
 Copyright, Lawrence Snyder, 19991

Parallel Performance

So far the focus has been on finding good ways
to solve problems in a way that underconstrains

the specification, and thus permits parallel
execution. Now, consider the matter of how

much performance is actually achieved.

Work reported is from the ZPL project: Brad Chamberlain, Sun-Eun
Choi, E Chris Lewis, Calvin Lin, Derrick Weathersby

 Copyright, Lawrence Snyder, 19992

The Goal
In parallel computing, performance is the only

measure of success
• In ZPL, and in any programming language

intended for writing fast programs, the
programmer needs to know approximately
how the program will run in order to make
decisions about alternate solutions

• For machine independent languages, this
means that only an estimate of performance is
possible, but that has proved sufficient in
sequential computing

 Copyright, Lawrence Snyder, 19993

Recall The CTA Parallel Machine Model

• ZPL uses the CTA as its abstract execution engine
• Relevant properties emphasize concurrency, locality

• P = number of processors

• λ = off processor latency, large
• Communication network = unspecified, fixed low degree
• “Thin” global communication capability

• CTA is implemented by existing parallel machines

Interconnection Network

. . .vN

C

vN vN vN

CTA

 Copyright, Lawrence Snyder, 19994

Allocating Processors To a Computation
To understand how effective our programming is,

it is necessary to consider how physical
processors will be applied to the computation

• For data parallel computations such as those
expressible with ZPL’s dense arrays, the one-point-
per-processor view, dubbed virtual processor view by
Steele and Hillis, is popular

• Think of a logical processor performing the task at each
point in a parallel operation

• 1Pt/Proc is very intuitive

a1+b1

P0

a2+b2

P1

a3+b3

P2

a4+b4

P3

a5+b5

P4

a6+b6

P5

 Copyright, Lawrence Snyder, 19995

ZPL Assumes Many Pts/Proc
ZPL allocates arrays to processors so that many

contiguous elements are assigned to each
processor

• The array allocation rules:
• Union the regions, compute bounding region
• Accept processor number and arrangement from

command line

• 1D and 2D processor grids are (presently) available
• Allocate the bounding region, inducing array allocation

• nPt/Proc is just as natural as 1Pt/Proc

P2

P0 P1

P3

 Copyright, Lawrence Snyder, 19996

Implications For Array Allocation

The rules imply arrays will have standard
distributions

• 1D arrays have contiguous range of indices
allocated to each processor

• 2D arrays are allocated as blocks, panels or
strips

• 3D and greater? Project to 2D and

allocate as 2D arrays

 Copyright, Lawrence Snyder, 19997

Fundamental Fact of ZPL Allocation

The ZPL allocation scheme has the property that
for any arrays A, B defined on index i,...,k,
elements A[i,...,k], B[i,...,k] are
stored on the same processor

Corllary: Operations like [R] ... A + B ...
do not require any communication

Pi
[i,...,k]

 Copyright, Lawrence Snyder, 19998

1Pt/Proc vs nPt/Proc
• Obviously, 1Pt/Proc does not represent a

realistic situation, but perhaps it is a good
metaphor, promoting abundant parallelism

• 1Pt/Proc ignores grain size and locality
• Forces logical implementation when n > 1

• nPt/Proc accurate for realistic processors
• Subsumes 1pt/Proc when n=1 (extreme)
• Programmers focus on grain size and locality

• Implies standard sequential compiler optimizations

a1+b1

P0

a2+b2

P1

a3+b3

P2

P0 P0
for(i=1;i<=3;i++){
 a[i]+b[i];
 }

It’s hard to throw
away parallelism

 Copyright, Lawrence Snyder, 19999

Does It Make Any Real Difference?
• Differences between 1Pt/Proc and nPt/Proc

are visible for operations like A := B@east
• Data motion is required to move B elements
• 1Pt/Proc ==> all data sent, no local motion

• nPt/Proc ==> some sent, some local motion
• Q: How to generalize 1Pt/Proc case?

a1:=b2

P0

a2:=b3

P1

a3:=b4

P2

a4:=b5

P3

a5:=b6

P4

a6:=b7

P5 b7b6b5b4b3b2

P0

a1 a2 a3
b1 b2 b3

P1

a4 a5 a6
b4 b5 b6 b7

b4

Px

b7

 Copyright, Lawrence Snyder, 199910

Knowing How ZPL Performs
• There is a simple rule for how each ZPL

operation performs relative to the CTA
• Such rules allow one to estimate approximate

behavior of ZPL programs in a machine
independent way
A + B -- Elementwise array operations

