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and the E-M Algorithm



Qutline

HW#?2 Discussion
MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm

Next: Motif description & discovery



HWV # 2 Discussion

Species Name Description A_ci::;ss :ZO;T
I | Homo sapiens (Human) MYODI|_HUMAN | Myoblast determination protein | PI5172 | 1709
2 | Homo sapiens (Human) TALI_HUMAN T-cell acute lymphocytic leukemia protein | (TAL-I) P17542 143
3 | Mus musculus (Mouse) MYODI|_MOUSE | Myoblast determination protein | P10085 | 1494
4 | Gallus gallus (Chicken) MYODI|_CHICK | Myoblast determination protein | homolog (MYOD| homolog) P16075 | 1020
5 | Xenopus laevis (African clawed frog) | MYODA_XENLA | Myoblast determination protein | homolog A (Myogenic factor 1) | P13904 | 978
6 | Danio rerio (Zebrafish) MYODI|_DANRE | Myoblast determination protein | homolog (Myogenic factor |) Q90477 | 893
7 | Branchiostoma belcheri (Amphioxus) | Q81U24_BRABE | MyoD-related Q8lU24 | 428
8 | Drosophila melanogaster (Fruit fly) MYOD_DROME | Myogenic-determination protein (Protein nautilus) (dMyd) P22816 368
9 | Caenorhabditis elegans LIN32_CAEEL Protein lin-32 (Abnormal cell lineage protein 32) Ql0574 | 118
10 | Homo sapiens (Human) SYFM_HUMAN Phenylalanyl-tRNA synthetase, mitochondrial 095363 56
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Permutation Score Histogram vs Gaussian

Red curve is approx fit of EVD to
score histogram — fit looks better,
esp. in tail. Max permuted score
has probability ~10-4, about what
you'd expect in 2x104 trials.

True score is still moderately
unlikely, < one tenth the above.




Take Home

* Recognizable similarity in protein sequences
over great evolutionary distance

* S-W + p-values allow useful quantification

* Similarity correlates better to “same
function” than to “same species”
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Probability Basics, |

Ex. Ex.
Sample Space
{1,2,...,6} R
Distribution
1<i<6 R
e.g.
L —@—w?/(20%)
pr=--+=pg=1/6 flz) = e H

VvV 2mo?

g8 0 5 a0 O A Pdf,nOt
- -~ i probability




Probability Basics, Il

Expectation E(g)= > g(@)p E(g) = / g(z) f(z)dx
1<i<6 R
Population
mean = Z ip; ,uz/.rf(:c)dx
1<i<6 R
variance o? = > (i—p)’p 0% = /(:r; — )2 f(x)dz
1<i<6 R
Sample
mean T = Z x;/n
1<i<n

variance 52 = Z (z; — 2)%/n



Learning From Data:
MLE

Maximum Likelihood Estimators



Parameter Estimation

Given: independent samples x/, x, ..., Xn from
a parametric distribution f(x|9)\

Not formally “conditional probability,”

Goa’: estimate e but the notation is convenient...

E.g.: Given sample HHTTTTTHTHTTTHH
of (possibly biased) coin flips, estimate

O = probability of Heads

f(x|0) is the Bernoulli probability mass function with parameter 0



Likelihood

(For Discrete Distributions)

P(x | ©): Probability of event x given model 6

Viewed as a function of x (fixed 0), it’s a probability
Eg,2«P(x|0) =1
Viewed as a function of O (fixed x), it’s called likelihood

E.g., 20 P(x | B) can be anything; relative values are the focus.

E.g.,if O = prob of heads in a sequence of coin flips then
P(HHTHH | .6) > P(HHTHH | .5),
l.e., event HHTHH is more likely when @ = .6 than 0 = .5

And | what O make HHTHH most likely?




Likelihood Function

P(HHTHH | 0 ):
Probability of HHTHH, &
given P(H) = 0:
o |68
02 | 00013  E:
05 | 0033 7
08 | 00819
095 | 0.0407

Theta




Maximum Likelihood
Parameter Estimation

(For Discrete Distributions)

One (of many) approaches to param. est.
Likelihood of (indp) observations x , x,, ..., x_

L(x17x277$n‘6)):1_‘[f(x2|6)) ()
1=1

As a function of 0, what 6 maximizes the
likelihood of the data actually observed!?

