
 Copyright, Lawrence Snyder, 19991

ZPL, A Parallel Programming Language

ZPL is an implicitly parallel array programming
language based on the CTA machine model.
Though designed for scientific computation,
ZPL illustrates fundamental ideas in parallel
computing essential to all application areas.

 Copyright, Lawrence Snyder, 19992

Practical Considerations

• The purpose of learning ZPL is to illustrate the
fundamental point from the first lecture that a
parallel machine model enables one to write
programs independent of target machine, yet
still have sufficient understanding of their
performance to estimate how they will run

• Find documentation on the ZPL home page:
www.cs.washington.edu/research/zpl/docs/descriptions/guide.html

• ZPL has been installed on orcas/sanjuan

 Copyright, Lawrence Snyder, 19993

Homework Assignment

• This lecture provides sufficient instruction to
write many ZPL programs

• Two straightforward computations are
• Game of Life
• All Pairs Shortest Path, based on Warshall’s

Algorithm

• These problems are further specified on the
class web page

 Copyright, Lawrence Snyder, 19994

ZPL Overview
• ZPL’s main data structure is a dense array
• Computation is expressed as operations on

whole arrays, ie A+B adds arrays elementwise

• Parallelism is implicit, i.e. inferred by the
compiler from the array expressions

• ZPL is compiled, not interactive like MATLAB
• ZPL compiles to ANSI C which is compiled

with machine specific libraries to the target
parallel computer

 Copyright, Lawrence Snyder, 19995

ZPL Factoids
• Development Milestones

• ZPL design & implementation began in 3/93
• Portability & performance demonstrated 7/94
• Compiler and run-time system released 7/97

• Claims
• Portable to any (MIMD) parallel computer
• Performance comparable to C with user specified

communication
• Generally out performs High Performance Fortran
• Convenient and intuitive

• ZPL is a proper subset of Advanced ZPL
 Copyright, Lawrence Snyder, 19996

By Observation ...
All variables are declared
White space is ignored
2 Comment forms

 -- to end-of-line
 Paired /* */
Assignment is :=

Statements end in ;
Hybrid I/O
Basic data types

New concepts --
 config

 region
 [...] notation
 complex operators

program Sample_Stats;
 /* Program to compute mu & sigma */
config var n : integer = 100;
region V = [1..n];
procedure Sample_Stats(); -- Entry point
var Sample : [V] float;
 mu, sigma: float;
[V]begin
 read(Sample);
 mu := +<<Sample/n;
 sigma:= sqrt(+<<((Sample-mu)^2)/n);
 writeln(“Mean: “,mu,”S.D. :”, sigma);
 end;

 Copyright, Lawrence Snyder, 19997

ZPL Is Intuitive: Find µ and σ

µ = i Samplei

n
σ = i (Samplei - µ)2

n

 1 program Sample_Stats;
 2 config var n : integer = 100;
 3 region V = [1..n];
 4 procedure Sample_Stats();
 5 var Sample : [V] float;
 6 mu, sigma: float;
 7 [V] begin
 8 read(Sample);
 9 mu := +<<Sample/n;
10 sigma:= sqrt(+<<((Sample-mu)^2)/n);
11 writeln(“Mean: “,mu,”S.D. :”, sigma);
12 end;

Convention: Scalars are in
lower case; an array’s first
letter is capitalized

 Copyright, Lawrence Snyder, 19998

One Slide of Standard Stuff ...

Data Types: boolean, ubyte, sbyte, char,
integer, uinteger, float, double, quad,
complex, ...

Unary Operators: +, -, !
Binary Operators: +, -, *, /, ^, %, &, |

Relational Operators: =, !=, <, >, <=, >=
Bit Operators: bnot(),band(),bor(),bxor(),bsl(),bsr()
Assignments: :=, +=, -=, *=, /=, %=, &=, |=
Contol Structures: if-then-{elsif}-else,
repeat-until, while-do, for-do, exit,
return, continue, halt, begin-end