• No communication
• Work comparable to C

• Fully parallelizable, WorkC / P

Total := 9.0*X^2 + 2.2*X*Y - 3.2*Y^2 + 2 * sqrt(ZZ);

 Copyright, Lawrence Snyder, 199911

Rules Of Operation II

A@east -- @ references including wrap
• Nearest neighbor communication with surface/to

volume advantage
• Local data motion,

possibly

+<<A -- reduce and scan
• Local computation
• Ladner/Fischer O(log P) accumulation

• Broadcast could be O(log P), but is really less

PiPi-1 Pi+1

 Copyright, Lawrence Snyder, 199912

Rules Of Operation III

>> [1..n,k] A -- Flood
• Multicast defining elements

<##[I1,I2] A -- Permutation
• (Potential) All-to-all processors communication

to distribute routing information implied by I1, I2
• (Potential) All-to-all processors communication

to route elements of A

Full information is given in Chapter 8 of the
ZPL Programmer’s Guide

 Copyright, Lawrence Snyder, 199913

program Jacobi;
config var n : integer = 512;
 eps : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;
 err : float;
direction N = [-1, 0]; S = [1, 0];
 E = [0, 1]; W = [0,-1];
procedure Jacobi();
 [R] begin
 A := 0.0;
[N of R] A := 0.0; [W of R] A := 0.0;
[E of R] A := 0.0; [S of R] A := 1.0;

repeat
 Temp := (A@N + A@E + A@W + A@S)/4.0;
 err := max<< abs(Temp - A);
 A := Temp;
until err < eps;

 end;
end;

+ ++:= ()/4.0;

Analyzing Jacobi Iteration

0 or negligible
performance
implications

 Copyright, Lawrence Snyder, 199914

Analysis
repeat

 Temp := (A@N + A@E + A@W + A@S)/4.0;
 err := max<< abs(Temp - A);
 A := Temp;

until err < eps;

• 4 instances of @-comm + local computation for
Temp := (A@N+A@E+A@W+A@S)/4.0

• No communication for abs(Temp - A)

• O(log P) per aggregate step and broadcast
step for err:=max<<

• No communication for A := Temp

... per iteration

 Copyright, Lawrence Snyder, 199915

WYSIWYG Performance
Points to emphasize about the analysis --
• The performance information derives from the

CTA and how the compiler maps ZPL
programs onto it

• Performance is not precise, but given relatively
• E.G. reduction is more expensive than flood +<< > >>

• To be machine independent, performance could not be
given in nanoseconds

• Cues indicate when communication is being
performed (WYSIWYG):

A := A + B; -- No communicaton

A := A + B@e; -- Yes, communicaton

 Copyright, Lawrence Snyder, 199916

Reconsider Details of @ Communication

A@east -- @ references including wrap
• Nearest neighbor communication with surface/to

volume advantage
• Local data motion,

possibly

PiPi-1 Pi+1

Interconnection Network

. . .vN

C

vN vN vN

CTA

 Copyright, Lawrence Snyder, 199917

@ Comm In The CTA

Pi+1Pi

• Charge λ time for data transmission thru ICN
• “Nearest neighbor” not necessarily true
• One charge suffices for all transmissions

 Copyright, Lawrence Snyder, 199918

Is This Simplistic Model Accurate?
It’s not even close ... but its good enough
• Contention in the network makes times vary

• On-processor time can dominate network time
• Processors may not be adjacent, e.g. fat tree
• Processors are not synchronized, so the

interval of data transmission could expand
• Transmission is not independent of the

amount of data transmitted
• A better model: α + βw
• Startup time α plus β for each of w words

 Copyright, Lawrence Snyder, 199919

Contrary View: Model Accurately
“Communication is the most expensive aspect of

parallel computing, structure the computation
so it optimizes use of communication”

• Structuring a program to optimize comm
embeds properties of a given computer into
the source code

• Parallel machines are very different ==>
source must be changed for each machine

• Wisdom: Do not try to be too accurate. Think
of @-Comm as a small, but nonnegligible
(fixed) cost, leave optimization to compilers

 Copyright, Lawrence Snyder, 199920

Analyzing The Bounding Box

• The bounding box uses four reduces:
[R] begin

rightedge := max<< X;

topedge := max<< Y;

leftedge := min<< X;

bottomedge := min<< Y;

 end;

• Each reduction has form:
• loop to find local max/min
• aggregate using LF algorithm
• broadcast result to all processors