Typical approach: 2 1. |6) =0 or 2 log L(# | 6) = 0

(*) In general, (discrete) likelihood is the joint pmf; product form follows from independence



Example |

n independent coin flips, x/, X, ..., Xn; no tails, n; heads,

no+ n; = n; O = probability of heads PAN
L($1, Ly ooy p (9) — (1 — 9)’”’06’”1 " WU, N
log L(x1,22,...,2, | 0) = mnglog(l—60)+ nylogb
o _
splog L(x1,x9,...,2, | 0) = 155+
Setting to zero and solving: Observed fraction of
successes in sample is
é . n1 MLE of success
B n probability in population

(Also verify it’s max, not min, & not better on boundary)



Likelihood

(For Continuous Distributions)

Pr(any specific x;) = 0, so “likelihood = probability” won’t work. Defn:
“likelihood” of xi, ..., xn is their joint density; = (by indp) product of their
marginal densities. (As usual, swap density for pmf.) Why sensible:

a) density captures all that matters: relative likelihood

b) desirable property: better model fit increases likelihood

and

3

c) if density at x is f{(x), for any small >0, the probability of a sample
within £0/2 of x is = 0f(x), so density really is capturing probability,
and O is constant wrt 0, so it just drops out of d/d0 log L(...) = 0.

Otherwise, MLE is just like discrete case: get likelihood, 2 log L(Z | 6) = 0



Parameter Estimation

Given: indp samples xj, x2, ..., x» from a
parametric distribution f(x|0), estimate: O.

E.g.: Given n normal samples,
estimate mean & variance

flz) = 1 o—(z—p)?/(207)

2w o2

0

(1, 0%)




Ex2: | got data; a little birdie tells me
it's normal, and promises 02 = |

7 3 HKO6—E00¢ 73

Observed Data

Al 4



Which is more likely: (a) this!?

M unknown, g2 = |

Observed Data

20



Which is more likely: (b) or this!?

M unknown, g2 = |

Observed Data

21



Which is more likely: (c) or this?

M unknown, g2 = |

- - . )(—)(-)(—)L—)(-)(-)( —_— -
Observed Data

M

22



Which is more likely: (c) or this?
M unknown, g2 = |

Looks good by eye, but how do | optimize my estimate of 4 !

- - . )(—)(-)(—)L—)(-)(-)( —_— -
Observed Data

v

23



Ex. 2: z; ~ N(p,0°), 0 =1, punknown

1 >
L(.flfl,ﬁljz, .. 7xn’(9) — H 6_(551'—9) /2

1
InL(z1,z2,...,2,]0) = 2_5 In(27) —

d

@mL(xl,xz, L zn|0) = Z(x —0)

And verify it’s max,
not min & not better

on boundary n
) dInL/d® =0 é\ (ZCU) /TL:T

_ =1
] l/\ Sample mean is MLE of

population mean

|
Z >
'l 3

8
~

|

N

>

|

o

e e
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Ex3: | got data; a little birdie tells me
it's normal (but does not tell me U, 02)

7 3 HKO6—E00¢ 73

Observed Data

Al 4

25



Which is more likely: (a) this!?

M, 02 both unknown

—E HKO6—E00¢ 7 3

Observed Data
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Which is more likely: (b) or this!?

M, 02 both unknown

Observed Data .

27



Which is more likely: (c) or this?

M, 02 both unknown

e O0—pPE—0606——r—¢

Obseruved Data
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Which is more likely: (d) or this?

M, 02 both unknown

Obsenved Data
v

29



Which is more likely: (d) or this?

M, 02 both unknown
Looks good by eye, but how do | optimize my estimates of 4 & 02!

Obsenved Data
U

30



EX . 2, ~ N(u,0%), u, o both unknown
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In general, a problem like this results in 2 equations in 2 unknowns.
1 L : .
Easy in this case, since 0, drops out of the 0/00, = 0 equation 3



In L(xy,x2, ..

9,

— In L(xy, 22, ..

005

Ex. 3, (cont.)

- 1 (azi—é’l)Q
al01.0,) = 2 In(276,) —
101,02) ; > (2762) 20,
- 1 27 (:1:7;—6’1)2
i) = ;_§2W92+ 262 -
0 = (Ci@-0)?) = 5

Sample variance is MLE of
bopulation variance
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Ex. 3, (cont.)

