CSEP 527
Computational Biology
Winter 2018

Lecture 2
Sequence Alignment

What is an alignment?

Compare two strings to see how “similar” they are
E.g., maximize the # of identical chars that line up

ATGTTAT vs
ATCGTAC
A - G T T A T
A cC G| T - A

What is an alignment?

Compare two strings to see how “similar” they are
E.g., maximize the # of identical chars that line up

ATGTTAT vs
ATCGTAC

matches mismatches

Sequence Alignment: Why

Biology

Among most widely used comp. tools in biology
DNA sequencing & assembly

New sequence always compared to data bases
Similar sequences often have similar
origin and/or function

Recognizable similarity after 108 —10° yr

Other
spell check/correct, diff, svn/git/..., plagiarism, ...

Try it!
BLAST Demo pick any protein, e.g.
http://www.ncbi.nlm.nih.gov/blast/ hemoglobin, insulin,
exportin,... BLAST to
find distant relatives.

Taxonomy Report

a0 Y) 64 hits 16 orgs

. Eukaryota ... i 62 hits 14 orgs [cellular organisms]

Alternate demo:

go to http://www.uniprot.org/uniprot/O14980 “Exportin-1”

find “BLAST” button about 72 way down page, under “Sequences”, just
above big grey box with the amino sequence of this protein

click “go” button

after a minute or 2 you should see the 1st of 10 pages of “hits” — matches to
similar proteins in other species

you might find it interesting to look at the species descriptions and the
“identity” column (generally above 50%, even in species as distant from us
as fungus -- extremely unlikely by chance on a 1071 letter sequence over a
20 letter alphabet)

Also click any of the colored “alignment” bars to see the actual alignment of
the human XPO1 protein to its relative in the other species — in 3-row
groups (query 18, the match 3, with identical letters highlighted in between)

"-mphocystis disease virus 1 hits 1 orgs [Viruses; dsDNA viruses, no RNA ..]

Terminology

string \ suffix
ordered list of { \ | consecutive
letters TATARACQC letters from

\ QR SRR back

/ | —

prefix \ substring
consecutive consecutive
letters from subsequence letters from
front any ordered, anywhere
nonconsecutive
letters,

i.e. AAD , TAG

Formal definition of an alignment

a c gctg a c - —gctgqg
|)
c/at\g\t - catgt - -

An alignment of strings S, T is a pair of strings
S, T" with dash characters “-" inserted, so that

1. |S| =T, and (IS| = “length of S”)
2. Removing dashes leaves S, T

Consecutive dashes are called “a gap.”

(Note that this is a definition for a general alignment, not optimal.)

Scoring an arbitrary alignment

Define a score for pairs of aligned chars, e.g.

(X, y) = {match

mismatch -1

Apply that per column, then add.

-1 +2 -1 -1 +2 -1

Total Score = -2

(Toy scores for
examples in slides)

-1 -1

BLOSUM 62

More Realistic Scores

(the “0” scores)

= AR INEN ML AN N R AR
o ANERENRUEN ARENE I AN AN IR
STy YNNI AT AAND
=l e MR AR RN
A~ = O Do oo Ao Al = Qo
Qf— QO Qe S N A
fef QN D 0D D QNIED D D w1 OO) O O AN QN = M
=7 7 e gl AN i O QN
| N O A O A) O N
ST T N DT D ANF QAN O DO N
ARt RURCE BRI AU SN IR U
=~ IR S RUR AN AN
Ofc AN o 7 O Y A FIT QMO N Qo
Wi~ © O N FIN 1 QoM = Qo o ol
Ol — @ @ @i N A oM — O ~o - a1
Qo 0 ey P D) i) Qe
QN N =0 MO N O) o S
&NV~ Mo oo —mmoaMaN—oN QM
| I © N OO MG AN) QNfrd v N D
(T A QNo o Qe o M Al o

AXEZAVQWUOINHLIXYXSTLAlNES>D>

Optimal Alignment:
A Simple Algorithm

for all subsegs Aof S, B of T s.t. |A| = |B| do
align AJi] with BJi], 1 <i < |A]
align all other chars to spaces

compute its value S=agct A=ct

: T=wxyz B=xz
retain the max g
—agc—t a—-gc—t
end W——XYZ —W—XYZ

output the retained alignment

10

Analysis

Assume |[S| = |T]| =n
Cost of evaluating one alignment: > n

2
How many alignments are there: 2(n)

pick n chars of S,T together n
say k of them are in S
match these k to the k unpicked chars of T

