524 - Lecture 4

Map / Reduce

MP| retro

Ran out of memory in Vagrant
Debugging was hard
e Seg-fault
* should connect to wedged process after the fact by catching signal and spinning
efficient algorithm for BFS?
easier than GPUs
MPI gather and scatter were hugely helpful
Not everything has a C++ binding
Broadcast can use a tree
Buffer challenging was challenging

Don’t send too much at once :)

The problem being solveo

» Big cluster
* Distributed
e hardware is not fault tolerant
* nodes die
* big data

e more data than fits on a
single node

 Want to be used by a wide variety
of programmers

e Think people who are just
graduating from Excel macros

Map/Reduce

* Simple concept

 map: apply a function to each element of data

* reduce: summarize the result of a map operation
* With a twist:

 map should be side-effect free (purely functional)

e good reduce operators should be associative so
that a reduction tree can be formulated

INn more CS speak

 Map/reduce is functional programming meets distributed systems

» Functional programming brings the side-effect freeness

* The framework brings attributes of distributed systems programming that are desirable:
* fault tolerance

* map operation died halfway through”? No problem, just re-srtart the node (the
computation is side effect free!)

e Scalable
e map operations being side-effect free are easy to parallelize
e associative reduction operators can be distributed and made hierarchical

* You get these benetits for free if you buy into the marp/reduce framework

In even more CS geek speak

 map(in_key, in_value) -> (out_key, intermediate_value) list

e reduce(out_key, intermediate_value list) -> out_value list

e For example:

Records of database (lets say SS# and name) are fed into a map function as (key,
value) pairs

map produces one or more intermediate_value(s) along with an output key. For
example, { (first, “dohn”), (last, “Smith”) }

Conceptually all resulting values from the map operation are squashed into a single
list

reduce then processes this list. For example, counting up name frequency.
{ (first:John, 1), (last:Smith, 1) }

Note how this reduction operator is associative.

iInput map temp reduce output

i
E
@\

1

>’

!

Input key*value Input key*value
pairs pairs

T v Y
ma ma
Data store 1 P Data store n P
(kéy 1, (key 2, (Key 3, (kéy 1, (key 2, (Key 3,
values...) valIes...) valuT...) valules...) Valules...) values...)
== Barrier == . Aggregates intermediate values by output key
key 1, key 2, key 3,
intermediate intermediate intermediate
values values values
Y Y 4
reduce reduce reduce
final key 1 ﬁnallkey 2 ﬁnalikey 3

values values values

What's the catch”

- Map/Reduce is a round hole and some times your problem is a square
peg.

« You'll see this when you code BFS...

- In big distributed systems data distribution is work distribution.

e |If your data isn'’t distributed well or is distributed incorrectly for the problem
you need to solve, performance suffers.

e These systems are trying to solve a lot at once: distributed systems, fault
tolerance, distributed data storage, “ease of use”.

e You have to buy into framework you choose. It's rarely something you can
do on the side.

« Choose wisely.

Which framework to use”?

* Worthy read for the newbie: http://www.metistream.com/comparing-hadoop-mapreduce-spark-flink-

storm/

* Hadoop: your basic map/reduce framework. Most useful for HDFS (distributed file store) and YARN
(the job dispatcher)

e Spark: a module within the Hadoop ecosystem. Provides in-memory computation capabilities
(speed)

» Also provides a lot of pre-built useful modules for ML, Graphs, SQL, etc

o Flink & Storm: provides streaming continuous processing, where as Hadoop/Spark are batch
orientated.

* For this class, we'll use either Spark or “disco”.
 http://discoproject.org
» http://spark.apache.or

e Both work in vagrant. disco is easier to install. Spark requires you to upgrade java to Oracle’s
java. And download Spark 2 from the website directly.

http://www.metistream.com/comparing-hadoop-mapreduce-spark-flink-storm/
http://www.metistream.com/comparing-hadoop-mapreduce-spark-flink-storm/
http://discoproject.org
http://spark.apache.org

Example (disco)

from disco.core import Job, result iterator

def map(line, params):
for word in line.split():
yield word, 1

def reduce(iter, params):
from disco.util import kvgroup
for word, counts in kvgroup(sorted(iter)):
yield word, sum(counts)
if name_ == ' main_':
job = Job().run(input=["http://discoproject.org/
media/text/chekhov.txt"],
map=map,
reduce=reduce)
for word, count 1in
result iterator(job.wait(show=True)):
print(word, count)