Defn: An estimator is unbiased if expected value = true value

Example: For any distribution, the sample meanY = (2| <i<n Xi)/n

is an unbiased estimator of population mean since
E[Y] = (Zi<i<n E[X])/n=n Y/n =}

For normal distribution, (21 <i<n (Xi-M)2)/n is an unbiased est. of

02. Unfortunately, if 4 is unknown, estimated from the same data,
as above, 6, = X, %" is a consistent, but biased estimate

n .

of population variance. (An example of overwmsed
estimate is: l.e., limn— oo

A (x,—01) _
0, = Zlgign — correct

Moral: MLE is a great idea, but not a magic bullet 33



Summary

MLE is one way to estimate parameters from data
You choose the form of the model (normal, binomial, ...)
Math chooses the value(s) of parameter(s)

Defining the “Likelihood Function” (based on the pmf or pdf of the model) is
often the critical step; the math/algorithms to optimize it are generic

Often simply (d/d0)(log Likelihood(data|0)) = 0

Has the intuitively appealing property that the parameters maximize the likelihood
of the observed data; basically just assumes your sample is “representative”

Of course, unusual samples will give bad estimates (estimate normal human heights from a
sample of NBA stars?) but that is an unlikely event

34



Conditional Probability

&
Bayes Rule



conditional probability

Conditional probability of E given F: probability that E occurs given

that F has occurred.

“Conditioning on F”

Written as P(E|F)

S
Means “P(E has happened, given F observed)” @@

P(E|F) =

P(EF)

P(F)

E@S

where P(F) > 0

36



law of total probability

E and F are events in the sample space S

E=EF u EFe

EF n EFc = 2
= P(E) = P(EF) + P(EF¢)

37



Bayes Theorem

Most common form:

P(F | E) = P(E]LQ)P(F)
Expanded form (using law of total probability):
_ P(E | F)P(F)
PULE) = BiE TR PF) + P(E| FO)PFY)
Proof:
" P(EF) P(E|F)P(F)
IR =5m T T rm

38



EM

The Expectation-Maximization Algorithm
(for a Two-Component Gaussian Mixture)

39



Previously:
How to estimate M given data

For this problem, we got a nice, closed
form, solution, allowing calculation of the L,
O that maximize the likelihood of the
observed data.

We're not always so lucky...

e - -
Observed Data

40



More Complex Example

(A modeling decision, not a math problem...,
but if the later, what math?)

41



A Living Histogram

>

.wfn

-

g
"
»

‘_““L:l

male and female genetics students, University of Connecticut in 1996

http://mindprod.com/jgloss/histogram.html
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Another Real Example:

CpG content of human gene promoters

(o]
o
o

600 -

400 -

Number of promoters

200 -

“Tm _

0.04 017 030 043 056 069 082 0.95

0

Normalized CpG

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two
distinct classes of promoters” Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

©2006 by National Academy of Sciences

43



Gaussian Mixture Models / Model-based Clustering

00000 0—© 0—000-00—©
Parameters 6
means 11 142
variances o2 o3

mixing parameters Ty To=1-—m

P.D.F. Y (x|, 07)  flx|pe, o)

\)%‘
T f(x|p1, 07) + 2 f (2| p2, 03)

. . L(x17$27'"7$n’:u17:u270-%70-%77_177_2) No
Likeli- { oced.
2
hood I Y (il o?) e

max
44






)

=10

~10.2, 10, —9.8
—0.2, 0, 0.2
11.8, 12, 12.2




A What-If Puzzle

Likelihood v

N\

N\

~ 2 9
L(fCl,fBQ, c e ,:Cn’,Ltl,,LL27<71af7277'177'2)

= L2, Z?;l 7 f (i, 0%)
Messy: no closed form solution known for
finding O maximizing L

But what if we
knew the

1 if z; drawn from f;
Zz'j =
hidden data?

0 otherwise

47



A Hat Trick

Two slips of paper in a hat:
Pink: u = 3, and
Blue: u=7.

You draw one, then (without revealing color or [)
reveal a single sample X ~ Normal(mean [, 02 = 1).

You happen to draw X = 6.001.
Dr. Mean says “your slip = 7.” What is P(correct)?

What if X had been 4.9?

