024

GPUs



CPU GPU

1690 pJ/flop 140 pJ/flop
Optimized for Latency Optimized for Throughput
Caches Explicit Management

of On-chip Memory

——————
S repeans P Smpg

ey,
¢

-

r—yr.

- -

Westmere
32 nm

@ANVIDIA.



15T ERA:
Fixed Function

3D Geometry Transformation

", m,, |

m

o,

?

?

m le M
?

”m ..

Lighting
Co=hL,+ 2 Att,(k (L oN)+k (R, 7))
AU

2ND ERA:
Simple Shaders

Memory Interface

8 Vertex Pipes

Setup Engine

Pixel Shader Core

16 Pixel Pipes

3RD ERA:
Graphics Parallel Core

VLIWS

AunNyuRg

Generns| Purpose <
Registars

v

VLIW4

P

Stream
Processing Units

Hunyouy

| J

General Purpose

Registers <




GPUs have enormous power
that is enormously difficult to use

* Nvidia GP100 - 5.3TFlops of double precision
* This is equivalent to the fastest super computer in the world
in 2001; put a single rack together of these and you would
be in the top 500 (you could get there for under $1MM)
e Gianormous: 600mmA2
* 3,840 CUDA cores
 720GB/s die-stacked DRAM (16GB total)

* Thisis equivalent to about 11 DDR4 channels



PCle

>

partitioned address space
(although this is changing!)

CPU dispatches work to GPU

GPU is not a first class compute

4 |
device
m - ongoing research on this!

It’s a process
~ 2001 first hints of programmalbility
~ mid 2000’s useful 32 bit math, sometime later 64 bit
~ 2013 unified virtual addressing

~ 2015/6 and products that don't totally suck at it
Active areas of research: GPU accesses to the filesystem
network, etc.



Some terminology...

MIMD = Multiple Instruction, Multiple Data
» Multicore
SIMD = Single Instruction, Multiple Data
* Vector
FGMT = Fine-Grained Multithreading
VLIW = Very Long Instruction Word
Vector = what you think it means from Mathematics
Bandwidth
Injection Rate or Packet Rate or Message Rate
» Peak Injection Rate = Peak Bandwidth / Smallest Packet Size
» Peak Bandwidth = Largest Packet Size X Injection Rate (usually not peak)
Channel or Bus

» as in DDR3 channel, which for a typical rate has peak BW of ~18GB/s and Injection Rate of 280M Msg/S.



AMD / NVidia lingua franca

AMD

Workitem

Workgroup

Wavefront

VGPR (64x32 bit)

SGPR (32 bit)

Global memory

Local memory
(LDS)

Private memory

Mark

NVidia

Thread

Thread-block / CTA

Warp

VGPR (32x32 bit)

N/A
Global memory
Shared memory

Local memory

Emily

Meaning

a single task

a group of threads that can share data and
synchronize locally

unit of hardware SIMT scheduling
Vector general purpose register

Scalar general purpose register

Globally shared memory across all workitems/
threads

Software managed scratch-pad shared between
a workgroup or thread-block. Per SM/CU

Workitem/thread private memory

The person to ask...



c
9o
5
=
Ne)
—
<
=
%]
=r
]
e
 —
g
3
i)
v
k=

Message Bus
SIMDO Branch & ] 1

PC&IB &= - Message Unit
10 Wave
‘ Export/GDS Decode

SIMD1
PC&IB
10 Wave

4

SIMD2
PC&IB

.‘ Decode

SIMD3
PC&IB

10 Wave LDS
Decode

&= Vector MemoryDecode

Scalar Scalar Unit

Decode 8 KB Registers

Integer ALU

uope. gy uoanasu

Input Data (PC/State/Vector Register/Scalar Register)

SIMDO SIMD1 SIMD2 SIMD3
Read/
64 KB 64 KB 64 KB 64 KB Write
Registers €M) Registers 9 Registers @ Registers Data

MP MP MP MP I 11

Vector Vector Vector Cache
ALU ALU ALU

16KB

64 KB LDS Memory ==

4 CU Shared 16KB Scalar Read Only L1 Cache
Request

. Arbiter
4 CU Shared 32KB Instruction L1 Cache

Export
Bus

Read/
Write
L2 Cache

Read/
Write
L2 Cache



A simplitied perspective on
GPU architecture

4 _____
4 ____
*

Coalesser

main memory



A simplitied perspective on
GPU architecture

must have lots of
threads

Es— o A
4 _
workarous et BETIEH m
4 _
Es— o A
*

Coalesser

main memory



A simplitied perspective on
GPU architecture

threads must not
branch diverge

workgroun . et NIDE (—n
4 _

workarous et BETIEH m
4 _

workgroun . et NIDE (—n
*

e SII\/IDCU m

Coalesser

main memory




A simplitied perspective on
GPU architecture

Must explicitly copy memory to
LDS for good performance.

