CSE P 527

Markov Models and Hidden Markov Models

Dosage Compensation and X-Inactivation

2 copies (mom/dad) of each chromosome I-23
Mostly, both copies of each gene are expressed
E.g., A B O blood group defined by 2 alleles of I gene
Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:

- One X randomly inactivated in each cell
- Choice maintained in daughter cells

Calico: a major coat color gene is on X

Reminder: Proteins "Read" DNA

Down in the Groove

Different patterns of hydrophobic methyls, potential H bonds, etc. at edges of different base pairs. They're accessible, esp. in major groove

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA Methylation

CpG - 2 adjacent nts, same strand (not Watson-Crick pair; "p" mnemonic for the phosphodiester bond of the DNA backbone)

C of CpG is often (70-80%) methylated in mammals i.e., CH₃ group added (both strands)

cytosine

Same Pairing

Methyl-C alters major groove profile (∴ TF binding), but not base-pairing, transcription or replication

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA Methylation-Why

In vertebrates, it generally silences transcription

(Epigenetics) X-inactivation, imprinting, repression of mobile elements, cancers, aging, and developmental differentiation

cytosine

1

E.g., if a stem cell divides, one daughter fated to be liver, other kidney, need to

- (a) Turn off liver genes in kidney & vice versa,
- (b) Remember that through subsequent divisions

How? One way:

- (a) Methylate genes, esp. promoters, to silence them
- (b) After ÷, DNA methyltransferases convert hemi- to fully-methylated (not trivial: deleting methyltransferase is embrionic-lethal in mice)

Major exception: promoters of "housekeeping" genes

"CpG Islands"

Methyl-C mutates to T relatively easily Net: CpG is less common than expected genome-wide:

$$f(CpG) < f(C)*f(G)$$

BUT in some regions (e.g. active promoters), CpGs remain unmethylated, so CpG → TpG less likely there: makes "CpG Islands"; often mark gene-rich regions

cytosine

thymine

CpG Islands

CpG Islands

More CpG than elsewhere (say, CpG/GpC>50%)

More C & G than elsewhere, too (say, C+G>50%)

Typical length: few 100 to few 1000 bp

Questions

Is a short sequence (say, 200 bp) a CpG island or not?

Given long sequence (say, 10-100kb), find CpG islands?

Markov & Hidden Markov Models

References (see also online reading page):

Eddy, "What is a hidden Markov model?" Nature Biotechnology, 22, #10 (2004) 1315-6.

Durbin, Eddy, Krogh and Mitchison, "Biological Sequence Analysis", Cambridge, 1998 (esp. chs 3, 5)

Rabiner, "A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition," Proceedings of the IEEE, v 77 #2,Feb 1989, 257-286

Independence

A key issue: Previous models we've talked about assume *independence* of nucleotides in different positions - definitely unrealistic.

Markov models allow us to relax that assumption.

Markov Chains

A sequence x_1, x_2, \ldots of random variables is a k-th order Markov chain if, for all i, ith value is independent of all but the previous k values:

$$P(x_i \mid \underbrace{x_1, x_2, \dots, x_{i-1}}_{\text{i-l}}) = P(x_i \mid \underbrace{x_{i-k}, x_{i-k+1}, \dots, x_{i-1}}_{\text{k typically} \ll \text{i-l}})$$

Example I: Uniform random ACGT

Example 2: Weight matrix model

Example 3: ACGT, but \downarrow Pr(G following C)

} 0th
order

Ist
order

A Markov Model (1st order)

States: A,C,G,T

Emissions: corresponding letter

Transitions: $a_{st} = P(x_i = t \mid x_{i-1} = s)$ — Ist order

A Markov Model (Ist order)