 Copyright, Lawrence Snyder, 19999

program Jacobi;
config var n : integer = 512;
 eps : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;
 err : float;
direction N = [-1, 0]; S = [1, 0];
 E = [0, 1]; W = [0,-1];
procedure Jacobi();
 [R] begin
 A := 0.0;
[N of R] A := 0.0; [W of R] A := 0.0;
[E of R] A := 0.0; [S of R] A := 1.0;

repeat
 Temp := (A@N + A@E + A@W + A@S)/4.0;
 err := max<< abs(Temp - A);
 A := Temp;
until err < eps;

 end;
end;

+ ++:= ()/4.0;

Jacobi Iteration, The Loop

 Copyright, Lawrence Snyder, 199910

Jacobi Iteration, The Region
program Jacobi;
config var n : integer = 512;
 eps : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;
 err : float;
direction N = [-1, 0]; S = [1, 0];
 E = [0, 1]; W = [0,-1];
procedure Jacobi();
 [R] begin
 A := 0.0;
[N of R] A := 0.0; [W of R] A := 0.0;
[E of R] A := 0.0; [S of R] A := 1.0;

repeat
 Temp := (A@N + A@E + A@W + A@S)/4.0;
 err := max<< abs(Temp - A);
 A := Temp;
until err < eps;

 end;
end;

 Copyright, Lawrence Snyder, 199911

Jacobi Iteration, The Direction
program Jacobi;
config var n : integer = 512;
 eps : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;
 err : float;
direction N = [-1, 0]; S = [1, 0];
 E = [0, 1]; W = [0,-1];
procedure Jacobi();

 [R] begin
 A := 0.0;
[N of R] A := 0.0; [W of R] A := 0.0;
[E of R] A := 0.0; [S of R] A := 1.0;

repeat
 Temp := (A@N + A@E + A@W + A@S)/4.0;
 err := max<< abs(Temp - A);
 A := Temp;
until err < eps;

 end;
end;

 Copyright, Lawrence Snyder, 199912

Jacobi Iteration, The Border
program Jacobi;
config var n : integer = 512;
 eps : float = 0.00001;
region R = [1..n, 1..n];
var A, Temp : [R] float;
 err : float;
direction N = [-1, 0]; S = [1, 0];
 E = [0, 1]; W = [0,-1];
procedure Jacobi();

 [R] begin
 A := 0.0;
[N of R] A := 0.0; [W of R] A := 0.0;
[E of R] A := 0.0; [S of R] A := 1.0;

repeat
 Temp := (A@N + A@E + A@W + A@S)/4.0;
 err := max<< abs(Temp - A);
 A := Temp;
until err < eps;

 end;
end;

 Copyright, Lawrence Snyder, 199913

Promotion

• ZPL allows arrays to combine with scalars, a
convention called “scalar promotion”

Temp := (A@N + A@E + A@W + A@S)/4.0;

Scalars assume shape of the arrays they’re operands with

• Another form is “function promotion”
abs(Temp - A)

The (scalar) function is applied to each element of the array

• Programmer-written scalar functions can be
promoted, too

 Copyright, Lawrence Snyder, 199914

Regions: State What, not How
• Most languages define indices operationally by looping

• Regions are index sets of arbitrary size

• Regions and region operators (of, at, in, etc.)
replace indexing and simplify programming

region R = [1..8,1..8];
region C = [2..7,2..7];
var X,Y : [R] integer;

[C] Y:=X@NE[C] X:= [C] Y@E:= [N of C] Y:=

E =[0,1]
N =[-1,0]
NE=[-1,1]

 Copyright, Lawrence Snyder, 199915

Defining Regions Using of
of defines a region adjacent

to the given region in the
given direction

region R = [1..8,1..8];
region C = [2..7,2..7];
var X,Y : [R] integer;

E =[0,1]
N =[-1,0]
NE=[-1,1]

C
[E of C]

[E of C] defines the region [8, 2..7]

[E of R] defines the region [9, 1..8]

[E of R] X :=

R

[E of C] X :=

X

X
[E of R]

Border Extend On
Defining Region Only

 Copyright, Lawrence Snyder, 199916

Region Calculus

• ZPL’s region operators induce a “region calculus”
• Let a dense r-dimensional region be speicifed by its

upper and lower limit pairs: <l1,u1>,<l2,u2>... <lr,ur>

When d = (d1, d2 , ..., dr) and R = <l1,u1>,<l2,u2>... <lr,ur>, then

R at d = <l1+d1,u1+d1> <l2+d2,u2+d2 >...<lr+dr,ur+dr>

d of R satisfies ...
  <ui+1,ui+di> if di > 0

<li’,ui’> =  <li,ui> if di = 0
  <l1+di,li-1> if di < 0

(A more general formulation handles ZPL’s more general regions)

 Copyright, Lawrence Snyder, 199917

Regions In Computation
• The region r prefixing a statement gives the

indices over which all computation on rank r
arrays is applied

[Rr] ... Ar + Br ...

