
 Copyright, Lawrence Snyder, 19991

Parallel Panorama

Parallel computation appears to be a
straightforward idea, but it has not

turned out to be as easy as everyone
initially thinks. Today, an overview of

successes and failures

 Copyright, Lawrence Snyder, 19992

Amdahl’s Law
Parallel computation has limited benefit ...
• A computation taking time T, (x-1)/x of which

can be parallelized, never runs faster than T/x
• Let T be 24 hours, let x = 10
• 9/10 can be parallelized, 1/10 cannot
• Suppose the parallel part runs in 0 time: 2.4 hrs

• Amdahl’s Law predates most parallel efforts ...
why pursue parallelism?

• New algorithms Why would one want to
preserve legacy code?

 Copyright, Lawrence Snyder, 19993

Early High Performance Machines

• High Performance computing has always implied the
use of pipelining

• IBM Stretch, S/360 Model 91, Cray 1, Cyber 205

• Pipelining breaks operations into small steps
performed in “assembly line” fashion

• The size t of the longest step determines rate
• Operations are started every t time units

• The most common application of pipelining became
“vector instructions” in which operations could be
applied to all elements of a vector

• Pipelining is used extensively in processor design and
parallelism is a more effective way to achieve high perf

 Copyright, Lawrence Snyder, 19994

Early Parallel Machines
• The first successful parallel computer was

Illiac IV built at the Univeristy of Illinois
• 64 processors (1/4 of the original design) built

• Constructed in the preLSI days, hardware was
both expensive and large

• A SIMD computer with a shared memory few
registers per node

• Though it was tough to program, NASA used it

Flynn’s Taxonomy:
SIMD -- single instruction multiple data
MIMD -- multiple instructions multiple data

Related term:
SPMD -- single program
 multiple data

 Copyright, Lawrence Snyder, 19995

SIMD Is Simply Too Rigid
• SIMD architectures have two advantages over

MIMD architectures
• There is no program memory -- smaller footprint

• It is possible to synchronize very fast ... like on the next
instruction

• SIMD has liabilities, too ...
• Performance: if a>0 then ... else ...

• Processor model is the virtual processor model, and
though there are more processors than on a typical MIMD
machine there is never 1pt/proc

• Ancillary: instr. distribution limits clock, hard to share,
single pt of failure, etc

• SIMD not a contender
 Copyright, Lawrence Snyder, 19996

VLSI Revolution Aided Parallel Computing
• Price/density advances in Si => multiprocessor

computers were feasible
• SIMD computers continued to reign for

technical reasons
• Memory was still relatively expensive

• Logic was still not dense enough for a high performance
node

• It’s how most architects were thinking

• Ken Batcher developed the Massively Parallel
Procesor (MPP) for NASA with 16K procs

• Danny Hillis built two machines CM-1,-2 scaling to 64K
• MASPAR also sold a successful SIMD machine

 Copyright, Lawrence Snyder, 19997

Denelcor HEP

• Designed and built by Burton Smith
• Allowed multiple instructions to “be in the air”

at one time
• Fetch next instruction, update PC

• Suspend, check to see if others need attention
• Decode instruction, computing EA of mem ref(s),

issue mem ref(s)

• Suspend, check to see if others need attention
• Evaluate instruction

• Great for multithreading, or for good ILP

 Copyright, Lawrence Snyder, 19998

Effects of VLSI on Early MIMD Machines

• Single chip processors spawned flury of
design in nonshared memory domain

• ZMOB, ring of 30, 8-bit procs, Maryland
• Pringle, 8x8 config mesh, 8-bit procs, Purdue CS

• Cosmic Cube, 6-cube, 16-bit procs, Caltech --
Intel commercialized this as iPSC, iPSC/2

• Quickly, 32-bit MIMD machines arrived
• Sequent sold an elegant shared bus machine
• BBN Butterfly was a large shared memory

machine
• Two different approaches to choherency

 Copyright, Lawrence Snyder, 19999

PRAM Machine Model

• Parallel Random Access Machine ... simplest
generalization to a parallel machine

• Synchronous, “unit-cost” shared memory -- it
is unrealistic but it drove intensive research

• Theoretically interesting as a way to discover
the limits of parallelism

P P P P P P P P

Memory

Varieties: CRCW
EREW, CREW, ...