Example (Spark)

from future import print function
import sys

from random import random

from operator import add

from pyspark.sgl import SparkSession

if name == " main

mwwmn

Usage: pi [partitions]

mwwmn

spark = SparkSession\

.builder\
.appName ("PythonPi") \
.getOrCreate ()
partitions = int(sys.argv[l]) 1f len(sys.argv) > 1 else 2

n = 100000 * partitions

def £():
X = random() * 2 - 1
y = random() * 2 - 1

return 1 if x ** 2 + y ** 2 < 1 else O

count = spark.sparkContext.parallelize(range(l, n + 1), partitions) .map (f) .reduce (add)
print ("Pi is roughly %$f" % (4.0 * count / n))

spark.stop ()

package org.apache.spark.examples;
. import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
JX(I import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;

import org.apache.spark.sqgl.SparkSession;

import java.util.ArrayList;
import java.util.List;

public final class JavaSparkPi {

public static void main(String[] args) throws Exception {
SparkSession spark = SparkSession
.builder ()
.appName ("JavaSparkPi")
.getOrCreate() ;
JavaSparkContext jsc = new JavaSparkContext (spark.sparkContext());
int slices = (args.length == 1) ? Integer.parselnt(args([0]) : 2;

int n = 100000 * slices;
List<Integer> 1 = new ArrayList<>(n);
for (int i = 0; 1 < n; i++) {

l.add (i) ;

JavaRDD<Integer> dataSet = jsc.parallelize(l, slices);

int count = dataSet.map(new Function<Integer, Integer>() {
@Override
public Integer call (Integer integer) {
double x = Math.random() * 2 - 1;
double y = Math.random() * 2 - 1;

return (x * x +y *y < 1) 2 1 : 0;
}
}) .reduce (new Function2<Integer, Integer, Integer>() {
@Override

public Integer call (Integer integer, Integer integer2) {
return integer + integer?;
}
N

System.out.println ("Pi is roughly "™ + 4.0 * count / n);

spark.stop () ;

INnstallation
Spark

sudo apt—-get install python-software—-properties

sudo apt—add-repository ppa:webupd8team/java

sudo apt—get update

sudo apt—get install oracle-java8-installer

sudo apt—get install oracle-java8-set—-default

wget http://d3kbcqad49mibl3.cloudfront.net/spark-2.0.2-bin-hadoop2.7.tgz
tar xfz spark-2.0.2-bin-hadoop2.7.tgz

cd spark-2.0.2-bin-hadoop2.7/
./bin/run—-example SparkPi 10

Disco

apt—-get install erlang

apt—-get install git

git clone git://github.com/discoproject/disco.git disco
cd disco

make

export DISCO_HOME=/home/vagrant/disco

disco/bin/disco start

http://d3kbcqa49mib13.cloudfront.net/spark-2.0.2-bin-hadoop2.7.tgz

n < size of rows
D' — input distance matrix
1'” « calculate precedence matrix
tN «— number of threads
fork < 1 to n
paralle] start

tid <« id of thread
tid*n (tid + 1)*n
to — 1
tN tN
for j—1ton
(k) : (k—=1) (k-1) (k—1)
d\) — min(dV,d) +dE)

(k=1) ¢ g(k=1) (k=1) (k=1)
i AV < Al + d)

for i «

(k) '

TT..” =

i (k—1) . q(k—-1) (k—-1) (k—1)
re D if a0 > dl) + dl

parallel end
return D 1%

Algorithm 2: OpenMP pseudocode for the all-pairs-shortest-path problem.

input: [1 j d(k D (k])]
(k—-1) (k—])))

Map(Ob]ect key = (1 j), Value val = (dij T
ifi ==k or j == k then
form < 1ton
if j == k then write(j m), (] d(k_l) z(:(_l))
if i == k then write(m i), (J dk) ,(,k 1))

else then write(i j),(d(k . ,()k 1))
Reduce(Object key = (i j), Value val = (1 J d(k) l(]k_l)))
4 — min (D, df D+ dE D)
) -J

LD d(" D <Dy gl

20— 17
write(i]) (dm U‘))
Driver()

n <« size of rows

fork — 1ton
Map((i 7). (df " =)
Reduce((i) (d(k D k- 1)))

‘J

Algorithm 4: MapReduce pseudocode for the all-pairs-shortest-path problem.

Table 1: Execution times for the all-pairs-shortest-path problem.

Framework
Node size MPI
MapRed
PEETEE " Cluster Single machine OpenMP
10 2m26s 0.325s 0.34 s 0.1s
100 16 m52s 0.44 s 0.41 s 0.25s

1000 4h4m39s 4m48s 24.14 s 8.03 s

On-disk workload | |
— 0.8 L In-memory workload —— =
=)
= 0.6 - R
2 <
g 04 ... B
= — — =
Soo2L | = | - N
() —_ | E= - ~ | e

BDBench TPC-DS Production

Figure 3: Improvement in job completion time (JCT) as a result
of eliminating all time spent blocked on disk I/0. Boxes depict

25th, S50th, and 75th percentiles; whiskers depict Sth and 95th
percentiles.