• Regions are scoped, i.e. a region on an inner
statement “over-rides” a region on outer stmt

[1..n] begin ...

 [2..n-1] ... A + B ...

 end;

• Regions can be dynamic, i.e. bounds are
evaluated on each execution of the statement

[i..j] ... A + B ...

 Copyright, Lawrence Snyder, 199918

Global Operations

• Reduce (<<)and scan (||) are array functionals
that perform global operations

• +<<A reduces A to its sum
+<<2 4 6 8 ≡ 20

• +|| are parallel prefixes of A
+||2 4 6 8 ≡ 2 6 12 20

The operators are associative allowing parallel prefix
techniques to be used in their evaluation

Reduce and scan apply only over applicable region
[1..i] firsti := +<<A; -- sum first i elements

Reduce Scan
 +<< +||
 *<< *||
max<< max||
min<< min||
 &<< &||
 |<< |||

 Copyright, Lawrence Snyder, 199919

Finding The Bounding Box

• Let X and Y be 1D arrays of coordinates such
that (Xi, Yi) is a position in the plane

• The bounding box uses four reduces:
[R] begin

rightedge := max<< X;

topedge := max<< Y;

leftedge := min<< X;

bottomedge := min<< Y;

 end;

• •
•

•

•

••
•

•

•
•

 Copyright, Lawrence Snyder, 199920

Bounding Box With point Type
• Rather than using arrays of integers, define a type

type point = record

 x : integer; -- x coordinate

 y : integer; -- y coordinate

 end;

var Pts : [1..n] point; -- Points in plane

...

rightedge := max<< Pts.x;

topedge := max<< Pts.y;

leftedge := min<< Pts.x;

bottomedge := min<< Pts.y;

...

 Copyright, Lawrence Snyder, 199921

8-way Connected Components

The Levialdi morphological operator is the basis for a
simple program to find 8-way connected components

• Assume an array of binary pixels
• Define connectedness 8-ways
• Reduce each component to the lower right

corner of its bounding box using morphology:

• When an isolated pixel is removed, count it

==> ==>

==>

 Copyright, Lawrence Snyder, 199922

ZPL Connected Components
...
Count := 0;
repeat
 Next := Im & (Im@n | Im@nw | Im@w);
 Next := Next | (Im@w & Im@n & !Im);
 Conn := Im@e | Im@se | Im@s;
 Conn := Im & !Next & !Conn;
 Count += Conn;
 Im := Next;
 smore := |<<Next;
until !smore;
 ...

 Copyright, Lawrence Snyder, 199923

Support for Boundaries
of automatically extends arrays to have borders

Borders seamlessly participate in computation
wrap and reflect assist

in computing boundaries

Compare boundary code from

 SPEC92 benchmark swm

/* Periodic Continuation */

[e of I] wrap U,Uold,V,Vold,P,Pold;
[s of I] wrap U,Uold,V,Vold,P,Pold;
[se of I] wrap U,Uold,V,Vold,P,Pold;

C
C PERIODIC CONTINUATION
C
 uold(m + 1,:n) = uold(1,:n)
 vold(m + 1,:n) = vold(1,:n)
 pold(m + 1,:n) = pold(1,:n)
 u(m + 1,:n) = u(1,:n)
 v(m + 1,:n) = v(1,:n)
 p(m + 1,:n) = p(1,:n)
 uold(:m,n + 1) = uold(:m,1)
 vold(:m,n + 1) = vold(:m,1)
 pold(:m,n + 1) = pold(:m,1)
 u(:m,n + 1) = u(:m,1)
 v(:m,n + 1) = v(:m,1)
 p(:m,n + 1) = p(:m,1)
 uold(m + 1,n + 1) = uold(1,1)
 vold(m + 1,n + 1) = vold(1,1)
 pold(m + 1,n + 1) = pold(1,1)
 u(m + 1,n + 1) = u(1,1)
 v(m + 1,n + 1) = v(1,1)
 p(m + 1,n + 1) = p(1,1)