Total time: >n on > 22n, for n>3

n
E.g., for n = 20, time is > 240 operations

Polynomial vs Exponential Growth

1.x10°

5.x%x10% ¢

100 200 300 400

12

Asymptotic Analysis

How does run time grow as a function of
problem size?

nZ or 100 n2+ 100 n+ 100 vs 22n

Defn: f(n) = O(g(n)) iff there is a constant c s.t.
If(n)| < cg(n) for all sufficiently large n.

100 n2+ 100 n + 100 = O(n?) [e.g.c=101]
nZ= 0(22")
22" is O(n?)

Big-O Example

f(n) = O(g(n)) = O(g'(n))

Vo

g(n)

n—

Utility of Asymptotics

“All things being equal,” smaller asymptotic
growth rate is better

All things are never equal

Even so, big-O bounds often let you quickly pick
most promising candidates among competing
algorithms

Poly time algs often practical; non-poly algs
seldom are.

(Yes, there are exceptions.)

Fibonacci Numbers

(recursion)

fibr(n) {
if (n<=1){
return 1;
} else {
return fibr(n-1) + fibr(n-2);
}
}

Simple recursion,

but many
repeated
subproblems!!

=

Time = Q(1.61M)

16

Call tree - start

F (6)
/ \
F (5) F (4)
e
F (4) F (3)
/ \
F (3) F (2)
/7 '\
F(2) F@)
/\

17

Full call tree

F (6)

F (5) _
s (W
F(2) @ /\

F (3 F2) F@ f;) F (0)

/N /N /\ @é \F(O 1)
F/(z) FofdD FO) | '

| I 1 0 .
\ ' 0 qtial time:
A Fo 1o expone

| l IiCate —
1 | many dup 18

Fibonacci, Il
(dynamic programming)

int fibd[n]; _

. Avoid repeated
fibd[0] = 1; subproblems by
flbd[1] =1 tabulating their

’ solutions
for(i=2; i<=n; i++) { _
fibd[i] = fibd[i-1] + fibd[i-2]; Time = O(n)
} (in this case)

return fibd[n];

Can we use
Dynamic Programming?

1. Can we decompose into subproblems?

E.g., can we align smaller substrings (say,
prefix/suffix in this case), then combine them

somehow?

2. Do we have optimal substructure?

|.e., is optimal solution to a subproblem
independent of context? E.g., is appending two
optimal alignments also be optimal? Perhaps, but
some changes at the interface might be needed?

Optimal Substructure
(In More Detail)

Optimal alignment ends in 1 of 3 ways:

ast c

ast c

ast c

nars of S & T aligned with each other
nar of S aligned withdash in T

nar of T aligned with dash in S

(never align dash with dash; o(—, —) <0)

In each case, the rest of S & T should be
optimally aligned to each other

Optimal Alignment in O(n?)
via “Dynamic Programming”

Input: S, T, |S| =n, |T| =m
Output: of optimal alignment

Easier to solve a "harder” problem:

V(i,j) = value of optimal alignment of
S[1], ..., S[i] with T[1], ..., T[j]
forall0<i<n,0<)<m.

Base Cases
V(1,0): first i chars of S all match dashes
V(i,0)= Y o(S[k],-)

V(0,)): first j chars of T all match dashes
, J
V(0,j)=) o(=TLk])

Opt align of S[1], ..., S]i]
e S[ET

e ST

V(i,j) = max -

e T |

General Case

NN N N —

vs T[1], ..., TIil.

, Or

W(i-1,j-1)+ o (S[i],T[j])
V(i-ly) +o(S[i], -)¢,
V(iy-1) +o(-, Tj])

NN N N —

|~~~ T

forall 1=si<n, 1< j=m.