48



A Hat Trick

v _

o
>
= _|
= o
% ~ R ® <«——
T o |

S -

. I

o X X ¥

Let “X = 6” be a shorthand for 6.001 —§/2 < X < 6.001

P(X = 6lp="T)Pu="7)
P(X =~ 6)
B 0.5P(X ~6|u=7)
- 05P(X ~6|lu=3)+05P(X ~6|u="17)
N f(X =6lp="T1)d
(X =6lp=23)d+ f(X =6[u="T7)3’

v Ay f(X=6lp=T) -
P('LL_HX_G)_f(X:6|,u:3)+f(X:6]u:7) ”

Plpu=7X=6) = Bayes rule

f = normal
density

SO




Another Hat Trick

Two secret numbers, Py and Hppe
On pink slips, many samples of Normal(M., 02 = I),
Ditto on blue slips, from Normal(Uy., 02 = I).

Based on 16 of each, how would you “guess” the
secrets (where “success” means your guess is within
+0.5 of each secret)?

Roughly how likely is it that you will succeed?

50



Another Hat Trick (cont.)

Pink/blue = red herrings; separate & independent
Given Xy, ..., Xi6 ~ N(M,02%), 02=|
CalculateY = (X + ... + Xi)/ 16 ~N(?, ?)
E[Y] = M ]
Var(Y) = 1602%/162=02%/16 = 1/16
l.e., Xi's are all ~ N(u, 1); Y is~N(u, 1/16)

and since 0.5 = 2 sqrt(l/16), we have:

“Y within £.5 of 4”7 =Y within £2 0 of 47 = 95% prob

Note |: Y is a point estimate for [;
Y £2 0isa 95% confidence interval for |

51



100 150

50

Frequency

Histogram of 1000 samples of the average of 16 N(0,1) RVs
Red = N(0O,1/16) density

-1.5

I I I I I
-1.0 -0.5 0.0 0.5 1.0

Sample Mean

1.5



Hat Trick 2 (cont.)

Note 2 (Important):

What would you do if some of the slips you pulled had
coffee spilled on them, obscuring color?

If they were half way between means of the others!?
If they were on opposite sides of the means of the
others

density

00 01 02 03 04

53



A What-If Puzzle

Likelihood v

N\

N\

~ 2 9
L(fCl,fBQ, c e ,:Cn’,Ltl,,LL27<71af7277'177'2)

= L2, Z?;l 7 f (i, 0%)
Messy: no closed form solution known for
finding O maximizing L

But what if we
knew the

1 if z; drawn from f;
Zz'j =
hidden data?

0 otherwise

54



EM as Egg vs Chicken

w&o IF parameters O known, could estimate z;
.\O
© Eg.,|x— wi|/o1> |xi— wl/oa= P[zi=1] « P[zo=1] __ >N /N__
v IF zgknown, could estimate parameters 0
- C
A& NN

E.g., only points in cluster 2 influence w,, 02 — - —eeee—

But we know neither; (optimistically) iterate:

E-step: calculate expected z;, given parameters

M-step: calculate “MLE” of parameters, given E(z;)

Overall, a clever “hill-climbing” strategy




s Simple Version:
<" “Classification EM”

If E[z;;] < .5, pretend z;= 0; E[z;] > .5, pretend it’s |
. ] “K-means
|.e., classify points as component | or 2 clustering.”

Now recalc 0, assuming that partition (standard MLE) |essentially
Then recalc E[z;], assuming that O
Then re-recalc 0, assuming new E[z;], etc., etc.

“Full EM” is slightly more involved, (to account for
uncertainty in classification) but this is the crux.

56



Full EM

x;'s are known; 6 unknown. Goal is to find MLE 6 of:
L(Clj‘l, S ) ’ 6’) (hidden data likelihood)
Would be easy if z;;'s were known, i.e., consider:
L(le, ce s s R115R125 « + « 5 22 ‘ 9) (complete data likelihood)
But z;;'s aren't known.
Instead, maximize expected likelihood of visible data
E(L(z1,...,Tn, 211,212, -+ Zn2 | 0)),

where expectation is over distribution of hidden data (z;;'s)

57



The E-step:
Find E(Zij), l.e., P(Zij= |)