States: A,C,G,T

Emissions: corresponding letter

Transitions: $a_{st} = P(x_i = t \mid x_{i-1} = s)$

Begin/End states

Pr of emitting sequence x

$$\begin{array}{lll} x & = & x_1 \; x_2 \; \dots \; x_n \\ P(x) & = & P(x_1, x_2, \dots, x_n) > \lim_{\substack{\text{of Probability} \\ \text{c'chain}}} \\ & = & P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}, \dots, x_1) \\ & = & P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}) > \lim_{\substack{\text{of der} \\ \text{order}}} \\ & = & P(x_1) \prod_{i=1}^{n-1} a_{x_i, x_{i+1}} \\ & = & \prod_{i=0}^{n-1} a_{x_i, x_{i+1}} \quad \text{(with Begin state)} \end{array}$$

Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences

E.g., from 48 CpG islands in 60k bp:

+	A	C	G	T	_	A	C	G	T
A	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
C	0.171	0.368	0.274	0.188	C	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
T	0.079	0.355	0.384	0.182	т	0.177	0.239	0.292	0.292

From DEKM 18

Discrimination/Classification

Log likelihood ratio of CpG model vs background model

$$S(x) = \log \frac{P(x|+\text{model})}{P(x|-\text{model})} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1},x_i}^+}{a_{x_{i-1},x_i}^-} = \sum_{i=1}^{L} \log \beta_{x_{i-1},x_i}$$
Input
seq
$$\beta \quad A \quad C \quad G \quad T$$

$$A \quad -0.740 \quad 0.419 \quad 0.580 \quad -0.803$$

$$C \quad -0.913 \quad 0.302 \quad 1.812 \quad -0.685$$

$$G \quad -0.624 \quad 0.461 \quad 0.331 \quad -0.730$$

$$T \quad -1.169 \quad 0.573 \quad 0.393 \quad -0.679$$

CpG Island Scores

Figure 3.2 Histogram of length-normalized scores.

Questions

Q1: Given a *short* sequence, is it more likely from feature model or background model? Above

Q2: Given a *long* sequence, where are the features in it (if any)

Approach I: score 100 bp (e.g.) windows

Pro: simple

Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.

Combined Model

Emphasis is "Which (hidden) state?" not "Which model?"

Hidden Markov Models

(HMMs; Claude Shannon, 1948)

States: $1, 2, 3, \dots$

Paths: sequences of states $\pi = (\pi_1, \pi_2, ...)$

Transitions: $a_{k,l} = P(\pi_i = l \mid \pi_{i-1} = k)$

Emissions: $e_k(b) = P(x_i = b \mid \pi_i = k)$

Observed data: emission sequence

Hidden data: state/transition sequence

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Rolls	315116246446644245311321631164152133625144543631656626566666
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	651166453132651245636664631636663162326455236266666625151631
Die	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.

Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).

Viterbi: the prediction by the Viterbi algorithm is shown.

Inferring hidden stuff

Joint probability of a given path π & emission sequence x:

$$P(x,\pi) = a_{0,\pi_1} \prod_{i=1}^{n} e_{\pi_i}(x_i) \cdot a_{\pi_i,\pi_{i+1}}$$

But π is hidden; what to do? Some alternatives:

Most probable single path

$$\pi^* = \arg\max_{\pi} P(x,\pi)$$

Sequence of most probable states

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Etc.

The Viterbi Algorithm: The most probable path

Viterbi finds: $\pi^* = \arg \max_{\pi} P(x, \pi)$

Possibly there are 10⁹⁹ paths of prob 10⁻⁹⁹ (If so, non-Viterbi approaches may be preferable.)

More commonly, one path (+ slight variants) dominate others; Viterbi finds that

Key problem: exponentially many paths π

Unrolling an HMM

Conceptually, sometimes convenient Note exponentially many paths

Viterbi

 $v_l(i) = \text{probability of the most probable path}$ emitting x_1, x_2, \dots, x_i and ending in state ℓ

Initialize:

$$v_l(0) = \left\{ egin{array}{lll} 1 & ext{if } l = B ext{egin state} & \longrightarrow & 1 & \cdots & 1 & 1 & 1 \\ 0 & ext{otherwise} & & & & 2 & \cdots & 2 & 2 \end{array} \right.$$

General case:

$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) \, a_{k,l})$$

HMM Casino Example

(Excel spreadsheet on web; download & play...)

