
 Copyright, Lawrence Snyder, 19991

Snooping and Distributed Multiprocessor
Design

We consider more details about how a bus-
based SMP works, and then consider the

complications when there is no bus or other
central point of communication.

 Copyright, Lawrence Snyder, 19992

Basic Correctness Properties

• Deadlock-free -- no cyclic buffer dependencies
• Livelock-free -- controllers preemptively steal

resources from each other without completing
• Starvation-free -- a process does not make

progress while others do
• Cache Coherence
• Possibly Sequential Consistency

 Copyright, Lawrence Snyder, 19993

Basic Assumptions of Design

• Single Level Cache
• Transactions on bus atomic
• Cache can stall process to perform multi-

action updates -- makes actions look atomic
w.r.t. each other

 Copyright, Lawrence Snyder, 19994

Cache Tags and Controller
• Standard bus operations from cache controller

• Assert Request
• Wait for bus grant

• Drive address and command
• Wait for command to be accepted
• Transfer data

Cached
Data

Tags TagsP
ro

ce
ss

or

B
us S

ide

 Copyright, Lawrence Snyder, 19995

Reporting Snoop Results

• The snoopers must come to some “decision”
about bus transactions so memory can know if
it’s supposed to deliver data ... when and
how?

• Fixed delay counted in clock cycles
• Snoopers check their tag set -- could be locked

because processor is updating
• Add ability to extend
• Fixed delay may not be conservative but it works
• Pentium Pro, HP and Sun processor use this

 Copyright, Lawrence Snyder, 19996

Reporting Snoop Results, II

• Variable delay -- memory assumes the caches
will deliver until all caches have said they
won’t

• Allows variable amount of time for snooper to
reply, say because it is locked out by processor

• SGI Challenge uses variable, but with
speculative access

• Memory can keep a bit per block indicating
whether it is in a cache dirty

• Doesn’t need snoopers, but uses memory

 Copyright, Lawrence Snyder, 19997

Signalling Their Data
• Three control lines suffice for the protocols

we’ve discussed:
• Shared -- drive control line if any processor,

except the requesting processor, has a copy of
the block

• Modified -- drive control line if the processor has
the block in modified state

• Release -- every controller drives line until it has
processed request, then release means others
are OK

Note complications if (clean) data can be delivered
from multiple caches ... need priority to pick one

 Copyright, Lawrence Snyder, 19998

Write-backs Affect The Design

• A write-back occurs on a cache miss so two
blocks are involved

• To get processor started fast, move the block to
a write-back buffer, and fetch the new block

• Write-back buffer must snoop bus in case there
is a read for a block being written back; if so,
cancel write-back and deliver the data

 Copyright, Lawrence Snyder, 19999

Base Design

A ddr C m dS noo p s ta te D a ta bu ffe r

W r ite -b ack bu ffe r

C ac h e da t a R A M

C om p ara tor

C om p ara to r

P

Tag

A ddr C m d

D ata

A ddr C m d

To
con t ro l le r

S ys te m bu s

B us -
s ide

co n tro lle r

To
co n tro lle r

Tag s
a nd
s ta te
fo r
sno op

Tag s
a nd
s ta t e
fo r
P

Proces sor-
s ide

co n tro lle r

 Copyright, Lawrence Snyder, 199910

Atomicity
• Even with atomic bus the protocol requires multiple

operations by multiple controllers, and multiple
requests can be outstanding at once

• P1 wants to perform a BusRdX but cannot get access,
meanwhile P2 is performing a BusRd on data P1 has
modified

Consider two caches simultaneously issuing write to
same block they hold shared

• P1 promotes S-->M and issues upgrade
• P2 does too, but wins arbitration

• P1 downgrades M--> I, but upgrade request till out
• P1’s revises to be BusRdX

• Therefore, snoop against requests

 Copyright, Lawrence Snyder, 199911

Transient State Diagram

PrWr/—

BusGrant/BusUpgr

BusRd/Flush

BusGrant/

BusRdX/Flush

BusGrant/BusRdX

PrRd/BusReq

PrWr/—

PrRd/—

PrRd/—
BusRd/Flush′

E

M

I

S

PrRd/—

BusRd (S)

PrWr/BusReq

I → M

S → M

PrWr/
BusReq

BusRdX/Flush′

I → S,E

BusRdX/Flush

BusRdX/Flush′

BusGrant/
BusRd (S) BusRd/Flush

Transient states are not part of the state bits in
the cache, but are implied by protocol behavior

Note S --->M, I--->M etc.