Assume O known & fixed

A (B): the event that x; was drawn from fi (f2) )
N

D: the observed datum x; /Q,p@*
Expected value of zi/ is P(A|D) —
P(D|A)P(A)
E[Zl‘]] ZP(A‘D) — ( ;(D)
P(D) = P(D|A)P(A)+ P(D|B)P(B)

— fl(ﬂji‘el)Tl —|—f2(331’62) T2

Note: denominator = sum of numerators - i.e. that which normalizes sum to 1 (typical Bayes)

NN

Repeat
for
each
Zi

58
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A Hat Trick

o otb\,\

N
o

~

0.0

| | | | | | T | | | |
0 1 2 3 4 5 6 7 8 9 10

Let “X = 6” be a shorthand for 6.001 — §/2 < X < 6.001 + §/2

Plpu="7X=6) = %i_r}r(lj P(u="T7X =~ 6) E[Z, ink]:?
P(X ~ 6lu=T)P(u=T) A
P(X ~ 6) E[Zipiue]=
B 0.5P(X ~6|u=7)
- 05P(X ~6|u=3)+05P(X ~6|u="7)
f(X =6lp=T)5
f(X=6lp=3)0+ f(X=6)|u=T)0

oy oy (X =6lp=7)
P(“_HX_G)_f(X:G\N:3)+f(X:6)\u=7) 59

P(p=7X~6) =

f = normal
density

a4

SO




Complete Data
Likelihood

B { 1 if z; drawn from f;

Recall:

A .
17 0 otherwise

so, correspondingly,

, . 7'1f1(ili'1 ‘ 9) if z11 =1 equal, if zjj are 0/
Mo, 21;10) = { To fo(x1 | ) otherwise

Formulas with “if’s” are messy; can we blend more smoothly?
Yes, many possibilities. ldea 1:

L(z1,215|0) = 211 -1 fi(x1]0) 4+ 212 - T2 fa(z1 | 0)

|dea 2 (Better):
L(%,le \ 9) — (71f1(5131 ’ 9))Z11 ‘ (T2f2(371 ‘ 9))212 60



M-step:

Find ® maximizing E(log(Likelihood))

(For simplicity, assume 01 =09 = 0,7, =170 = 7 = 0.5)

)

n 2
10 - e (-2 g

n

2
1 2
Ellog L(%,7 | 0)] g log T — 5 log(2mo?) g )
\ _i:l 71=1 i

wrt dist of z;; 1 (:C . ,LL')2
logT — = log(2m0?) — Y  E[z;;]~——=2
og T 9 Og( To ) [Z]] 20_2

S

M

1

1=1 7

Find & maximizing this as before, using E[z;;| found in E-step. Result:

=S Elziile /S Bz | (intuit: avg, weighted by subpop prob
i=1 J i=1 J

6l



(}r}\ Hat Trick 2 (cont.)

Q~® Note 2: red/blue separation is just like the M-step of EM
if values of the hidden variables (z;) were known.

What if they’re not! E.g., what would you do if some of
the slips you pulled had coffee spilled on them,
obscuring color?

If they were half way between means of the others?
If they were on opposite sides of the means of the
others

density

00 01 02 03 04
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old E’s

M-step: calculating mu’s

Hj = S:?—l

E[Zw]xz/ S:?—l

Ezi;)

In words: [; is the average of the observed xi’s, weighted by
the probability that x; was sampled from component j.

row sum avg
E[z1]/0.99/0.98| 0.7 0.2/0.03/0.01] 2.91
E[z]0.01/0.02| 0.3 0.8/0.97/0.99] 3.09

xil 9] 10 11| 19/ 20 21| 90| 15
E[zi]xi| 8.9 9.8/ 7.7 3.8 0.6/ 0.2| 31.02| 10.66
E[zo]xi| 0.1] 0.2 3.3/15.2/19.4/20.8] 58.98] 19.09

new U’s
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2 Component Mixture

O

mul

-20.00

mu2

6.00

z11

z21

z31

z41

z51

x1 -6
x2 -5
x3 -4
x4 0
x5 4
x6 5
x7 6

z61

z71

=0, = 1; T=0.5
-6.00
0.00
5.11E-12 1.00E+00
2.61E-23 1.00E+00
1.33E-34 9.98E-01
9.09E-80 1.52E-08
6.19E-125 5.75E-19
3.16E-136 1.43E-21
1.62E-147 3.53E-24

