
 Copyright, Lawrence Snyder, 19991

Parallel Algorithmic Techniques

The goal in (practical) parallel algorithm design
is to express parameterized parallelism (so it

can be scaled to the actual number of
processors available) that minimizes

communication and synchronization, and has
good load balance

 Copyright, Lawrence Snyder, 19992

Algorithms For N-body Computations
Allocating bodies spatially eases communication

load by placing interacting bodies near one
another

Partitioning Space Partitioning Bodies

 Copyright, Lawrence Snyder, 19993

N-body Representation

To exploit the fact that only nearby attractions
need to be explicitly calculated, partition
space, inducing an oct-tree, traverse the oct
tree computing the attractions, update
positions

...

 Copyright, Lawrence Snyder, 19994

Salmon’s Space Filling Curve

John Salmon of Caltech observed that arranging
bodies in the order specfied by a space filling
curve places near elements near one another
... the basis of an “out of core” solution

 Copyright, Lawrence Snyder, 19995

Molecular Dynamics

• Uses N-body techniques, but unlike gravitation
there is a greater uniformity of elements

• Typically 3D, all pairs of interactions up to a
cut-off distance

Protein folding is an
important application ...
stick protein inside region,
flood with water
molecules, simulate using
basic physical laws.

 Copyright, Lawrence Snyder, 19996

Algorithms For The PRAM
• The Parallel Random Access Machine was an

early and obvious generalization of the RAM:
• P processors, where typically P <= n

• Any processor can reference any memory location in “unit”
time

• Handling collisions at locations varies:
• Exclusive read/exclusive write (EREW)

• Concurrent read/exclusive write (CREW)
• Concurrent read/concurrent write (CRCW)

P P P P P P P P

Interconnection Network

M M M M M M M M

 Copyright, Lawrence Snyder, 19997

PRAM As A Model
This model is unrealistic ... why?

• Nonlocal memory cannot be referenced in constant time
independent of P ... a matter of physics

• Contention and competiton for resources matters in all
practical computations

But is it useful?
• “By idealizing the machine it is easier for a programmer to

formulate an intial parallel algorithm, and from that
transform it to something practical”

• Hardware can be built to make it come true sometimes ...
e.g. multithreading; Need slack

• Theoretically interesting

 Copyright, Lawrence Snyder, 19998

Finding The Maximum On PRAM

Finding the maximum of n values in V is best
done with max<< V, but it can be computed
using Valiant’s algorithm

• In round i use all P (= n) processors to compare
for all pairs of 2¦n numbers, finding the Ri max

-- Round i

x[j] := 1 -- initialize

if V[j] <= V[k] then x[j]:=0 -- each k < j

if x[j] = 1 then Ri := V[j] -- find winner

• Repeat same process on the maxes found
• The algorithm finds the global max in time

O(loglog n)

 Copyright, Lawrence Snyder, 19999

Results Of Valiant’s Algorithm
• Very clever
• Theoretically interesting ... the maximum

function is extremely easy to compute
• Could this be used in practice? Many cases

where max is used, e.g. for loop control Jacobi
iteration, there is little slack; would certainly be
worse than Ladner/Fischer

• Does this really lead one to develop a
practically efficient parallel computation?

 Copyright, Lawrence Snyder, 199910

Shared Memory ...

• The CRCW PRAM model may be overly general, but
the claim persists that “shared memory is a good
simplification for creating initial solutions”

• Abstracts away exactly what is critical -- cost of data
motion

• Notice the complications in “orchestrating for
performance” Chapter 3 ... tied to shared model, and
programmer does compiler’s work

• Perhaps the best way to discover initial solutions is to
have a “repertoire of techniques” and an accurate cost
model in mind

 Copyright, Lawrence Snyder, 199911

Determinant

Douglas Low’s determinant solutions ...

• In ZPL where there is no diagonal *<<
• Program a diagonal reduction
• Rotate all Cannon’s, reduce down

 cols, reduce across bottom row
• Use gather (<##) to permute as with Cannon

• Use a new feature for pipelining called mscan

Sum the product reductions of the diagonals, both ways

 Copyright, Lawrence Snyder, 199912

Shift Solution

[R] begin
 ldsum := 0.0;
 rdsum := 0.0;
 temp := A;
 temp2 := A;

 for row := 2 to n do
[east of R] wrap temp;
[row..n, 1..n] temp := temp@east; -- rotate row i west by i-1 elements

[west of R] wrap temp2;
[row..n, 1..n] temp2 := temp2@west; -- rotate row i east by i-1 elements
 end;

 /* Process the forward diagonals */

[south of R] temp := *<<[R] temp; -- calculate column products
[south of R] ldsum := +<< temp; -- sum the products

 /* Process the reverse diagonals */

[south of R] temp2 := *<<[R] temp2; -- calculate column products
[south of R] rdsum := +<< temp2; -- sum the products

 return ldsum - rdsum; -- Return the determinant
 end;

 Copyright, Lawrence Snyder, 199913

Permute Solution

[R] begin
 ldsum := 0.0;
 rdsum := 0.0;

 permute := mymod(Index2+(Index1-1), n);
 temp := <##[Index1, permute] A;

 permute := mymod(Index2-(Index1-1)+n, n);
 temp2 := <##[Index1, permute] A;