No-disk runtime (s)

3000 -

2000 -

1000

() &4 | | |
O 1000 2000 3000

Runtime (s)

(¢) TPC-DS, disk

No-disk runtime (S)

Ln

-

-
|

S
o O
R -
| |

200 L
100 |

0 P | | | |
0 100200300400 50

Runtime (s)

(d) TPC-DS, in-memory

| ~

" On-disk workload —

— 0.8 L In-memory workload ——=

O

8 06 L
=

S

B 04 L
=

=3 —_

202

= P = B

BDBench TPC-DS Production

Figure 8: Improvement 1 job completion time as a result of
eliminating all time blocked on network.

On-disk workload ——
0 8 | In-memory workload ——

~ (.8 L 1In-memory workload —— .. .
O

=

0.6
=

1=

5 04 L —

=

E _

v O =

0 %1 %1 k]

BDBench TPC-DS Production

Figure 12: Potential improvement in job completion time as a
result of eliminating all stragglers. Results are shown for the
on-disk and in-memory versions of each benchmark workload.

Utilization

=
b

bk

& & O
= O\ o0

-

Network 1 Disk 1 CPU l l

’ /
, /
f— 4 4 a4 = o o Y TS - - s a " / « M a 4 & a =
. / /
) . - / /

” ” , ’ \ .

o v e / . .

: R 7 s o

- ’ B -

- I:g

......

BDBench BDBench
(disk) (memory)

TPC-DS TPC-DS
(disk) (memory)

Beyond Map/Reduce

* GraphlLab - vertex centric computation
* hitps://turi.com

* repeat {
gather_from_edges
process_at_vertex
scatter_to_edges

}

Beyond Map/Reduce

* TensorFlow - construct dataflow graph.
* https://www.tensorflow.org
* vertices = operations.

* Edges = flow of tensors (multidimensional arrays)

Beyond M/R

e Microsoft CNTK

» https://github.com/Microsoft/ CNTK

* Don't know much about it but looks awesome.
Works on Windows and Linux. Designed for NN
training on clusters of systems with CPU/GPUs.

https://github.com/Microsoft/CNTK

Beyond Map/Reduce

 NoSQL - e.g. MongoDB

e data stored as key:value or [key:value]

* Useful for data that isn't well structured or where
the structure isn’'t known ahead of time (“agile
development”)

e |n
Ve
ac

my experience, very useful for simple things.
'y hard to use for complex ones. Updates

'0SS key:value pairs...

BeyondMR2016 .

Home

Call for Papers PI‘I]!] rai

Important Dates

Invited Speakers

Program

o ol L Session 1 8h30 - 10h00

Submission

Workshop Organizers o 8h30 - 8hd0 Welcome and Introduction of keynote

Sitemap o 8h40 - 9h40 Keynote: lon Stoica, "Spark: Past, Present, and Future"

o 9h40 - 10nh00 “Bridging the gap: Towards optimization across linear and relational algebra”, Andreas Kunft,
Alexander Alexandrov, Asterios Katsifodimos and Volker Mark!
m

Naturall
- Ma

)

Introduction: Jacek Sroka | lon Stoica Andreas Kunft

nftSession 2 10h30 - 12h00

o 10h30 - 10h50 “Faucet: a user-level, modular technique for flow control in dataflow engines”, Andrea
Lattuada, Frank McSherry and Zaheer Chothia

o 10h50 - 11h10 “Model-Centric Computation Abstractions in Machine L earning Applications”, Bingjing
Zhang, Peng Bo and Judy Qiu

o 11h10 - 11h35 "DFA Minimization in Map-Reduce”, Gésta Grahne, Shahab Harrafi, Iraj Hedayati and Ali

NMnallami

Parting thoughts on M/R

« Should you use a map/reduce framework? Yes, if:
e you're processing peta-byte scales of data
e you algorithm fits well within the paradigm
e your data is already in HDFS and not an a RDMS
* Informally, I've been told a lot of organizations use Hadoop for two things: HDFS and
YARN. (file storage and job-dispatch). The Map/Reduce aspect comes in handy on
occasion but isn’t the core of what they do.
* You tell me, is this true?
« What do | use? | dont. For large scale graph analytics | use a PGAS framework we
wrote (Grappa) and for general analytics (of which | do a lot in the finance world) | use

SQL and C.

My data is in the GB range not TB or PB range, however.