 Copyright, Lawrence Snyder, 199910

Research Parallel Machines

• University of Illinois developed the Cedar
machine, a 32 processor shared memory -- a
dance hall architecture

P M

P

P

P

P

P

M

M

M

M

M

Interconnection
Network

 Copyright, Lawrence Snyder, 199911

Ultra Computer and RP-3
• The Ultracomputer developed at NYU had a

cute idea in the interconnection network: a
combining switch

P

MP

P

P

P

P

M

M

M

M

MP

P

3

1

4

1

5

9

2

6

4

5

14

8

9

22

31 2020

29

20

25

25

28

20

21

46

37

29

37

29

35

fetch_and_add A,V
return location A,
add in V and update

 Copyright, Lawrence Snyder, 199912

Combining Switch

• Combining switch design solves problems like
“bank conflicts”, busy waiting on
semaphores...

• The theory was that rather than avoiding bad
operations, do them with impunity ... there was
even a programming methodology based on it

Unfortunately, combining doesn’t work beyond
64 processors based on both analysis and
experimentation

 Copyright, Lawrence Snyder, 199913

Early Programming Approaches

• Every machine has powerful “features” that the
programmer should exploit

• Program “close” to the machine
• Parallelizing FORTRAN compilers will be

along shortly

This viewpoint was nearly disasterous ...

 Copyright, Lawrence Snyder, 199914

Memory and MIMD Computers

• It was easier to invision an MIMD machine
than to build one ... the problem is memory

• We are accustomed to a flat, global memory
Memory Coherency

P1

a: 4 5

P2

a:

P3

a: 4

a: 4 5

P1 reads a into cache
P3 reads a into cache
P1 updates a to 5, wt
-- P3 has stale data --
Writeback is worse

 Copyright, Lawrence Snyder, 199915

Nonshared Memory Avoids Problem

• No shared memory implies no coherency prob
• Put a greater burden on the programmer, sw

• A mid-point design is non-coherent shared
address space

• If every processor has the same amount of
memory, the xth power of 2, then interpret
address bits left of x as processor number

• P0 has the low addresses, P1 next lowest ...

Conventional Wisdom: Its harder
to program nonshared memory

 Copyright, Lawrence Snyder, 199916

Shared vs Nonshared Memory
• The memory organization is crucial in parallel

computing. That is an incontrovertible fact

• Has engendered many wars, but one wonders why
• Clearly, there must be a program, accessible locally to the

processor, i.e. MIMD

• There must be local data, stack, etc.
• These are referenced frequently and must be fast

• Programmers should not have to know or care
because a decent programming language can give a
global view of a computation without any mention of
memory organization

• Many languages give a global view
• ZPL’s accomplishment is it maps easily onto any memory

organization

 Copyright, Lawrence Snyder, 199917

Another Round of Architecture
• The late 80’s was a rich period of machine

design
• Driving force was the VLSI revolution
• Back pressure came from the “killer micros”

• Architecture design focused on “problems”
• The problem the architect thought was the most

pressing varied by the background of the
architect

• Examples were low latency communication, fast
synchronization, coherent shared memory,
scalability, ...

 Copyright, Lawrence Snyder, 199918

iWARP

• iWARP (HT Kung, CMU/Intel) -- fast
communication and synchronization; ideal for
Cannon’s algorithm

Culmination of several
research projects: PSC
and WARP

 Copyright, Lawrence Snyder, 199919

J-Machine

• J-Machine (Bill Dally, MIT/Intel) -- fast
communication, large scalability, 3D mesh

3D design scales in
physical space with
minimum path lengths

 Copyright, Lawrence Snyder, 199920

KSR

• Kendall Square Research -- cache-only
machine allowing data to move to where it is
needed; ring communication structure

Raised many intresting technical questions ...

 Copyright, Lawrence Snyder, 199921

DASH
• DASH (John Hennessy, Stanford/SGI) -- true

distributed cache coherence

Significant research project
with impact in many areas
... will study ideas of design

 Copyright, Lawrence Snyder, 199922

Recent Commercial Machines

A variety of large machines have been deployed in
recent years

• IBM SP-2, nonshared memory
• CM-5, nonshared memory
• Cray T3D and T3E, shared address space
• SGI Origin 2000, coherent shared memory

• Will the rich architectural diversity of the past continue,
or will all parallel machine finally look alike?