 Copyright, Lawrence Snyder, 199912

Serialization

• To speed writes, it may seem smart to let the
processor go while the snooper is getting
exclusive access to block and possibly filling it

• But other writes might be asserted in this
interval trashing coherence if write to same
block, or SC if write to any block -- vulnerability

• To be conservative a processor has to be
stalled until the BusRdx is complete and write
is visible to other processors

 Copyright, Lawrence Snyder, 199913

But There Is An Optimization

• Relax “completed” to “committed”
• Then, it is sufficient to be asserting exclusive

ownership for writes on the bus, since all
caches will see that even, the serializing event

• This is sufficient for
• Coherence

• Sequential Consistency

• Notice that write-backs are really separate and
need not be ordered

 Copyright, Lawrence Snyder, 199914

Fetch Deadlock, Write Livelock

• Situation: Two controllers have data to service
the other’s request but they don’t do so until
their request is fulfilled

• Fix: Service requests while waiting for yours
• In invalidation protocol, consider all processors

trying to write to one location ... by the time a
processor has it in the cache and ready to
write, it is invalidated by some other processor

• Fix: Let processor write if it is granted
exclusive ownership

 Copyright, Lawrence Snyder, 199915

Implementing Test&Set

• Two operations: read and write
• Should the lock be cacheable

• Yes, get locality and spin in cache
• No, get faster response

• To get atomicity, lock-down the bus between
the read and write components

• Sweeter solution: Read the value exclusively,
but don’t yield exclusivity until the write is done

 Copyright, Lawrence Snyder, 199916

Shared Memory Without A Bus

• The bus is a centralized point where writes
and reads can be serialized

• How are coherency and sequential
consistency achieved without a bus?

• It is possible to broadcast, but this is both
expensive and potentially very complicated

• Directory-based cache coherence is solution

 Copyright, Lawrence Snyder, 199917

Directory

A directory is a data structure giving the state of
each cache block in the machine

P0

Cache

Directory
Controller

D
ire

ct
or

y

Memory

...

Interconnection Network

P0

Cache

Directory
Controller

D
ire

ct
or

y

Memory

Requests
Replies,
Invalidations,
Updates,
ACKs are all
net Xactions

 Copyright, Lawrence Snyder, 199918

Preliminaries

• The machines being considered are called
distributed shared memory (DSM) class

• The subclass is the CC-NUMA, cache
coherent, non-uniform memory access

• On an access-fault by the processor ...
• Find out information about the state of the cache

block in other machines
• Determine exact location of copies, if necessary
• Communicate with other controllers to

implement the protocol

 Copyright, Lawrence Snyder, 199919

Terminology

• Home node, node whose main memory has
block allocated

• Dirty node, node with modified value
• Owner, node holding valid copy, usually the

home or dirty node
• Exclusive node, holds only valid cached copy
• Requesting node, (local) node asking for blk
• Locally allocated / remotely allocated

 Copyright, Lawrence Snyder, 199920

Sample Directory Scheme

• Local node has access fault
• Sends request to home node for directory info

• Read -- directory tells which node has valid data
• Data is requested

• Write -- directory tells nodes with copies
• Invalidation or update requests are sent

• Acknowledgments are returned
• Processor waits for all ACKs for completion

Notice that many transactions can be “in
the air” at once, leading possibly to races

 Copyright, Lawrence Snyder, 199921

A Directory Entry

• Directory entries do not usually keep cache
state

• Use a P-length bit vector to tell in which
processors the block is present ... presence bit

• Clean/dirty bit implies exactly 1 presence bit on
• Sufficient?

• Determine who has a valid copy for read miss

• Determine who has copies to be invalidated

D
irt

y
P0 P1 Pn

 Copyright, Lawrence Snyder, 199922

A Closer Look I (Read)
Postulate 1 processor per node, 1 level cache,

local MSI protocol
• On a read access fault at Px, the local

directory controller determines if block is
locally/remotely allocated, and if remote finds
home

• Controller sends request to home node for blk
• Home controller looks up directory entry of blk

• Dirty bit OFF, controller finds blk in memory,
sends reply, sets xth presence bit ON

 Copyright, Lawrence Snyder, 199923

A Closer Look II (Read)

• Dirty bit ON -- controller sends reply to Px of
processor with Id, Py of owner

• Px controller sends request to owner Py for data
• Owner Py controller, sets state to “shared”,

forwards data to Px and sends data to home
• At home, data is updated, dirty bit is turned OFF

and the xth presence bit is set ON; notice yth

presence bit remains ON

This is essentially the protocol for the LLNL
S-1 multicomputer from late ‘70s

 Copyright, Lawrence Snyder, 199924

A Closer Look I (Write)
• On a write access fault at Px, the local

directory controller determines if block is
locally/remotely allocated; if remote finds
home

• Controller sends request to home node for blk
• Home controller looks up directory entry of blk

– Dirty bit OFF, the home has a clean copy
• Home node sends data to Px w/ presence vector
• Home controller clears directory, sets xth bit ON

and sets dirty bit ON
• Px controller sends invalidation requests to all

nodes listed in the presence vector

 Copyright, Lawrence Snyder, 199925

A Closer Look II (Write)
• Px controller awaits ACKs from all those nodes
• Px controller delivers block to cache in dirty state