ZPL

Fortran 90

 Copyright, Lawrence Snyder, 199924

Cannon’s Algorithm

Recall Cannon’s Algorithm was claimed to be effective ...
it should be programmable in ZPL

c11 c12 c13 a11 a12 a13 a14
c21 c22 c23 a21 a22 a23 a24
c31 c32 c33 a31 a32 a33 a34
c41 c42 c43 a41 a42 a43 a44

 b13
 b12 b23
b11 b22 b33
b21 b32 b43
b31 b42
b41

A and B are skewed and conceptually
“pass across” the result array C that’s
initialized to 0. As aik and bkj pass
over cij, they are multiplied and the
result is added into the cij.

 Copyright, Lawrence Snyder, 199925

c11 c12 c13 a11 a12 a13 a14
c21 c22 c23 a21 a22 a23 a24
c31 c32 c33 a31 a32 a33 a34
c41 c42 c43 a41 a42 a43 a44

 b13
 b12 b23
b11 b22 b33
b21 b32 b43
b31 b42
b41

Skewing The Arrays

ZPL supports only dense arrays, not skewed
arrays or general data structures ... no worries

c11 c12 c13
c21 c22 c23
c31 c32 c33
c41 c42 c43

a11 a12 a13 a14
a22 a23 a24 a21
a33 a34 a31 a32
a44 a41 a42 a43

b11 b22 b33
b21 b32 b43
b31 b42 b13
b41 b12 b23

 Copyright, Lawrence Snyder, 199926

Performing Skewing Computation

Skewing can be realized by wrapping the first
column to the right border, then shifting left

• Assume declarations
region Lop = [1..m,1..n];

direction right = [0,1];

for i := 2 to m do
[right of Lop] wrap A; --Move col 1 to r border
 [i..m,1..n] A := A@right;--Shift last i rows left
end;

a11 a12 a13 a14
a22 a23 a24 a21
a33 a34 a31 a32
a44 a41 a42 a43

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 Copyright, Lawrence Snyder, 199927

a11 a12 a13 a14| - a11 a12 a13 a14|a11
a21 a22 a23 a24| - a22 a23 a24 a21|a21
a31 a32 a33 a34| - a32 a33 a34 a31|a31
a41 a42 a43 a44| - a42 a43 a44 a41|a41
 Initial i=2 step

a11 a12 a13 a14|a11 a11 a12 a13 a14|a11
a22 a23 a24 a21|a22 a22 a23 a24 a21|a22
a33 a34 a31 a32|a32 a33 a34 a31 a32|a33
a43 a44 a41 a42|a42 a44 a41 a42 a43|a43

i=3 step i=4 step

Four Steps of Skewing A
for i := 2 to m do
 [right of Lop] wrap A; --Move col 1 to r border
 [i..m,1..n] A := A@right; --Shift last i rows left
end;

 Copyright, Lawrence Snyder, 199928

Cannon’s Algorithm
Skew A, Skew B, Multiply, Accumulate, Rotate

 for i := 2 to m do-- Skew A
 [right of Lop] wrap A; -- Move col 1 to border
 [i..m, 1..n] A := A@right; -- Shift last i rows left
 end;
 for i := 2 to p do-- Skew B
 [below of Rop] wrap B; -- Move 1st row below last
 [1..n, i..p] B := B@below; -- Shift last i cols up
 end;
 [Res] C := 0.0; -- Initialize C
 for i := 1 to n do-- For A&B’s common dimension
 [Res] C := C + A*B ;-- Form product and accumulate
 [right of Lop] wrap A; -- Send first col right
 [Lop] A := A@right; -- Shift array left
 [below of Rop] wrap B; -- Send top row down
 [Rop] B := B@below; -- Shift array up
 end;