workgroun . et NIDE m
4 _

workarous et BETIEH m
4 _

workgroun . et NIDE (—n
*

e SII\/IDCU m

Coalesser

main memory




A simplitied perspective on
GPU architecture

GPUs will try hard to use global memory

workgroun . et NIDE (—n
4 _

workarous et BETIEH m
4 _

workgroun . et NIDE (—n
*

e SII\/IDCU m

Coalesser

main memory




A simplitied perspective on
GPU architecture

but they will fail at it when push comes to shove

Es— o A
4 _
Es— o A
4 _
workaroun i DICH (—n
*
e SII\/IDCU m

Coalesser

main memory




loolkit Zo0o

After much consternation | decided to focus
OpenCL class lecture on OpenCL. This is because it is
supported by AMD, NVidia and Intel and
C++A|\/|P works on Mac OS X, Windows and Linux.

* hce
Personally, | like this. But it's a work In

Like C++Amp but § hrogress still and doesn’t work with NVidia.

CU DA | don’t have time/

infrastructure

¢ HIP

NO one cares

GICD To first order, no

one cares




Core concepts

* Memory, Memory, Memory
* Memory hierarchy
* SIMD execution

* Threads for latency tolerance



An important mindset

Execution Is free, data access is not



Energy Shopping List

Processor Technology 40 nm 10nm
Vdd (nominal) 0.9V 0.7V
DFMA energy 50 pJ 7.6 pJ
64b 8 KB SRAM Rd 14 pJ 2.1 pJ
Wire energy (256 bits, 10mm) 310 pJ 174 pJ

| Memory Technology 45 nm 16nm
DRAM interface pin bandwidth 4 Gbps 50 Gbps
DRAM interface energy 20-30 pJ/bit 2 pJ/bit
DRAM access energy 8-15 pJ/bit 2.5 pJ/bit

Keckler [Micro 2011)], Vogelsang [Micro 2010}

"

i

FP Op lower bound

4 pJ

@ANVIDIA




Vlemory Hierarchy

ALUs

Registers

Local

I

ALUs

Registers

Local

|

Global

|

PCI Express

10,000 GB/s

1,000 GB/s

100 GB/s

10 GB/s



| et’s talk about caches....

Address

91306.--12111058--.3210
:|2‘2. :‘8
Index V Teg Data V Tag Date V Teg Date

ggglmHo




| et's talk about DRAM

Bank3
Bank2

Bank1

DM Mask Logic




L DS




| Glede! Elock Scheduler

| Global Glocx Scheduler

—
|

I e e e I
SN LA _._IIJ_'_L_‘)_‘,_ crod

— y
QP C
~? A 1
i i i o i i i
oy
1
<
-
>
>
)
L
)

GDDR ODR3 GDOR
Memory || Memory || Memory
“onzroller | | Control er| | Canzroller

GDC R DDR2 DDR2 DDR CDR?
Memory || Memory Memory || Memory || Mamory
Conzroller | | Controller Control er| | Contraller | | Control ar



Compute Unit Compute Unit Compute Unit Compute Unit
Workgroup Workgroup Workgroup
DD DD D]D]| DG &
ol 22222 2] e
A2 Z2 22 2R P
II I I I
L IR T T T T ¢
@
2[21(21(21121(2] (2] |2
glig|Is|8]|s]||8]|8]]|8]| ©
all=f=] == =] [=2]]|2] o
3 3 3
LDS LDS LDS
3
R/W L1 Cache (new) R/W L1 Cache R/W L1 Cache R/W L1 Cache
(new) (new) (new)
R/O Constant R/O Constant R/O Constant
S e A Cache (new) Cache (new) Cache (new)
3
GDS

L2 Cache




"KAVERI" GPU — GRAPHICS CORE NEXT ARCHITECTURE

ACE s ACE 0

s Commend ACE 47 A) of “Kaveri” is dedicated for GPU

— Processor ACE

ACE ACE

Global Datz Share 4 8 compute units 4 MaSde Quad Sum of Absolutc
Shader Engine (512 IEEE 2008-compliant shaders) Difference (MQSAD) with 32b
' | . , ) accumulation and saturation
Geometry Processar 4 Device flat (generic) addressing
Rastarizer support 4 Precision improvement for

native LOG/EXP ops to 1ULP

cuU
RB

cU

CcU

cU Branch & Vector Units , Texture Filter  Texture Fetch
RE Message Unit ~ =cheduler (2, 5iMD-16) Sca'aj Unit Units (4) Load / Store

cu \ | / o Units (16)

