

probability .', NSO OUN © “."AA“‘
of all paths “\ ‘\\' “\' 6,\' ‘\\
O Y YT

from it, with > >

given e mmmmmm o

emissions, X1 N X2 X3 X4

conditional b(1) = P(zis1-xn|m=k)

on that

state. be(1) = D0k e(Tit1) bi(i+1)
bk(n) —  Qk,end



In state k at step i !

P(z, m; = k)

= P(x1,..., Ti, i = k) - P(xit1,..., Tn | T1,..., iy T

P(:z:l,...,:ci, 5 =k)-P(CBz‘+1,...,£L‘n | T4 =k)

= fr(2) - bi(3)




Posterior Decoding, |

Alternative 1: what’s the most likely state at step i

T = argm]?,xP(m =k | x)

Note: the sequence of most likely states # the most
likely sequence of states. May not even be legal!

41



The Occasionally
Dishonest Casino

1 fair die, -

“loaded” die, occasional

.95<C::;

1:1/6
2:1/6
3:1/6
4: 1/6
5:1/6
6:1/6

y swapped

.05

10

OOk, wWN =

:1/10
:1/10
:1/10
:1/10
:1/10
:1/2

“).90
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Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.
Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).
Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM



Posterior Decoding

P(fair)

0 50 100 150 200 250 300

Figure 3.6 The posterior probability of being in the state
corresponding to the fair die in the casino example. The x axis
shows the number of the roll. The shaded areas show when the

roll was generated by the loaded die.

From DEKM 44



Posterior Decoding, |l

Alternative 1: what’s most likely state at step i ?

~

Ty = argmg,xP(m- =k | x)

Alternative 2: given some function g(k) on states,

what’s its expectation. E.g., what's probability of “+”
model in CpG HMM (g(k)=1 iff k is “+” state)?

G(i|z) =) P(m=k|z)-g(k)
k

45



CpG Islands again

Data: 4| human sequences, totaling 60kbp,
including 48 CpG islands of about |kbp each

Viterbi: Post-process:
Found 46 of 48 46/48
plus 12| “false positives™ 67 false pos
Posterior Decoding:
same 2 false negatives 46/48
plus 236 false positives 83 false pos

Post-process: merge within
500; discard < 500  «



Training

Given model topology & training sequences,
learn transition and emission probabilities

If T known, then MLE is just frequency observed

in training data

count of k — [ transitions
count of kK — anywhere transitions

+ pseudocounts!

Qg1 =

e (b)
If T hidden, then use EM:
given O, estimate 1T; given 1 estimate O; repeat } 2 ways

47



Viterbi Training

given 0, estimate 1; given 1T estimate O; repeat

Make initial estimates of parameters 6

Find Viterbi path 7 for each training sequence

Count transitions/emissions on those paths,
getting new O

Repeat

Not rigorously optimizing desired likelihood, but

still useful & commonly used.
(Arguably good if you're doing Viterbi decoding.)

48



AKA “the forward-
backward alg”

Baum-Welch Training

EM: given O, estimate m ensemble; then re-estimate 0O

P(ﬂ'i Zk, Ti41 :ll.’L‘,B)

fk(?, | 9) Al 61(:13¢+1) bl(’i + 1 | 9)
P(z | 0)

Estimated # of k£ — [ transitions z‘ik,z on set of segs X

— Ztraining seqs =’ Zz P(Wz =k, mit1 =1 | xjag)
Ak

Zl Ak,l

New estimate ax,; =

Emissions: similar

49



True Model B-W Learned Model
0.95 0.9 0.73 (300 rolls)

1/6
1/6
1/6
1/6
1/6
1/6

Fair

0.71

B

* 0.08
Fair

B-WV Learned Model

ves (30,000 rolls)
Log-odds (vs all F) per roll

True model O0.101 bits
300-roll est. 0.097 bits
30k-roll est. 0.100 bits

(NB: overestimated)

Loaded

From DEKM 50



HMMes in Action: Pfam

http://pfam.xfam.org

Proteins fall into families, both across & within
species
Ex: Globins, Zinc fingers, Leucine zippers, GPCRs, ...
|dentifying family very useful: suggests function, etc.
So, search & alignment are both important
Q. Why not just use Blast/Smith-Waterman!?
A. There is more info in multiple examples

One very successful approach: profile HMMs
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Helix AAAAAAAAARAARAAMAA BBBEBBBBBBBBBBBBBCCCCCCCCCCC