Calcula

V(i,j) = max -

ting One Entry

W(i-1,j-1)+ o (S[i],T[j])
V(i-1j) +o(Sli], -)

h'd

V(iy-l) +o(-, T[jD),

V(i-1,]-1) V(i-1,j)

V1) | V)

25

Mismatch = -1

Match = 2
Example
1 2 3 4 5
C a t g «T
-1 -2 -3 -4 -5
AN

10 @@ |[O |Q

O O, |W|IN|I—~|O

n— | Q

26

Mismatch = -1

Match = 2
Example -

a Score(-,a) = -1

O O, |W|IN|I—~|O

27

Match
Example

j 0 1 2 3 4 5
i C a t g
0 0| -1 2 3| 4| -5
1 a -1
2 C -2
3 g -3
4 c| -4 e; Score(-,c) = -1
S t -5 -1
6 -6

n— | Q

Mismatch

T

-1
2

28

Mismatch = -1
Match = 2
Example
J 0F, 1, 2| 3| 4, 5
| c| al| g T
0 o -1 -2| -3| -4| -5
1 a -1 11 1
2 ol -2 N
1 5
3 g -3 |
4 C -4 c(a,a)=+2 cs(-,el)=-1
5] -9 1][]
c(a,-)=-1
6 -6 -1 > -2 1

n— | Q

1

2

Mismatch
Match

Example

T

Time =
O(mn)

30

1

2

Mismatch
Match

Example

T

31

<)

Finding Alignments: Trace Back

21 9pIIS J'D (syuswubile € ay) ale Jeym x3J

i &
(-
e

T
C
=) \
©
©
S N B d N N R
a
) =
ot ol Y| v T |@)o) o
(7))
S X >
W3t30@41_ o
1
Un_U / ;
: N ol O ||
1
™ / A
= = o) T|)| T || @
=
(- _
N CGRIHNEE
&
NS o| ol o] O| = | O|l<wm
pi
Il |l Ol ~| N | | O] ©

Arrows

Finding Alignments: Trace Back

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths = 3 optimal alignments

4 9)

] 0
NB: trace back
follows max terms
(pink boxes; ngbr+o),
not max neighbors
(white boxes). E.g.,
TB from yellow cell is
only diagonal (ngbr=-
1, term=1), not to the
equally-good
horizontal neighbor
(term=-2)

Complexity Notes

Time = O(mn), (value and alignment)
Space = O(mn)

Easy to get value in Time = O(mn) and
Space = O(min(m,n))

Possible to get value and alignment in

Time = O(mn) and Space =O(min(m,n)),
but tricky (DEKM 2.6)

34

Sequence Alignment

Part |
Local alignments & gaps

Variations

Local Alignment

Preceding gives global alignment, i.e. full
length of both strings;

Might well miss strong similarity of part of
strings amidst dissimilar flanks

Gap Penalties
10 adjacent spaces cost 10 x one space”?

Many others
Similarly fast DP algs often possible

Local Alignment: Motivations

“Interesting” (evolutionarily conserved,
functionally related) segments may be a small
part of the whole

“Active site” of a protein

Scattered genes or exons amidst “junk”, e.g. retroviral
iInsertions, large deletions

Don’t have whole sequence

Global alignment might miss them if flanking
junk outweighs similar regions

Local Alignment

Optimal /ocal alignment of strings S & T
Find substrings A of S and B of T having

max value global alignment

S =a2bcde A=cxde
T= cde B=c-de value=5

38

Local Alignment: “"Obvious” Algorithm

for all substrings A of S and B of T:
Align A & B via dynamic programming
Retain pair with max value

end ;

Output the retained pair

O(n?4) choices for A, O(m?) for B,
O(nm) for DP, so total.

[Best possible? Lots of redundant work...]

Local Alignment in O(nm)
via Dynamic Programming

Input: S, T, |S|=n, [T| =m
Output: value of optimal local alignment

Better to solve a *harder” problem
forall0<i<n,0<)<m:

V(1,)) = max value of opt (global)
alignment of a suffix of S[1], ..., S[i]
with a suffix of T[1], ..., T[j]

Report best i,

Base Cases

Assume o(x,-) <0, o(-,x) <0
V(1,0): some suffix of first i chars of S; all match
spaces in T; best suffix is empty

V(i,0) =0
V(0,j): similar
V(0,)=0

Opt suffix align S[1], .

Iyl

General Case Recurrences

Opt align of

suffix of

S,...S. &

T1 . 'Tj-1

V(ij)

= max .