HMM Casino Example

(Excel spreadsheet on web; download & play...)

Viterbi Traceback

Above finds *probability* of best path

To find the path itself, trace *backward* to the state *k* attaining the max at each stage

$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) a_{k,l})$$

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	651166453132651245636664631636663162326455236266666625151631 LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.

Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).

Viterbi: the prediction by the Viterbi algorithm is shown.

Most probable path != sequence of most probable states

Another example, based on casino dice again:

Suppose p(fair \leftrightarrow loaded) transitions are 10^{-99} and roll sequence is 1111166...666; then fair state is more likely all through 1's & well into the run of 6's, but eventually loaded wins, and the improbable F \rightarrow L transitions make Viterbi = *all* L.

Is Viterbi "best"?

Viterbi finds $\pi^* = \arg \max_{\pi} P(x, \pi)$

Most probable (Viterbi) path goes through 5, but most probable state at 2nd step is 6 (l.e., Viterbi is not the only interesting answer.)

An HMM (unrolled)

Emissions/sequence positions _____

Viterbi: best path to each

Viterbi score:

$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) \, a_{k,l})$$

Viterbi path^R:

$$back_l(i+1) = \arg\max_k(v_k(i) a_{k,l})$$

The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with given emissions

The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with given emissions, conditional on that state.

In state k at step i?

$$P(x, \pi_{i} = k)$$

$$= P(x_{1}, ..., x_{i}, \pi_{i} = k) \cdot P(x_{i+1}, ..., x_{n} \mid x_{1}, ..., x_{i}, \pi_{i} = k)$$

$$= P(x_{1}, ..., x_{i}, \pi_{i} = k) \cdot P(x_{i+1}, ..., x_{n} \mid \pi_{i} = k)$$

$$= f_{k}(i) \cdot b_{k}(i)$$

$$P(\pi_i = k \mid x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

Posterior Decoding, I

Alternative 1: what's the most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Note: the sequence of most likely states ≠ the most likely sequence of states. May not even be legal!

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Rolls	315116246446644245311321631164152133625144543631656626566666
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	651166453132651245636664631636663162326455236266666625151631
Die	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Figure 3.5

Rolls: Visible data—300 rolls of a die as described above.

Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded).

Viterbi: the prediction by the Viterbi algorithm is shown.

Posterior Decoding

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding, II

Alternative 1: what's most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Alternative 2: given some function g(k) on states, what's its expectation. E.g., what's probability of "+" model in CpG HMM (g(k)=1) iff k is "+" state)?

$$G(i \mid x) = \sum_{k} P(\pi_i = k \mid x) \cdot g(k)$$

CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48 CpG islands of about 1kbp each

Viterbi: Post-process:

Found 46 of 48 46/48

plus 121 "false positives" 67 false pos

Posterior Decoding:

same 2 false negatives 46/48

plus 236 false positives 83 false pos

Post-process: merge within 500; discard < 500

Training

Given model topology & training sequences, learn transition and emission probabilities

If π known, then MLE is just frequency observed in training data

training data
$$a_{k,l} = \frac{\text{count of } k o l \text{ transitions}}{\text{count of } k o \text{ anywhere transitions}}$$
 $e_k(b) = \dots$

If π hidden, then use EM:

given θ , estimate π ; given π estimate θ ; repeat

| + pseudocounts?

Viterbi Training

given θ , estimate π ; given π estimate θ ; repeat

Make initial estimates of parameters θ Find Viterbi path π for each training sequence Count transitions/emissions on those paths, getting new θ Repeat

Not rigorously optimizing desired likelihood, but still useful & commonly used.

(Arguably good if you're doing Viterbi decoding.)