– Dirty bit is ON
• Home notifies owner Py of Px’s a write request
• Py controller invalidates its blk, sends data to Px

• Home clears yth presence bit, turns xth bit ON
and dirty bit stays ON

– On writeback, home stores data, clears both
presence and dirty bits

When shared is replaced in Px cache, notifying home
is optional -- a replacement hint -- to avoid invalidate

 Copyright, Lawrence Snyder, 199926

Alternative Directory Schemes
• The “bit vector directory” storage-costly
• Consider improvements to Mblk*P cost

– Increase block size, cluster processors
– Just keep list of Processor Ids of sharers

• Need overflow scheme
• Five slots suffices

– Link the shared items together
• Home keeps the head of list
• List is doubly-linked

• New sharer adds self to head of list
• Obvious protocol suffices, but watch for races

 Copyright, Lawrence Snyder, 199927

Assessment

• A obvious difference between directory and
bus solutions is that for directories, the
invalidate request scales as the number of
processors that are sharing

• Directories take memory --
• 1 bit per block per processor + c
• If a block is B bytes, 8B processors imply 100%

overhead to store the directory

 Copyright, Lawrence Snyder, 199928

Performance Data
To see how much sharing takes place and how

many invalidations must be sent, experiments
were run

• Summarizing the data
• Usually, there are few sharers
• The mode is 1 other process sharing, ~60
• The “tail” of the distribution stretches out for

some applications

• Remote activity increases as the number of
processors

• Larger block sizes increase traffic, 32 is good

 Copyright, Lawrence Snyder, 199929

Protocol Optimizations I
• Read request to exclusively held block

L H R

1: Request
2: Response
3: Intervention
4a: Revise
4b: Response

1

2

4b

4a

3

L H R

1 2

4
3

1: Request
2: Intervention
3: Response
4: Response

L H R

1 2

3b

3a

1: Request
2: Intervention
3a: Revision
3b: Response

Strict Req/
 Response

Intervention
Forwarding

Reply
Forwarding

 Copyright, Lawrence Snyder, 199930

Protocol Optimizations II
• Improved invalidation

L S1 S2

1:inv

2:ack

6:ack

3:inv

S3

5:inv

4:ack

Ack includes
next sharer on
list

L S1 S2

1:inv

2b:ack 4:ack

2a:inv

S3

3a:inv

3b:ack

L S1 S2

1:inv

4:ack

2a:inv

S3

3a:inv

Ack and next
invalidate in
parallel

Ack comes
from last
sharer

 Copyright, Lawrence Snyder, 199931

Higher Level Optimization

• Organizing nodes as SMPs with one coherent
memory and one directory controller can
improve performance since one processor
might fetch data that the next processor wants
... it is already present

• The main liability is that the controller
resource, and probably its channel into the
network are shared

 Copyright, Lawrence Snyder, 199932

Serialization

• The bus defines the ordering on writes in SMPs
• For directory systems, memory (home) does
• If home always had the value, FIFO would work

• Fix: Add a “busy state” indicating a transaction
is in flight

Consider a block in modified state and two nodes request
exclusive access in an invalidation protocol. The requests
reach home in one order, but they could reach the owner
in a different order. Which order prevails?

 Copyright, Lawrence Snyder, 199933

Four Solutions To Ensure Serialization

• Buffer At Home -- keep request at home,
service in order ... lower concurrency, overflo

• Buffer at requesters with linked list
• NACK and retry -- when directory is busy, just

“return to sender”
• Forward to dirty node -- serialize at home for

clean, serialize at dirty node otherwise

 Copyright, Lawrence Snyder, 199934

Origin 2000

• Intellectual descendant of Stanford DASH
• Two processors per node
• Caches use MESI protocol
• Directory has 7 states

• Stable: unowned, shared, exclusive (cl/dirty in $)
• Busy states: Processor not ready to handle new

requests to that block: read, readex, uncached
• Poison: used for other purposes

• Directory uses extended bit-vector
• HUB is the interface

 Copyright, Lawrence Snyder, 199935

Origin-2000 Directory

• The “approximate” bit-vector solution
• Two processors / node

• Scaling beyond 64 processors necessary

• Three interpretations are possible
• Exclusive state: bits are processor address
• Two sizes -- 16-bit and 64-bit vectors

• Coarse vector -- P/64 nodes are grouped
• The last two schemes are dynamically selected

in large configurations

 Copyright, Lawrence Snyder, 199936

Specific Choices

• Generally the Origin 2000 follows the protocols
discussed with minor variations and
optimizations

• The specifics are interesting because they
emphasize two points:

• The basic ideas discussed really apply
• Many simplifying assumptions must be revisited

to get a system built and deployed

