
 Copyright, Lawrence Snyder, 19991

Random Numbers
• The ZPL book defines the function: llrand()

• This is a high quality generator, yielding a
pseudo-random stream of scalars, r0, r1, r2 ...

• Assigning
A := llrand(seed); -- set whole array to

 -- same random value

• How to generate an array of random
numbers?

A := llrand(Seed); -- set elements to new

 -- random values

• The question is, how to initialize Seed to
produce an array of independent streams

 Copyright, Lawrence Snyder, 19992

Random Numbers, Continued
• One time initialization of an array to a random

set of values works as follows ...
for   i := 1 to n do
  for j := 1 to m do
[i,j] A := llrand(seed);
  end;
end;

• For random arrays, pick a larger separation
for   i := 1 to n do
  for j := 1 to m do
[i,j] A := llrand(seed);
      for k := 1 to 9999 do -- spin generator

  temp := llrand(seed); -- to separate
    end; -- samples

  end;
end;

r0         r10000 r20000 r30000 
r40000 r50000 r60000 r70000

r0         r1          r2         r3 
r4          r5          r          r7

 Copyright, Lawrence Snyder, 19993

Dealing With Latency

Latency -- the time required to perform a
memory operation or interprocessor

communication continues to be large relative
to processor speed.  What can be done?

 Copyright, Lawrence Snyder, 19994

Relaxed Consistency Models
The consistency model for a shared address memory

computer specifies the constraints on the order in which
memory operations can appear to execute with respect
to each other

• Programmers expect sequential consistency because it
is “comprehensible”

• SC is rigid, resulting in poor performance ... duh
• Relaxed consistency is any alternative set of rules

describing the ordering on memory operations
• Relaxed consistency models are generally hard to use

and understand -- basically a bad idea

Parallel programming is
already difficult enough

 Copyright, Lawrence Snyder, 19995

Basically A Good Idea
Use parallelism to cover latency
• J.T. Schwartz example:

– Find maximum of P numbers
• O(log P) using Ladner/Fischer algorithm

• With nothing else to do ... wait for answer

– Find P maxima of P sets of P numbers
• O(log P) for each, but interleaved O(log P) for all
• Time to perform each maximum is a constant

Another application
of basic pipelining

 Copyright, Lawrence Snyder, 19996

Latency Hiding In Model Of Computation
Valiant’s Bulk Synchronous Parallel (BSP) model

applies latency hiding to computational model
• Supersteps: [Computation; Communication]
• Parallel Slackness -- amount of parallelism

needed to cover communication latency

First superstep
complete when
fifth starts comm

Parallel Slackness

...

Notice bandwidth
implications



 Copyright, Lawrence Snyder, 19997

In ZPL ...
Because ZPL’s parallelism is implicit, a program

can be partitioned into any number of separate
parallel threads

• Example: 4P threads to run on P processors

Processor

Thread

Array element operation

 Copyright, Lawrence Snyder, 19998

ZPL’s Efficient Code Generation
• ZPL’s generated code overlaps computation

with communication to the maximum extent
possible

• The machine independent optimizations due to
Sung-Eun Choi

• Ironman calls DR(), SR(), DN(), SV() allow
ZPL to exploit whatever the latency covering
features the machine may have

Specifying the computation at a high level
lets the compiler deal with latency hiding

 Copyright, Lawrence Snyder, 19999

ZPL’s Latency Tolerance
• There are two ways ZPL exploits blocked data

transfer
• Vectorization moves array slices as a single unit -- ZPL

naturally vectorizes because it is compiling array
operations

• Combining communications to the same destination
reduces the overhead, benefits from pipelining

• Communication is also pipelined, allowing
communication to overlap with computation

• Goals of combining and pipelining can conflict

 Copyright, Lawrence Snyder, 199910

Choi’s Optimizations
Schematic of Optimizations (using send/recv)

U*,* := ...
   ...
send(U)
recv(U)
send(V)
recv(V)
aux2*,* := ...

aux4*,* := ...

Remove Re-
dundant Comm

U*,* := ...
   ...
send(U)
recv(U)
send(V)
recv(V)
aux2*,* := ...

send(V)
recv(V)
aux4*,* := ...

Naive

U*,* := ...
   ...

send(U,V)
recv(U,V)
aux2*,* := ...

send(V)
recv(V)
aux4*,* := ...

Combine

U*,* := ...
   ...
send(U,V)

recv(U,V)
aux2*,* := ...

aux4*,* := ...

Pipeline

 Copyright, Lawrence Snyder, 199911

Choi’s Numbers
Cray T3D performance scaled to naive

1.0

0.8

0.6

0.4

0.2

0.0

Redundancy Removal

Combining

Pipelining

PentaSimple3 SWM Tomcatv

 Copyright, Lawrence Snyder, 199912

Basic LT Machine Design

Effectively tolerating latency requires some
hardware assistance

• A naive hardware implementation generally
doesn’t have enough ability to hide latency
with concurrency

• Communication coprocessor
• Multithreading support

• NOWs fall short

• Where appropriate, caching is essential



 Copyright, Lawrence Snyder, 199913

Overlap Communication w/Computation

The upper bound on performance improvement
by overlapping communication with
computation is

1.0

0.5

Comm=Comp Comm>Comp Comm<Comp

Communication

Computation

 Copyright, Lawrence Snyder, 199914

Latency Tolerance In Architecture

Multithreading is an architectural approach in
which multiple threads-of-execution are run
“simultaneously”