\ l Ss
’/
cU Py
cuU \\
| T //’ \\\‘ 1 T ,’/.
r// \\ //,
|_2 CaChe Vector Registers  Loczl Data Share Scalar Registers L1 Cache
(4x 64KB) (64KB) (4KB) (16KB)

6 | Applying AMD's "Kaveri" AFU tor Haterogeneous Computing| HOT CHIPS 26 - AUGUST 2014 |



Some core thoughts to keep
N Mind

e every access to a cache or DRAM accesses a block.

e |n front of the L2 on a GPU is a structure that
coalesces accesses to the same block.

e For good L2 performance it is key that you use this

e Easiest to use it by accessing the same block in
different work items.

e The L1 is fine-grained interleaved, but the net/net
conceptually is the same for you as a developer.



Temporal SIMT

Spatial SIMT (current GPUs)
32-wide datapath

thread thread

0 31
‘ldldldldldldldldldldldldldldldldIdldldldldldldldldldldldldldldld

id Id Id Id Id Id Id Id |d Id id |d Id id |d Id |d |d Id I|d |d Id id |d Id id |d Id id |d Id id

time

1 cyc

st st 5t st st SC st st st st st st st st st st st st st st st st st st st st st st st st st st

1 warp instruction = 32 threads

Pure Temporal SIMT

1-wide
>

 mdimde

time

d 0
d 1
d 2
d 3
d 4
d 5
d 6
d 7
id 8
d 9
id 10

(threads)

@A NVIDIA



RERRARN!
RERRARN!
Vole
R
RERRARY!




Computational Resource Utilization

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0% -

|

Good

w32

W 24to31
m 16 to 23
mg8tols
mlto7
m0

Bad




T'hread scheduling

* [here's nothing to say. It is implementation
dependent

- Do not write code that assumes anything
being scheduled or completed across
workgroups.

* Within a workgroup:

e barrier(...)



Example



A.2 High-Priority Recommendations

-

To get the maximum benefit from OpenCL, focus first on finding ways to
parallelize sequential code. (Section 1.1.3)

Usec the effective bandwidth of your computation as a metric when measuring
performance and optimization benefits. (Section 2.2)

Minimize data transfer between the host and the device, even if it means
running some kernels on the device that do not show performance gains when
compared with running them on the host CPU. (Section 3.1)

Ensure global memory accesses are coalesced whenever possible. (Section 3.2.1)

Minimize the use of global memory. Prefer shared memory access where
possible. (Section 5.2)

Avoid different execution paths within the same warp. (Section 6.1)

Use the -cl-mad-enable build option. (Chapter 5)



A.3 Medium-Priority Recommendations

Judiciously use “pinned” memory for host buffers (Section 3.1.1)

Where feasible and for applications where it 1s cffective, overlap host — device
memory transfers with device computations and asynchronous host activitics

(Sections 3.1.2 and 3.1.3)

J  Tor applications where the destination of computational results 1s the display,
usc OpenCL-OpenGL or OpenCL-D3D interop.

) Accesses to shared memory should be designed to avoid serializing requests duc
to bank conflicts. (Section 3.2.2.1)

- Usc shared memory to avoid redundant transfers from global memory. (Scction

3.2.2.2)

0 To hide latency atising from register dependencies, maintain at least 25 percent
occupancy on devices with compute capability 1.1 and lower, and 18.75 percent
occupancy on later devices. (Section 4.3)

) The number of threads per block should be a multiple of 32 threads, because

this provides optimal computing efficiency and facilitates coalescing. (Section
4.4)

- Use the native math library whenever speed trumps precision. (Section 5.1.4)



A.4 Low-Priority Recommendations

J  Tor kernels with long argument lists, place some arguments into constant
memory to save shared memory. (Section 3.2.2.4)

- Usec shift operations to avoid expensive division and modulo calculations.
(Section 5.1.1)

- Avoid automatic conversion of doubles to floats. (Section 5.1.3)

J Make it easy for the compiler to use branch predication in lieu of loops or
control statements. (Section 6.2)



Some closing thoughts

 GPU's are in a sweet-enough spot between
efficiency and pain

« FPGAs = more pain, CPUS = less efficient