HBA_HUMAN ----————- VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN ------—-—- VHLTPEEKSAVTALWGKV--~--NVDEVGGEALGRLLVVYPWTQRFFESF
MYG_PHYCA -----———- VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP -----===-=- LSADQISTVQASFDKVKG--~-~-~-~ DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU ======~- GALTESQAALVKSSWEEFNA-~-NIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI =~====eee- GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus Ls.... vaWwWkv. . g . L.. £ . P . F F
Helix DDDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF

HBA_HUMAN -DLS----- HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL -
HBB_HUMAN GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL-~~-D--NLKGTFATLSELHCDKL~
MYG_PHYCA KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-

GLB3_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
GLBS_PETMA RGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF—
LGB2_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-
GLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN
Consensus .t .+ « V..Hg kv. a a...1 d .al. 1 H .

Helix
HBA_HUMAN
HBB_HUMAN
MYG_PHYCA
GLB3_CHITP
GLBS5_PETMA
LGB2_LUPLU
GLB1l_GLYDI
Consensus

Alignment of 7 globins. A-H mark 8 alpha helices.
Consensus line: upper case = 6/7, lower = 4/7, dot=3/7.
Could we have a profile (aka weight matrix) w/ indels?




Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.

Mij: Match states (20 emission probabilities)
i Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)

From DEKM 53



Silent States

Example: chain of
states, can skip
some

Problem: many parameters.

A solution: chain
of “silent” states;

: O
fewer parameters Kj \r \f ?

(but less detailed control)
Algorithms: basically the same.

{"silent” states)
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Using Profile HMM’s

Search
Forward or Viterbi

Scoring
Log likelihood (length adjusted)
Log odds vs background next slides

Z scores from either
Alignment
Viterbi
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LL/length

Likelihood vs

0 T T T T T
non-globins -
training data -

1 other globins +

2t . -

' !

-3} 7

-4 }

-5 -

-6 K ;'.:: 1 1 1

0 50 100 150 200 250

protein length

300

Odds Scores

500

400

300

200

log-odds

-100

-200

_—

T

non-globins
training data
other globins

) .

+

100
protein length

150 20

0 250

Figure 5.5 To the left the length-normalized LL score is shown as a function
of sequence length. The right plot shows the same for the log-odds score.
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Z-Scores
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Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).
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Pfam Model Building

Hand-curated “seed” multiple alighments
Train profile HMM from seed alignment
Hand-chosen score threshold(s)

Automatic classification/alignment of all other
protein sequences

Pfam 25.0 (March 2011, 12273 families; covers
= /5% of human proteins)

Pfam 27.0 (March 2013, 14831 families; = 90%)
Pfam 31.0 (March 2017, 16712 families)



#  Model-building

N
N o
refinements
Pseudocounts (count = 0 common when training
with 20 aa’s)
- Cz',a + A- 4a

e;(a) = S Crat A A ~ 20, g, = background

(~50 training sequences)
Pseudocount “mixtures”, e.g. separate
pseudocount vectors for various contexts
(hydrophobic regions, buried regions,...)

(~10-20 training sequences)
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More refinements

Weighting: may need to down weight highly
similar sequences to reflect phylogenetic or
sampling biases, etc.

Match/insert assignment: Simple threshold, e.g.
“> 50% gap = insert”, may be suboptimal.
Can use forward-algorithm-like dynamic
programming to compute max a posteriori
assignment.



& Numerical Issues

Products of many probabilities — 0
For Viterbi: just add logs

For forward/backward: also work with logs, but
you need sums of products, so need
“log-of-sum-of-product-of-exp-of-logs”,

e.g., by table/interpolation
Keep high precision and perhaps scale factor

Working with log-odds also helps.
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Model structure

Define it as well as you can.

In principle, you can allow all transitions and
hope to learn their probabilities from data, but
it usually works poorly — too many local
optima
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& Duration Modeling

Self-loop duration: P@
geometric p"(1-p)

min, then geometric ( )
“negative binomial” (! 2( )@@

al

More general: possible (but slower)
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joint vs
conditional probs

HMM Summary

Inference
Viterbi — best single path (max of products)
Forward — sum over all paths (sum of products)

Backward — similar
Posterior decoding
Model building

Semi-supervised — typically fix architecture (e.g. profile
HMM), then learn parameters

Baum-Welch — training via EM and forward/backward
(aka the forward/backward algorithm)

Viterbi training — also “EM-like”, but Viterbi-based
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HMM Summary (cont.)

Search:
Viterbi or forward
Scoring:
Odds ratio to background
Z-score
E-values, etc., too
Excellent tools available (SAM, HMMer, Pfam, ...)

A very widely used tool for biosequence analysis
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