• •
•

•

•

••
•

•

•
•

 Copyright, Lawrence Snyder, 199921

Compiler Optimizations
• Reorder code to

• Fuse loops
• Combine aggregates

• Combine broadcasts

loop1 X max
aggregate(maxX)
broadcast(maxX)
loop2 Y max
aggregate(maxY)
broadcast(maxY)
loop3 X min
aggregate(minX)
broadcast(minX)
loop4 Y min
aggregate(minY)
broadcast(minY)

loop X max, Y max, X min, Y min
aggregate(maxX, maxY, minX, minY)
broadcast(maxX, maxY, minX, minY)

• Code runs about 4 times faster

Notice: Such optimizations
result from the compiler’s
effectiveness, not directly
 from the CTA model

 Copyright, Lawrence Snyder, 199922

Recall The 8-Connected Components
WYSIWYG permits analysis by “inspection”

...
Count := 0;
repeat
 Next := Im & (Im@n | Im@nw | Im@w);
 Next := Next | (Im@w & Im@n & !Im);
 Conn := Im@e | Im@se | Im@s;
 Conn := Im & !Next & !Conn;
 Count += Conn;
 Im := Next;
 smore := |<<Next;
until !smore;
 ...

 Copyright, Lawrence Snyder, 199923

Compiler Basics
• An array language gives the illusion of arrays

as indivisible objects ... temps/temp removal
Next := Next | (Im@w & Im@n & !Im);

• Processing arrays creates loops around each
statement ... loop fusion/contraction

Conn := Im@e | Im@se | Im@s;
Conn := Im & !Next & !Conn;
Count += Conn;

• Communication optimizations ...
Next := Im & (Im@n | Im@nw | Im@w);
Next := Next | (Im@w & Im@n & !Im);

@-comm for Im@n

Why is Conn an array?

 Copyright, Lawrence Snyder, 199924

Annotate According to Rules
...
Count := 0;
repeat
 Next := Im & (Im@n | Im@nw | Im@w);
 Next := Next | (Im@w & Im@n & !Im);
 Conn := Im@e | Im@se | Im@s;
 Conn := Im & !Next & !Conn;
 Count += Conn;
 Im := Next;
 smore := |<<Next;
until !smore;
 ...

Local Work, No Comm

@ Comm required, but
only to update boundry.
One x-mit at top of loop

Log(P) Aggregate
and Broadcast What limits the

rate of this loop?

 Copyright, Lawrence Snyder, 199925

Revised Solution
...
Count := 0;
repeat
 Next := Im & (Im@n | Im@nw | Im@w);
 Next := Next | (Im@w & Im@n & !Im);
 Conn := Im@e | Im@se | Im@s;
 smore := |<<Next;
 Conn := Im & !Next & !Conn;
 Count += Conn;
 Im := Next;
until !smore;
 ...

Earliest point for
computing smore

This optimization makes sense because the CTA assumes
asynchronous communication allowing communication to
overlap with computation ... Other improvements?

loop | Next

Aggregate()
Broadcast()

 Copyright, Lawrence Snyder, 199926

Tale Of Two Multiplies

• “It was the best of times” that we wanted from
our parallel MM programs, but which of the
hall of fame algorithms, Cannon’s or SUMMA,
gets the best times?

• Analytically, which one is better?
• Recall the schema of each program:

Cannon’s SUMMA

Skew A loop thru n

Skew B flood A[,k]

loop thru n flood B[k,]

 C+=A*B C+=A*B

 rotate A,B

Duh?!

 Copyright, Lawrence Snyder, 199927

Consider The Product Loops
What does ZPL’s performance model tell us?
Cannon:
 [Res] C := 0.0; -- Initialize C
 for k := 1 to n do -- Thru common dim
 [Res] C := C + A*B ; -- Product & accumulate
 [right of Lop] wrap A; -- Send first col right
 [Lop] A := A@right; -- Shift array left
 [below of Rop] wrap B; -- Send top row down
 [Rop] B := B@below; -- Shift array up
 end;

SUMMA:
 [Res] C := 0.0; -- Initialize C
[Res] for k := 1 to n do
 [,*] Col := >>[,k] A; -- Flood kth col of A
 [*,] Row := >>[k,] B; -- Flood kth row of B
 C := C+Col*Row;-- Accumulate product
 end;

 Copyright, Lawrence Snyder, 199928

Conclusions From Analysis ...
• One estimates how a ZPL program performs

by using the behavior of the CTA and the
WYSIWYG rules of performance

• Programming in ZPL is like any language ...
it’s possible to write good and bad programs