 Copyright, Lawrence Snyder, 199929

Indexi
• ZPL doesn’t need subscripts, but it is still useful to have

indices.
• Indexi is a (compiler created) constant array giving the

value of the ith subscript
[1..50] A := 2*Index1;-- A=even nums 2 to 100

Index1 in this instance is 1 2 3 4 5 ... 50

• The “i” must be a number of a legal dimension
[1..n,1..n] Ident := Index1=Index2;--1s on diag

[1..2,1..2] Ident := 1 1 = 1 2 1 0

 2 2 1 2 0 1

• Indexi arrays are logical, they use no storage

• It is not legal to assign to Indexi

 Copyright, Lawrence Snyder, 199930

Control-flow Chacteristics

• ZPL has “sequential” control flow, i.e. under
most circumstances statements execute one
at a time to completion

fact := 1;

for i = 2 to n do fact *= i; end; -- n!

• Consider the affect of replacing a scalar with
an array in control predicates

Fact := 1;

for I := 2 to N do Fact *= i; end; -- N!

N = 3 1 4 1 5 implies Fact = 6 1 24 1 120

• Control is said to shatter

 Copyright, Lawrence Snyder, 199931

Conditons on Shattered Control Flow
• Any use of an array in a control flow expression results

in shattering
while T>0 do ...;

repeat ... until S=0;

if D != C then ... else ...;

for I := A to B do ...;

• A sequence of statements will be executed for each
index in the applicable region

• The order of execution is unspecified

Restrictions: No assignment to scalars; instances of @-modified
variables must be identical; no wrap, reflect, flooding, permute,
reduction, scan or other “array operations”

 Copyright, Lawrence Snyder, 199932

Applications of Shattered Control Flow
• Use shattered control flow to adapt to different

situations
-- Take squaroot, preserve sign

if X>=0 then Y := sqrt(X);

 else Y := - sqrt(-X);

end;

• Shattering saves writing procedures for
promotion, i.e. a shattered statement acts like
an anonymous promoted function

• Most applications of shattering can be realized
by masking

 Copyright, Lawrence Snyder, 199933

Flooding Abstraction

• Flooding is a ZPL abstraction for replication
• Fortran 90 has spread, MATLAB has “Tony’s Trick”

ZPL [1..n,*] F := >>[1..n,1] A;
MATLAB F = A(:,ones(1,size(A,2)))
F-90 F = SPREAD(A[:,1],DIM=2,N)

A F: Logical F: Physical

• • •• • •

 Copyright, Lawrence Snyder, 199934

Flooding Operator
• Flooding uses two regions, the region on the

statement and a region following the operator
• One (or more) of the operator region’s

dimensions must be collapsed, i.e. be a
singleton ... replication occurs in this dimension

[1..n,1..n] Col := >>[1..n,k] A;

Replicate the kth column
[1..n,1..n] Row := >>[k,1..n] A;

Replicate the kth row

• ZPL recognizes flooded regions ([1..n,*]) and
flooded arrays, i.e. arrays defined over flooded
regions

 Copyright, Lawrence Snyder, 199935

Matrix Product
• SUMMA: Iteratively flood a column of A and a row of

B into temporary matrices, multiply & accumulate in C

 [1..n,1..n] C := 0.0; -- Initialize C
 [1..n,1..n] for k := 1 to n do
 [,*] Col := >>[,k] A;-- Flood kth col of A
 [*,] Row := >>[k,] B;-- Flood kth row of B
 C := C+Col*Row; -- Accumulate product
 end;

Row

Col
Invariant: On kth iteration
the kth term in the
dot-product of row i and
column j is accumulated
in position i,j.

* * *

...

...

A

B

Hall of Fame
1

 Copyright, Lawrence Snyder, 199936

Indexed Arrays
• ZPL has a second kind of arrays called indexed

arrays
• Indexed arrays are similar to arrays in

conventional languages:
var TABLE : array [1..3,1..100] of integer;

 name keywd bounds kw type

• Indexed arrays are subscripted: [i, j]

Indexed arrays are not a source of parallelism
• Use indexed arrays for local tables, building

data structures, local serial computation, etc.

 Copyright, Lawrence Snyder, 199937

Indexed Arrays As Array Elements
• An array of indexed arrays is a common data

structure
region R = [1..n];

var Data,Result:[R] array [1..64,1..64] of float;

 ...