-5.00
LI

Essentially converged in 2 iterations

(Excel spreadsheet on course web)

1.00E+00
1.00E+00
1.00E+00
4.11E-03
2.64E-18
4.20E-22
6.69E-26

-4.99
Sh/S
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EM Summary

Fundamentally a maximum likelihood parameter
estimation problem; broader than just Gaussian

Useful if O/] hidden data, and if analysis would be
more tractable if hidden data z were known

Iterate: p
E-step: estimate E(z) for each z, given O N
M-step: estimate O maximizing E[log likelihood] &

given E[z] [where “E[logL]” is wrt random z ~ E[z] = p(z=1)]
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EM lIssues

Under mild assumptions (DEKM sect 11.6), EM is
guaranteed to increase likelihood with every
E-M iteration, hence will converge.

But it may converge to a local, not global, max.
(Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often
applied to NP-hard problems (including
clustering, above and motif-discovery, soon)

Nevertheless, widely used, often effective

66



Applications

Clustering is a remarkably successful exploratory data
analysis tool

Web-search, information retrieval, gene-expression, ...
Model-based approach above is one of the leading ways to do it
Gaussian mixture models widely used

With many components, empirically match arbitrary distribution

Often well-justified, due to “hidden parameters” driving the
visible data

EM is extremely widely used for “hidden-data” problems
Hidden Markov Models — speech recognition, DNA analysis, ...

67



A “Machine Learning” Example
Handwritten Digit Recognition

Given: |0%unlabeled, scanned images of o / 2_
Goal: automatically classify new examples | _ = (9

handwritten digits, say 25 x 25 pixels,
Possible Method: % 7

Each image is a point in Ré2>; the “ideal” 7, say, is one such
point; model other 7’s as a Gaussian cloud around it

Do EM, as above, but |0 components in 625 dimensions
instead of 2 components in | dimension

“Recognize” a new digit by best fit to those 10 models, i.e.,
basically max E-step probability
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A Bio Example

A time series:
Feel good; catch flu; sick as dog; meh; OK again

Measure gene expression at each point
Hypothesis: genes that co-vary are co-involved

Possible approach: do the genes fall into a few
“clusters,’ say, as defined by Gaussian distributions
(in high dimension, not one-D)

69



Relative entropy



Relative Entropy

* AKA Kullback-Liebler Distance/Divergence,
AKA Information Content

e Given distributions P Q

H(P||Q) = ZP log Plz)

rel) ZC)
Notes:

Let P(x)log P(z)

Q(x)
Undefined if 0 = Q(x) < P(x)

= 0 if P(z) = 0 [since lin%ylogy = 0]
y—)
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Relative Entropy
H(P||Q) = ZP log Plz)

x () (x)

* Intuition: A quantitative measure of how much P “diverges” from
Q. (Think “distance,” but note it’s not symmetric.)
* If P = Q everywhere, then log(P/Q) = 0,so H(P||Q) = 0
* But as they differ more, sum is pulled above 0 (next 2 slides)
* What it means quantitatively: Suppose you sample x, but aren’t
sure whether you’re sampling from P (call it the “null model”) or
from Q (the “alternate model”). Then log(P(x)/Q(x)) is the log
likelihood ratio of the two models given that datum. H(P||Q) is
the expected per sample contribution to the log likelihood ratio for
discriminating between those two models.
* Exercise: if H(P||Q) = 0.1, say. Assuming Q is the correct model,

how many samples would you need to confidently (say, with
1000:1 odds) reject P?
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—Inx > 1—2
In(l/x) > 1—=x
ll’ly > 1—1/y-»'

(y = 1/x)
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Theorem: H(P||Q) > 0

H(P||Q) = > P(z)log P(i) Idea: if P # Q, then
Q(Q)(a:) P(x)>Q(x) = log(P(x)/Q(x))>0
Z pr(x)( o P(az)) and

> (P) —Q(x))  POI<Q) = log(P(y)/Q(y))<0
Q: Can this pull H(P||Q) < 0?

Zx P(m) o Za: Q(CIS) A: No, as theorem shows.

— 1_1 Intuitive reason: sum is
weighted by P(x), which is
= 0 bigger at the positive log ratios

vs the negative ones.

Furthermore: H(P||Q) =0 ifand only if P = Q
Bottom line: “bigger” means “more different”
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