• Requires no special software except more
threads than processors

• Can handle both predictable and unpredictable
situations

• Handles long latencies no matter what the cause

• Doesn’t affect the memory consistency model

Utilization =                Busy
Busy + Switching + Idle

 Copyright, Lawrence Snyder, 199915

Two Techniques For Multithreading
• Blocked Multithreading [Alewife], like time

sharing ... continue to execute until thread is
blocked, then switch

• Has lower hardware impact
• Good single thread performance

• Interleaved Multithreading [Tera], switch
execution of threads on each cycle

• Lower logical switching penalty
• Greater impact on hardware design

Keeping multiple contexts is essential

 Copyright, Lawrence Snyder, 199916

Four Threads, Blocked Approach

A

B

C

D

memory latency

Utilization is 41%

 Copyright, Lawrence Snyder, 199917

Six Threads, Interleaved Approach

A

B

C

D

E

F

memory latency

Utilization is 89%

 Copyright, Lawrence Snyder, 199918

Benefits Of Available Threads

For the blocked approach the availability of
ready threads improves utilization

1.0

0.8

0.6

0.4

0.2

1    2    3    4    5    6   
Number of Threads

P
ro

ce
ss

or
 U

til
iz

at
io

n



 Copyright, Lawrence Snyder, 199919

Affects Of Pipelining

When a (memory) block comes, it is is detected
in the pipeline

How to handle instructions in the pipe?
• Complete while fetching new thread -- complex

• Complete before fetching new thread
• Squash the instructions

IF1 IF1 RF Ex DF1 DF1 WB

 Copyright, Lawrence Snyder, 199920

Basics of Denelcor HEP

• First interleaved multithreaded machine (78-85)
• Each processor had 64 user contexts and 64

privileged contexts, 128-way replicated register
file and state

• Contention-free memory  (20-40 cycles) in a
dancehall design

• Processor had 8 deep pipeline, but only one
memory, branch or divide could be in pipe at a
time

 Copyright, Lawrence Snyder, 199921

Basics Of Tera Design

Instructions are [arithmetic, control, memory] or
[arithmetic, arithmetic, memory]

• Ready instructions issue on each tick, but
there is a 16 tick minimum issue delay for
consecutive instructions from a thread

• Each (memory) instruction has a 3 bit tag
telling how many instructions forward are
independent of this memory reference

• Average memory latency w/o contention 70
cycles

 Copyright, Lawrence Snyder, 199922

More On Tera

• Since there is a 16 instruction minimum issue
it takes 16 threads to keep utilize the
processor without hiding latency

• Each processor has 128 fully replicated
contexts

• Synchronization latency can even be covered
• When everything works, the Tera should

approximate a PRAM

 Copyright, Lawrence Snyder, 199923

An Alternative Design

Combine the best of the blocked and interleaved
approaches

• Use a standard processor
• Issue instructions from each ready thread, fairly
• When a memory operation makes tread

unready, squash any later issued instructions
for that thread

Ai+6 Ai+5 Ai+4 Ai+3 Ai+2 Ai+1 Ai

IF1 IF1 RF Ex DF1 DF1 WB

Ai+2 Ci+1 Bi+1 Ai+1 Ci Bi Ai

Pipeline

Blocked

Interleaved

 Copyright, Lawrence Snyder, 199924

Four Threads For Interleaved Scheme

A

B

C

D

memory latency

Utilization is 70%



 Copyright, Lawrence Snyder, 199925

Latency Tolerance Summary

• Two main approaches:  blocked & interleaved
• Approaches differ in their single thread

performance
• It may be tough to find all those threads w/o

language or programmer assistance
• Programming on the assumption of aggressive

latency tolerance may yield a very unportable
program

• Some further discussion in Section 11.7

 Copyright, Lawrence Snyder, 199926

Reading
• J. T. Schwartz, Ultracomputers, ACM ToPLAS
• Valiant BSP
• Sung-Eun Choi, “Machine Independent

Communication Optimization“, PhD
Dissertation, University of Washington, 1999

• B. J. Smith, Architecture and Applications of
the HEP Multiprocessor, Proc. SPIE: Real
Time Signal Processing IV 298, pp 241-248

 Copyright, Lawrence Snyder, 199927

Parallel Algorithmic Techniques

The goal in (practical) parallel algorithm design
is to express parameterized parallelism (so it

can be scaled to the actual number of
processors available) that minimizes

communication and synchronization, and has
good load balance

 Copyright, Lawrence Snyder, 199928

Parallel Algorithms: LU Decomposition

• Solving systems of linear equations is a critical
part of many scientific computations

• Recall that the standard solution “marches” to
the lower right corner of the matrix, leading to
poor load balance

Load imbalance as the computation progresses

 Copyright, Lawrence Snyder, 199929

Solutions To Load Balance
• The most common balancing scheme is to

allocate the array block cyclically
• Lennart Johnsson has observed that marching

to the corner is not necessary, that the
eliminations can be strided

• And it’s always possible to reallocate

 Copyright, Lawrence Snyder, 199930

Algorithms: N-body Computations
• Some N-body computations require all n2

pairwise interactions to be calculated
• For others interactions involving distant bodies

can be ignored or approximated by a point
mass, leading to more efficient execution

• Allocating bodies spatially eases
communication load



 Copyright, Lawrence Snyder, 199931

N-body Representation

To exploit the fact that only nearby attractions
need to be explicitly calculated, partition
space, inducing an oct-tree, traverse the oct
tree computing the attractions, update
positions

...

The 2D version would
uses a quad tree

 Copyright, Lawrence Snyder, 199932

N-body (Barnes Hut) Algorithm
• Construct the tree
• Compute the attractions of the other points by

traversing the tree; at a node, if the bodies are
close, computer pairwise attractions; if they
are distant, compute approximation and do not
traverse any lower

• Totality of attractions induces a new position
• Variations --

• Alternative tree structures
•  Salmon uses an out of core algorithm using a

space filling curve to promote locality