 Result := indexed_matrix_fcn(Data);

• The elements of the array are evaluated
concurrently, though the computation on each
element is sequential

Array/i-array gives an easy parallel implementation
for solving independent instances problems

 Copyright, Lawrence Snyder, 199938

Procedures -- Declarations

• The form of a procedure declaration is
procedure PName ({Formals}) {: Type};

 {Locals}

 Statement;

• Formal parameters are listed with their types
procedure F(A : [R] byte,x : float) : float;

• Values are returned by: return ... ;
• Formal parameters can be called by-value, the

default, or by-reference by prefixing the name
with var

procedure G(var A : [R], n : integer);

 Copyright, Lawrence Snyder, 199939

Procedure Factoids
• Formals can be rank defined

procedure H(var A : [,], m : ubyte);

• Procedures inherit the region of the call site
procedure AddLast(A : [] float): float;

 var sum : integer;

 begin sum := +<< A; return sum end;

...

for i := 1 to n do

 [i..n] ... AddLast(A) ...

• Procedures can be recursive
• Use prototypes to specify a procedure header

prototype H(var A : [,], m : ubyte);

 Copyright, Lawrence Snyder, 199940

More Procedural Facts

• Procedures can be declared in any order, but they
must at least be prototyped before they are referenced

• A ZPL program begins with a program statement
program PName;

• There must be a procedure with the identical name as
the program; the procedure is the entry point (main)

procedure PName();

• Notice that global state information is typically defined
as global variables rather than as variables “passed in”
to each procedure

 Copyright, Lawrence Snyder, 199941

Vector Quantization
• VQ is a lossy image compression technique
• A code book is constructed on training set
• Use 256 entries to map 2x2 bytes to byte
• Declarations ...

config var n : integer = 512;

region R = [1..n, 1..n];

type block = array [1..2, 1..2] of ubyte;

var CB : array [0..255] of block;

 Im : [R] block;

 Coding : [R] ubyte;

Disto, Distn : [R] float;

 Copyright, Lawrence Snyder, 199942

A Distance Procedure

• To compute the mean square distance
between to blocks, define the function

procedure dist(b1, b2 : block) : float;

 return ((b1[1,1] - b2[1,1])^2

 (b1[1,2] - b2[1,2])^2

 (b1[2,1] - b2[2,1])^2

 (b1[2,2] - b2[2,2])^2)/4.0;

• The dist() function will be applied so the
first argument argument is from the code book
and the second is from the image

 Copyright, Lawrence Snyder, 199943

VQ Compression Loop
• Assume code book is input
[R] repeat

-- Imput next image, blocked into Im

Disto := dist(CB[0],Im);--Init w/dist entry 1

Coding := 0; --Set coding to 1st

for i := 1 to 255 do --Sweep thru code bk

 Distn := dist(CB[i],Im);--dist to ith entry

 if Disto > Distn then --Is new dist less?

 Disto := Distn; -- Y, update distance

 Coding := i; -- record the best

 end;

end;

-- Output the compressed image in Coding

 until no_more_images;
 Copyright, Lawrence Snyder, 199944

VQ Observations

• All pixel blocks of an image handled at once
• Iteration sweeps thru, trying code book entries
• dist() is f-promoted in its second parameter
• The Distn > Disto predicate is on arrays

implying the if is shattered

• The code book as an indexed array, so it is
stored redundantly on each processor

 Copyright, Lawrence Snyder, 199945

Permutation
• ZPL supports non-local data movement with

the permutation operators, <## gather and
>## scatter

• A reordering array must be provided for each
dimension

Let Order = 5 4 3 2 1 and Data = ‘ABCDE’

[1..5] Result := <##[Order] Data;

Then Result = ‘EDCBA’

• A common operation is transpose:
[1..n,1..n] AT := <##[Index2,Index1] A;

• Permutation is ZPL’s most expensive operator

 Copyright, Lawrence Snyder, 199946

Summary

• ZPL is a new language designed to simplify
programming scientific computations

• Most of the language structures have been
introduced, but much detail remains ... see the
ZPL Programmer’s Guide for specifics

• Techniques for finding a solution have been
emphasized so far ... the next topic is
techniques for finding fast, parallel solutions