Baum-Welch Training

EM: given θ , estimate π ensemble; then re-estimate θ

$$P(\pi_{i} = k, \, \pi_{i+1} = l \mid x, \theta)$$

$$= \frac{f_{k}(i \mid \theta) \, a_{k,l} \, e_{l}(x_{i+1}) \, b_{l}(i+1 \mid \theta)}{P(x \mid \theta)}$$

Estimated # of k o l transitions $\hat{A}_{k,l}$ on set of seqs x^{j}

$$= \sum_{\text{training seqs } x^j} \sum_{i} P(\pi_i = k, \ \pi_{i+1} = l \mid x^j, \theta)$$

New estimate
$$\hat{a}_{k,l} = \frac{\hat{A}_{k,l}}{\sum_{l} \hat{A}_{k,l}}$$

Emissions: similar

True Model

B-W Learned Model (300 rolls)

Log-odds (vs all F) per roll

True model 0.101 bits

300-roll est. 0.097 bits

30k-roll est. 0.100 bits

(NB: overestimated)

HMMs in Action: Pfam

http://pfam.xfam.org

Proteins fall into families, both across & within species

Ex: Globins, Zinc fingers, Leucine zippers, GPCRs, ...

Identifying family very useful: suggests function, etc.

So, search & alignment are both important

Q. Why not just use Blast/Smith-Waterman?

A. There is more info in *multiple* examples (e.g., psiBLAST)

One very successful approach: profile HMMs

Alignment of 7 globins. A-H mark 8 alpha helices. Consensus line: upper case = 6/7, lower = 4/7, dot=3/7. Could we have a profile (aka weight matrix) w/ indels?

Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.

Mj: Match states (20 emission probabilities)

Insert states (Background emission probabilities) lj:

Delete states (silent - no emission)

Silent States

Example: chain of states, can skip some

Problem: many parameters.

A solution: chain of "silent" states; fewer parameters (but less detailed control)

Algorithms: basically the same.

Using Profile HMM's

Search

Forward or Viterbi

Scoring

Log likelihood (length adjusted)

Log odds vs background

Z scores from either

Alignment

Viterbi

Likelihood vs Odds Scores

Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.

Z-Scores

Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

Pfam Model Building

Hand-curated "seed" multiple alignments

Train profile HMM from seed alignment

Hand-chosen score threshold(s)

Automatic classification/alignment of all other protein sequences

Pfam 25.0 (March 2011, 12273 families; covers ≈ 75% of human proteins)

Pfam 27.0 (March 2013, 14831 families; ≈ 90%)

Pfam 31.0 (March 2017, 16712 families)

Model-building refinements

Pseudocounts (count = 0 common when training with 20 aa's)

Pseudocount "mixtures", e.g. separate pseudocount vectors for various contexts (hydrophobic regions, buried regions,...)

(~10-20 training sequences)

More refinements

Weighting: may need to down weight highly similar sequences to reflect phylogenetic or sampling biases, etc.

Match/insert assignment: Simple threshold, e.g. "> 50% gap ⇒ insert", may be suboptimal. Can use forward-algorithm-like dynamic programming to compute max *a posteriori* assignment.

Numerical Issues

```
Products of many probabilities → 0
For Viterbi: just add logs
For forward/backward: also work with logs, but you need sums of products, so need "log-of-sum-of-product-of-exp-of-logs", e.g., by table/interpolation
Keep high precision and perhaps scale factor Working with log-odds also helps.
```

Model structure

Define it as well as you can.

In principle, you can allow all transitions and hope to learn their probabilities from data, but it usually works poorly – too many local optima

ents

Duration Modeling

Self-loop duration: geometric pⁿ(1-p)

min, then geometric

"negative binomial"

More general: possible (but slower)

HMM Summary

```
joint vs
conditional probs
       Inference
         Viterbi – best single path
                                                    (max of products)
          Forward – sum over all paths
                                                    (sum of products)
          Backward – similar
          Posterior decoding
       Model building
          Semi-supervised – typically fix architecture (e.g. profile
            HMM), then learn parameters
          Baum-Welch – training via EM and forward/backward
```

(aka the forward/backward algorithm)

Viterbi training – also "EM-like", but Viterbi-based

HMM Summary (cont.)

```
Search:
  Viterbi or forward
Scoring:
  Odds ratio to background
  Z-score
  E-values, etc., too
Excellent tools available (SAM, HMMer, Pfam, ...)
A very widely used tool for biosequence analysis
```