 /* Process the forward diagonals */

[south of R] temp := *<<[R] temp; -- calculate column products
[south of R] ldsum := +<< temp; -- sum the products

 /* Process the reverse diagonals */

[south of R] temp2 := *<<[R] temp2; -- calculate column products
[south of R] rdsum := +<< temp2; -- sum the products

 return ldsum - rdsum; -- Return the determinant
 end;

 Copyright, Lawrence Snyder, 199914

MSCAN solution
[R] begin
 ldpsum := A;
[north of R] ldpsum := 1.0;
[west of R] ldpsum := 1.0;
[nw of R] ldpsum := 1.0;

 rdpsum := A;
[north of R] rdpsum := 1.0;
[east of R] rdpsum := 1.0;
[ne of R] rdpsum := 1.0;

 scan
 ldpsum *= ldpsum’@nw;
 end;

 scan
 rdpsum *= rdpsum’@ne;
 end;

 for i := 1 to n-1 do
[n-i,n] temp := +<<ldpsum;
[n,i] ldpsum *= temp;

[i,1] temp := +<<rdpsum;
[n,i+1] rdpsum *= temp;
 end;

[n, 1..n] return +<<ldpsum - +<<rdpsum; -- Return determinant
end;

 Copyright, Lawrence Snyder, 199915

Parallel Sorting
• For small n the counting sort -- compute the final

position of each element by n2 comparisons --
probably works well enough

• A ZPL solution (based on the Problem Space Promotion
idea) was given in Lecture #3

• For huge n -- greater than will fit in all memory -- a
merging algorithm is probably best

• Order local elements independently on each processor --
perfect parallelism

• Merge the P lists
• Probably constrained by disk speed

• Any algorithm using compare/exchange can use
merge/split to handle larger n

 Copyright, Lawrence Snyder, 199916

Batcher’s Bitonic Sort
• Batcher’s bitonic sort was derived from his

sorting network, and remains an effective
parallel sort -- uses compare/exchange

• An easy way to think of the algorithm is as if
the processors formed a hypercube

• Compare/exchanges are performed between
processors differing in the ith bit position with the
higher element going to a specific processor

• Start with LSB position
• After compare/exchanging ith bit, sort lower bit

positions

 Copyright, Lawrence Snyder, 199917

Batcher’s Sort
• Time complexity in c/e steps, O(log2 n)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

P
ro

ce
ss

or
 n

um
be

r
...

 c
/e

 s
te

p
or

de
rin

g

 Copyright, Lawrence Snyder, 199918

Sample Sort

• In Sample Sort a random subset of t elements
from each processor are forwarded to a
designated processor, the sample, and sorted

• The sample is assumed to be distributed like
the whole set -- so every tth element is a pivot

• Send pivots to all processors, and they will
know where to send the elements they own

• This isn’t precise, so final (local) adjustments
might be necessary to balance the load

 Copyright, Lawrence Snyder, 199919

Review of Parallel Processing

CSE596 has sought to put parallel computation
in perspective

• Historical antecedents and progress
• Models of parallel computation
• Contemporary machine architectures
• Programming approaches, specifically ZPL

• Parallel algorithms and techniques

• Parallel computation is extremely challenging,
but it is the only way to dramatically increase
performance

 Copyright, Lawrence Snyder, 199920

General Conclusions

• Parallel computing is not “standardized” like
sequential computing is

• Some are still debating what model to use, though CTA is
working fine for ZPL

• Using the SMP is straightforward ... moving beyond that is
intellectually difficult

• Scientific computation has driven parallel
processing research ...could other areas
benefit, such as data mining and compute
intensive database applications

• TeraFLOPS performance has been achieved

 Copyright, Lawrence Snyder, 199921

Architectural Conclusions
• Parallel computers differ dramatically
• Architectural diversity creates a portability

“gotcha”
• Whenever a program exploits features not

common to all parallel computers, there is a
likelihood (certainty?) that performance on other
platforms will suffer

• Never program to the machine

• A CTA-like model is therefore essential

• Shared memory is expensive and complicated
when shared bus is no longer viable

 Copyright, Lawrence Snyder, 199922

Architectural Conclusions, Continued
What is best machine design?
• Latency hiding Tera is most customized,

expensive in many dimensions
• Wave of the future?
• Overkill on supporting parallelism?

• Beowulf is most primitive, cheapest
• Underperforms -- more engineering would help

• Cheap enough to waste
• Other applications

• Cray T3D & T3E
• Global addressing + 1 sided comm is fast/handy
• Low latency network design effective

 Copyright, Lawrence Snyder, 199923

Programming Conclusions
• Other than ZPL, the only “portable” approach

is message passing with PVM or MPI libraries
• In message passing the programmer does all of the

parallelization, from process spawning to shadow-buffer
definition and management

• Interface, but maybe not the semantics portable

• Many attempts at new languages, libraries for
C++, etc. ... why not more successful?

• Languages ... recognizing when sequential semantics can
be parallel is tough

• Libraries ... poor interface, tough to optimize and
customize

• Parallel algorithms is a rich area of study
 Copyright, Lawrence Snyder, 199924

Prospects

What would it take for parallel computation to be
mainstream?

• Make it completely transparent to programmers?

• Teach every programmer from day 1 to write
parallel computations

• Evolve from some threaded form like Java