0

p

., S[ilvs T[], ..., T[jl:
e ST | o

V(i-1,j-1) + o (S[i], T[j])
Vi-lj) +o(S[if, -)
Vij-1) +o(-, T[j/)

for all l<i=n, l<=j<m.

|, or

opt suffix
alignment
has:

Fs 2,1,1,0
chars of

S/T

42

Scoring Local Alignments

T

43

One
align-
ment
IS:
c—-de
cxde

What's
the
other?

Again, arrows

Finding Local Alignments I”ﬁb”“t)m
j 0, 1, 2; 3 4 5| 6
i X X X C d e| «1T
0 0] O] O] O O] O] O©
1 al|l 0] o] ol o] o] o] o
2 bl 0] 0| 0| (O 0of 0| O
3 c| 0] 0] (O 0] @ 1] O
4 x| o 2| 2| @) 1| 0
5 d| o 1] 1| 1| 1] @) 2
6 e| 0| 0ol o 0| o] 2| (5
7 x 0| 2| 2| 2| 1| 1| 4
S

44

Notes

Time and Space = O(mn)

Space O(min(m,n)) possible with time
O(mn), but finding alignment is trickier

Local alignment: “Smith-Waterman”
Global alignment: "Needleman-Wunsch”

Significance of Alignments

Is “42" a good score?
Compared to what?

Usual approach: compared to a specific
“null model”, such as “random sequences”

More on this later; a taste now, for use in next HW

Overall Alignment Significance, |l
Empirical (via randomization)

You just searched with x, found “good” score for x.y
Generate N random “y-like” sequences (say N = 103 - 109)
Align x to each & score

If k of them have score than better or equal to that of x to
y, then the (empirical) probability of a chance alignment
as good as observed x:y alignment is (k+1)/(N+1)

e.g., if 0 of 99 are better, you can say “estimated p < .01”

How to generate “random y-like” seqs? Scores depend
on:

Length, so use same length as y

Sequence composition, so uniform 1/20 or 1/4 is a bad
idea; even background p, can be dangerous (if y unusual)

Better idea: permute y N times

Generating Random Permutations

0 v
for (i=n-1;1>0; 1--){ 1 _
] = random(0..1); 2 o -
swap X[i] <-> X[jI;
4 J
h 5
J

All n! permutations of the original data equally
likely: A specific element will be last with prob
1/n; given that, another specific element will be
next-to-last with prob 1/(n-1), ...; overall: 1/(n!)

C.f. hitp://en.wikipedia.org/wiki/Fisher—Yates shuffle and (for subtle way to go
wrong) http://www.codinghorror.com/blog/2007/12/the-danger-of-naivete.htril

Sequence Evolution

“Nothing in Biology Makes Sense Except in the Light of
Evolution” — Theodosius Dobzhansky, 1973

Changes happen at random

Deleterious/neutral/advantageous changes
unlikely/possibly/likely spread widely in a population
Changes are less likely to be tolerated in positions
involved in many/close interactions, e.qg.
enzyme binding pocket
protein/protein interaction surface

Alignment With Gap Penalties

maximal run of dashes in S’ or T’
ag--ttc-t 2 gapsin S’
a---ttcgt 1gapinT

Motivations, e.q.:

mutation might insert/delete several or even
many residues at once

matching mMRNA (no introns) to genomic DNA
(exons and introns)

some parts of proteins less critical

A Protein Structure:
(Dihydrofolate Reductase)

mouse
human
chicken

fly
yeast

Alignment of 5 Dihydrofolate reductase proteins

P00375
P00374
P00378
P17719
P07807

P00375
P00374
P00378
P17719
P07807

P00375
P00374
P00378
P17719
P07807

P00375
P00374
P00378
P17719
P07807

————-MVRPLNCIVAVSONMGIGKNGDLPWPPLRNEFKYFORMTTTSSVEGKONLVIMGRK
————-MVGSLNCIVAVSONMGIGKNGDLPWPPLRNEFRYFORMTTTSSVEGKONLVIMGKK
————— VRSLNSIVAVCONMGIGKDGNLPWPPLRNEYKYFQORMTSTSHVEGKONAVIMGKK
———-MLR-FNLIVAVCENFGIGIRGDLPWR-IKSELKYFSRTTKRTSDPTKONAVVMGRK
MAGGKIPIVGIVACLQPEMGIGFRGGLPWR LPSEMKYFRQVTSLTKDPNKKNALIMGRK

skkk Kk _KKkX .k e kk . K Xk e kk oKk
TWESIPEKNRPLKDRINIVLSRELKEP-——-PRGAHFLAKSLDDALRLIEQPELASKVDM
TWESIPEKNRPLKGRINLVLSRELKEP-——--POGAHFLSRSLDDALKLTEQPELANKVDM
TWESIPEKNRPLKDRINIVLSRELKEA-——--PKGAHYLSKSLDDALALLDSPELKSKVDM