• There is a knack to writing quality ZPL code ...
this is in (a small) part due to differences
between array and scalar languages, and in
(large) part due to the paradigm shift needed
for developing parallel algorithms

 Copyright, Lawrence Snyder, 199929

Preparing For Algorithm Design

• Partial reductions aggregate along subarrays,
e.g. add rows of array

• Dual of flooding ... also requires 2 regions
Let var A: [1..n,1..n] float;
 Colsum: [1..n,1] float;

 Rowsum: [1,1..n] float;

[1..n, 1] Colsum := +<< [1..n,1..n] A;

[1,1..n] Rowsum := +<< [1..n,1..n] A;

 Copyright, Lawrence Snyder, 199930

Flooding Is A Powerful Abstraction
• Consider the mode of a set of numbers

most := 0; count := 0;
for i := 1 to n do
 [i] trial := +<<S; --Select ith elem
 count := +<<(S = trial); --Occurrences
 if count > most then --Have a winner?
 most := count; -- Yes remember it
 mode := trial; -- And save mode
 end;
end;

• Is this a high performance solution?
• Embellishment ...

• Don’t go to end: for i := 1 to n-count do

• What about the reduction?

[1..n]

 Copyright, Lawrence Snyder, 199931

Improvement I

Remove the reduction from the loop
• Assume positive elements for simplicity ...
Count := 0; -- Initialize
for i := 1 to n do -- Sweep thru all S
 Count += S = >>[i]S; -- Record Occurrences
end;
most := max<< S; -- Figure the best?
mode := max<<((most = Count)*S);
 -- Isolate the mode

• Performance ...
• n single element broadcasts + local; no early exit
• 2 reductions + local

[i..n]

 Copyright, Lawrence Snyder, 199932

Improvement II
Promote the problem to a 2D computation

begin
 ST := <## [Index2,Index1] S;
 -- Construct Transpose of S
 Count :=
 +<<[1..n,1..n](>>[1,1..n]S = >>[1..n,1]ST);
 -- Compare n^2 items, reduce
 most := max<< S;-- Figure the best?
 mode := max<<((most = Count)*S);
 -- Isolate the mode
end;

• Costs: 1 permute, 2 floods, 1 partial reduction,
2 full reductions, local computation

[1,1..n]
[1..n,1]

 Copyright, Lawrence Snyder, 199933

Performance of Modes

Processors

S
pe

ed
up

32 641684
4
8

16

32

64

2D Flood Solution

Scalar Broadcast Solution

P-Speedup: Time for best
sequential solution on 1 proc
over time of parallel solution
on P processors: Ts/TP

 Copyright, Lawrence Snyder, 199934

A General Idea
Problem space promotion (PSP) is a parallel

programming technique in which d-dimensional
data is processed by solving the problem in a
higher dimension d’>d

• Flooding (logically) replicates the data
• Intermediate data structures need not be built, i.e.

PSP is space efficient

• Greater parallelism than the control flow solution
• Less synchronous solution

 Copyright, Lawrence Snyder, 199935

Sorting By PSP
• Sorting is even easier than mode
• Compute the position in the output by counting

the number of elements smaller
begin
 ST:= <## [Index2,Index1] S;
 -- Construct Transpose of S
 P := +<<[1..n,1..n](>>[1,1..n]S <= >>[1..n,1]ST);
 -- Compare n^2 items, reduce
 S := <##[Index1,P] S;
 -- Reorder input using perm
end;

• Cost is 2 permutes, 2 floods, partial reduction
• Requires n^2 comparisons, though O(n log n)

suffices; no early exit

[1,1..n]

[1..n,1]

 Copyright, Lawrence Snyder, 199936

Applying PSP to MM ...
The idea of flooding for MM generalizes ...

region IK = [1..n, 1,1..n];

 KJ = [1,1..n,1..n];

 IJ = [1..n,1..n, 1];

 IJK = [1..n,1..n,1..n];

[IK] A2 := <##[Index1,Index3,Index2] A;

[KJ] B2 := <##[Index3,Index2,Index1] B;

[IJ] C := +<<[IJK] ((>>[IK]A2)*(>>[KJ]B2));

Input B2

A2 C

 Copyright, Lawrence Snyder, 199937

Matrix Multiplication Performance

Processors

S
pe

ed
up

32 641684
4
8

16

32

64 3D Flood Solution, No Transp
3D Flood Solution

SUMMA

 Copyright, Lawrence Snyder, 199938

Recall VQ Compression Loop
Code book is input; for each image loop thru CB
[R] repeat