 Copyright, Lawrence Snyder, 199923

Programming Approaches

• “Automatic Parallelization” of Fortran
• Preserves the investment in the “legacy codes”
• Replaces programmer effort with compiler effort
• Should be as successful as vectorization

• Has been demonstrated to achieve 0.9-10 fold speedup,
with 2.5 being typical -- Amdahl’s Law

• Alternative Languages
• Functional -- SISAL, Id Nouveau, etc.

• Logic -- Prolog

• These approaches failed ... the only successful
programmers have programmed close to their
machine; vectorized Cray Fortran continued to reign

 Copyright, Lawrence Snyder, 199924

Next Strategy to Save Legacy Codes ...
• As automatic parallelization foundered, adding

“directives” or extending existing languages with new
constructs came into fashion

• Annotating a program can take as much (more?) effort
than rewritting

• HPF, HPC, HPC++, CC++, pC++, Split C, etc

• Extending an existing language requires that its
semantics be preserved; parallel extensions are at
odds with sequential semantics

• Approach has failed ... programs are not easily
transformed: parallelism => paradigm shift from
sequential

 Copyright, Lawrence Snyder, 199925

Message Passing

• Message passing libraries provide standardized
facilties for programmers to define a parallel
implementation of their computation ...

• Uses existing languages, Fortran, C, etc. => save legacy

• Interface is standard across machines
• Lowest common denominator ... works on shared and

distributed memory machines

• MP programming is difficult, subtle, error-prone;
programmer implements paradigm shift

• Message passing embeds machine assumptions in
code; not very portable As many as a dozen mp

libs proposed, PVM, MPI
are only contenders

The prevailing technique

 Copyright, Lawrence Snyder, 199926

State of Parallel Computing

• Many companies thought parallel computing was easy
They’re gone now ...

• SGI/Cray, IBM, HP, Sun make serious parallel
computers

• Seattle's Tera Computer Inc struggles to introduce a
new parallel architecture, MTA

• The basic reality of large computers has changed:
Servers drive the market, not speed-freaks

• The DoE's ASCI program pushes the envelope

• SMP’s are ubiquitous

 Copyright, Lawrence Snyder, 199927

Budget Parallelism

• “Rolling your own” parallel computer with workstations
on a network (Beowulf) is popular

• This is simple and cost effective, and the machines
can be used as workstations during the business
hours

• What are the impediments?
• Nonshared memory, nonshared address space

• Must be programmed w/ msg passing or ZPL
• As incubator for new applications, Beowulfs do

not promote the use of shared memory

Everything in parallelism seems to come down to programming

 Copyright, Lawrence Snyder, 199928

Applications
• Traditionally, NASA, DoD, DoE labs and their

contractors have been big iron users
• CFD
• Structural
• “Bomb Codes”

• A huge early success was Shell Oil’s seismic
modelling code developed by Don Heller --
parallelism that made money

• IBM did circuit simulation on a custom SIMD
• Many claims were made but actual working

parallelism was rare in 80s

The ability to run legacy code,
dusty decks, can be significant

 Copyright, Lawrence Snyder, 199929

Government Programs
Over the years numerous efforts by funding

agencies have tried to jump-start high
performance parallel computing

• DARPA, NSF, ONR, AFOSR, DoE, NASA, ...
• Some have been criticized as corporate welfare
• Initial thrust was on hardware

Companies have invested heavily, too
The most significant federal effort was the High

Performance Computer and Communication
Initiative (HPCC) in early ‘90s

 Copyright, Lawrence Snyder, 199930

HPCC
Took on the “whole” problem by considering hw,

sw and applications involving “real” users
• Compared to predecessors, it was well planned
• Attempt at interagency coordination
• “Real” users with science or engineeering apps

had to collaborate with “real” computer scientists

• Introduced the concept of a “grand challenge”
problem, a computation which if it received
real performance would cause better science
to be done

 Copyright, Lawrence Snyder, 199931

Grand Challenge Problems
Booklets with snappy graphics enumerate these

Example classes
• Galaxy simulation
• Molecular dynamics

• Climate modelling
• Protein folding
• CFD

• Circuit simulation
• Structural analysis
• Seismic modelling

... and many, many variations

HPCC’s main error -- It promised success in 5 years

 Copyright, Lawrence Snyder, 199932

HPCC Legacy
Ironically, the HPCC initiative left many “real”

scientists and engineers with view that
computation is a third piller in research, along
with theory and experimentation

It also convinced most people of the obvious:

As things stand, most users are writing message
passing programs at considerable effort

Its the Economy, Stupid
SOFTWARE