TYFGVPESKRPLPDRLNIVLSTTLOESDL--PKG-VLLCPNLETAMKILEE---QONEVEN
TWESIPPKFRPLPNRMNVIISRSEFKDDEFVHDKERSIVQSNSLANAIMNLESN-FKEHLER

X . ok * k% X ek o o ok .« o o * * .

VIWIVGGSSVYQEAMNQPGHLRLEVTRIMOEFESDTFFPEIDLGKYKLLPEYPG-——————
VWIVGGSSVYKEAMNHPGHLKLEFVTRIMODFESDTFFPEIDLEKYKLLPEYPG-—-—=———
VWIVGGTAVYKAAMEKPINHRLEVTRILHEFESDTFFPEIDYKDFKLLTEYPG-——————
IWIVGGSGVYEEAMASPRCHRLYITKIMOKEDCDTFFPAIP-DSFREVAPDSD-——————
IYVIGGGEVYSQIFSITDHWLITKINPLDKNATPAMDTFLDAKKLEEVESEQDPAQLKEF

.. * x * % .
VLSEVQ—-—====—————— EEKGIKYKFEVYEKKD--- CLUSTAL W (1.82) multiple
VLSDVQ-———=——————— EEKGIKYKFEVYEKND--— sequence alignment _
VPADIQ--——-———————— EEDGIQYKFEVYQKSVLAQ http://pir.georgetown.edu/cgi-
MPLGVQ-——————————— FENGIKFEYKILEKHS——— bin/multialn.pl 2/11/2013
LPPKVELPETDCDQRYSLEEKGYCFEFTLYNRK—-~-- -

*k K

Topoisomerase I

Affine Gap Penalties

I

Gap penalty = g + e*(gaplen-1),g=e >0

Note: no longer suffices to know just the
score of best subproblem(s) — state

matters: do they end with ‘-’ or not.

Global Alignment with
Affine Gap Penalties

V(i,)) = value of opt alignment of
S[1], ..., S[i] with T[1], ..., TI[j]

G(i,)) = ..., s.t. last pair matches S[i] & TJj]
F(i,j)) = ..., s.t. last pair matches SJi] & —
E(,)) = ..., s.t. last pair matches — & T[j]

O(mn) [calculate all, O(1) each]

Affine Gap Algorithm

Gap penalty =g + e*(gaplen-1),g=e >0
V(i,0) = E(i,0) = V(0,i) = F(0,i) = -g-(i-1)*e

V(i,j) = max(G(i,)), F(i)), E(.) o
Gl = V(1,i-1) + o(SILTL

F(ij) = max(F(i-1,)-e, V(i-1,)-g)

E(i,j) = max(E(ij-1)-e, V(ij-1)-g)

old gap new gap
Q. Why is the “V” case a “new gap” when V includes E & F?

Other Gap Penalties

Score = f(gap length)
Kinds, & best known alignment time

= affine — O(n?)

convex - O(n4log n)

general NV O(n3)

Summary: Alignment

Functionally similar proteins/DNA often have recognizably
similar sequences even after eons of divergent evolution

Ability to find/compare/experiment with “same” sequence
In other organisms is a huge win

Surprisingly simple scoring works well in practice: score
positions separately & add, usually w/ fancier affine gap
model

Simple dynamic programming algorithms can find optimal
alignments under these assumptions in poly time
(product of sequence lengths)

This, and heuristic approximations to it like BLAST, are
workhorse tools in molecular biology, and elsewhere.

Summary: Dynamic Programming

Keys to D.P. are to

a) ldentify the subproblems (usually repeated/overlapping)

b) Solve them in a careful order so all small ones solved
before they are needed by the bigger ones, and

c) Build table with solutions to the smaller ones so bigger
ones just need to do table lookups (no recursion, despite
recursive formulation implicit in (a))

d) Implicitly, optimal solution to whole problem devolves to
optimal solutions to subproblems

A really important algorithm design paradigm