-- Imput next image, blocked into Im
Disto := dist(CB[0],Im);--Init w/dist entry 1
Coding := 0; --Set coding to 1st
for i := 1 to 255 do --Sweep thru code bk
 Distn := dist(CB[i],Im);--dist to ith entry
 if Disto > Distn then --Is new dist less?
 Disto := Distn; -- Y, update distance
 Coding := i; -- record the best
 end;
end;
-- Output the compressed image in Coding

 until no_more_images;

No Communication, Except I/O

 Copyright, Lawrence Snyder, 199939

Very Parallel VQ Solution
Why not perform all codebook lookup’s at once?
region R = [1..n,1..n,0..255];
 var CB = [*,*,0..255];

...
-- read in code book, flood into first 2 dimensions
[R] repeat

-- Input blocked image as 1st plane of Im
[1..n,1..n,*] Imrep := >>[,,1] Im;

Temp := dist(CB,Imrep);
Coding := max<<(Index3*(Temp = max<<Temp));
-- Output the compressed image in Coding

 until no_more_images;

Image

Imrep

CB

 Copyright, Lawrence Snyder, 199940

Compiling A Portable/Efficient Language

Parallel computers are very different, motivating
programmers to use higher level languages

• But the compiler must translate the source
successfully to each platform with good results

• CTA neutralizes much of the complexity
• New compiler technology (Factor/Join) promotes

many high level optimizations
• A critical technology is interprocessor

communication -- most compilers use message
passing; ZPL uses the Ironman interface

 Copyright, Lawrence Snyder, 199941

Msg Passing: Lowest Common Denominator
Message passing ...

• Intended for programmers

• Standard libraries (PVM, MPI) give std interface
• Most (new) machines have other forms of (more efficient)

communication

Made into Message, “sent” Arrives

A

Strided in memory

Marshalled in pgm

Copied by library

A’

Scattered in memory

Returned to pgm

Buffered by library

Pi Pi+1

 Copyright, Lawrence Snyder, 199942

Ironman: Compiler Comm Interface

• Ironman says what is transferred and when, but not how
• Key idea: 4 calls demarcate the legal region of transfer

Pi code Pi+1 code

A
A:=1;
SR(A);

SV(A);
A:=B;

DN(A’);
D := ... A’...

C := ...A’ ...
DR(A’);

Source location
to be overwritten

Destination
data needed

Source data
is ready

Destination
location ready

A’

 Copyright, Lawrence Snyder, 199943

HW Customize: Binding Ironman Calls

With what and when specified by the 4 Ironman calls, the
communication is implemented by linking in a library
with the specific mechanisms.

Pi code

A:=1;
SR(A);

SV(A);
A:=B;

Pi+1 code

DN(A’);
D := ... A’...

C := ...A’ ...
DR(A’);

 --
csend

crecv
 --

P’gon
Msg
Pass

MPI
Asych
Msg’s

Destination Ready
Source Ready

Cray
T3E
Shmem

Destination Needed

Source Volatile

post_ready
wait_ready
shmem-put
post_done

wait_done
 --

MPI_irecv
MPI_isend

MPI_Wait
MPI_Wait

 Copyright, Lawrence Snyder, 199944

Ironman Summary ...

• Dumps message passing as compiler communication

• Replace w/ 4 calls saying what/when, but not how
• DR(), SR(), DN(), SV()

• Strategy derives from CTA’s abstract specification
• No memory organization stated

• Bindings customize to hardware’s mechanism
• Versatility covers commercial & prototype machines

• message passing (all forms), shmem, shared, differential, ...

• Ironman concepts extended to other cases
• Collective communication

 Copyright, Lawrence Snyder, 199945

ZPL In Serious Computations
It is easy to analyze small programs,but what

about substantial applications?

Result: performance with portability

Processors

Class “A” Expr
HPF (APR)
HPF (IBM)
HPF (PGI)
ZPL

Targetted Platforms
 IBM SP-2
 Intel Paragon
 Cray T3D, T3E
 Clusters
 SMPs, Workstations, ...
 SGI Power Challenge, Origin

1 8 16 32

10

100

1000

1

S
ec

on
ds

NAS Multi-
Grid SP-2

 Copyright, Lawrence Snyder, 199946

Summary

ZPL’s use of CTA permits analysis of programs
• The WYSIWYG rules allow the programmer to

focus on the expensive communication usage
• Programming to achieve good results requires

some thinking, but techniques like Problem
Space Promotion (PSP) assist

• The ZPL compiler performs extensive
optimizations and uses the Ironman interface
for communication

