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This presentation may contain forward-looking statements that are 

based on our current expectations. Forward looking statements 

may include statements about our financial guidance and expected 

operating results, our opportunities and future potential, our product 

development and new product introduction plans, our ability to 

expand and penetrate our addressable markets and other 

statements that are not historical facts.  These statements are only 

predictions and actual results may materially vary from those 

projected. Please refer to Cray's documents filed with the SEC from 

time to time concerning factors that could affect the Company and 

these forward-looking statements.  

 Safe Harbor Statement 
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“Who is this guy Mike dumped on us?” 

Copyright 2015 Cray Inc. 
3 

2001: graduated from UW CSE with a PhD 
● worked on the ZPL parallel programming language 

● advisor: Larry Snyder (now emeritus) 

2001-2002: spent a lost/instructive year at a startup 

2002-present: have been working at Cray Inc. 
● Hired to help with the HPCS program 

● Convinced execs/customers that we should do a language 

● Have been working on Chapel ever since 

 

 

Also a UW CSE affiliate faculty member 
● taught this class last time around Winter 2013 
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Chapel’s Origins: HPCS 
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DARPA HPCS: High Productivity Computing Systems 
● Goal: improve productivity by a factor of 10x 

● Timeframe: Summer 2002 – Fall 2012 

● Cray developed a new system architecture, network, software stack… 
● this became the very successful Cray XC30™ Supercomputer Series 

      

     

 

 

 

     

 

 

 

 …and a new programming language: Chapel 
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What is Chapel? 

Copyright 2015 Cray Inc. 
5 

● An emerging parallel programming language 
● Design and development led by Cray Inc. 

● in collaboration with academia, labs, industry; domestically & internationally 

 

● A work-in-progress 
 

● Goal: Improve productivity of parallel programming 

 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

What does “Productivity” mean to you? 

Copyright 2015 Cray Inc. 
6 

Recent Graduates: 
“something similar to what I used in school: Python, Matlab, Java, …” 
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What does “Productivity” mean to you? 
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Recent Graduates: 
“something similar to what I used in school: Python, Matlab, Java, …” 

 

Seasoned HPC Programmers: 
“that sugary stuff that I don’t need because I was born to suffer” 
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What does “Productivity” mean to you? 
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Recent Graduates: 
“something similar to what I used in school: Python, Matlab, Java, …” 

 

Seasoned HPC Programmers: 
“that sugary stuff that I don’t need because I was born to suffer” 

 want full control  

  to ensure performance” 
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What does “Productivity” mean to you? 
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Recent Graduates: 
“something similar to what I used in school: Python, Matlab, Java, …” 

 

Seasoned HPC Programmers: 
“that sugary stuff that I don’t need because I was born to suffer” 

 

Computational Scientists: 
“something that lets me express my parallel computations  

 without having to wrestle with architecture-specific details” 

 

want full control  

  to ensure performance” 
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What does “Productivity” mean to you? 
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Recent Graduates: 
“something similar to what I used in school: Python, Matlab, Java, …” 

 

Seasoned HPC Programmers: 
“that sugary stuff that I don’t need because I was born to suffer” 

 

Computational Scientists: 
“something that lets me express my parallel computations  

 without having to wrestle with architecture-specific details” 

 

Chapel Team: 
“something that lets computational scientists express what they want,    

 without taking away the control that HPC programmers want,  

 implemented in a language as attractive as recent graduates want.” 

 

 

want full control  

  to ensure performance” 
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Chapel's Implementation 
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● Being developed as open source at GitHub 
● Uses Apache v2.0 license 

 

● Portable design and implementation, targeting: 
● multicore desktops and laptops 

● commodity clusters and the cloud 

● HPC systems from Cray and other vendors 

● in-progress: manycore processors, CPU+accelerator hybrids, … 
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Game Plan for Tonight 
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● Rough outline: 
● a bit of context: PGAS programming languages 

● lots of Chapel 

 

● Please feel free to ask questions as we go 
● I can throttle as necessary 

 

● optionally: “Happy Office Hour” afterwards 
● or: go catch Lightning Bolt at Neumo’s 
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Terminology Check 
 

+ 
 

Introduction to PGAS* Programming 

 

 

(* Partitioned Global Address Space) 
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Shared vs. Distributed Memory 
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● Shared Memory Architectures: 

 

 

 

● Distributed Memory Architectures: 
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Global Address Space Programming Models 
(Shared Memory) 
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e.g., OpenMP, Pthreads 

+ support dynamic, fine-grain parallelism 

+ considered simpler, more like traditional programming 
● “if you want to access something, simply name it” 

– no support for expressing locality/affinity; limits scalability 

– bugs can be subtle, difficult to track down (race conditions) 

– tend to require complex memory consistency models 
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SPMD Programming/Execution Models 

SPMD = 
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SPMD Programming/Execution Models 

SPMD = Single Program, Multiple Data 

● the dominant model for distributed memory programming 

● Concept: 
● write one copy of a program 

 

● execute multiple copies of it simultaneously 
● various terms: images, processes, PEs (Processing Elements), ranks, … 

● one per compute node?  one per core? 

 

● in a pure SPMD model, this is the only source of parallelism 
● i.e., run p copies of my program in parallel 

● our parallel tasks are essentially the program images 

 

● in practice, each program can also contain parallelism 
● typically achieved by mixing two notations (e.g., MPI + OpenMP) 

Copyright 2015 Cray Inc. 
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How Do SPMD Program Images Interact? 

● Message Passing (the most common HPC paradigm): 
● “messages”: essentially buffers of data  

● primitive message passing operations: send/receive 

● primary example: MPI 

 

Copyright 2015 Cray Inc. 
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Message Passing Programming Models 
(Distributed Memory) 
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e.g., MPI 

+ a more constrained model; can only access local data 

+ runs on most large-scale parallel platforms 
● and for many of them, can achieve near-optimal performance 

+ is relatively easy to implement 

+ can serve as a strong foundation for higher-level models 

+ users have been able to get real work done with it 
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Message Passing Programming Models 
(Distributed Memory) 
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e.g., MPI 

– communication must be used to get copies of remote data 
– tends to reveal too much about how to transfer data, not simply what  

– only supports “cooperating executable”-level parallelism 

– couples data transfer and synchronization 

– has frustrating classes of bugs of its own 
– e.g., mismatches between sends/recvs, buffer overflows, etc. 
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How Do SPMD Program Images Interact? 

● Message Passing (the most common HPC paradigm): 
● “messages”: essentially buffers of data  

● primitive message passing operations: send/receive 

● primary example: MPI 

 

● Other alternatives: 
● Single-Sided Communication 

● Partitioned Global Address Spaces 

● Active Messages 

● … 
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Partitioned Global Address Space (PGAS) 
Languages 
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(Or perhaps: partitioned global namespace languages) 

● abstract concept: 

● support a shared namespace on distributed memory 
● permit parallel tasks to access remote variables by naming them 

 

private 

space 0 

private 

space 1 

private 

space 2 

private 

space 3 

private 

space 4 

partitioned shared name-/address space 
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Partitioned Global Address Space (PGAS) 
Languages 
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(Or perhaps: partitioned global namespace languages) 

● abstract concept: 

● support a shared namespace on distributed memory 
● permit parallel tasks to access remote variables by naming them 

● establish a strong sense of ownership 
● every variable has a well-defined location 

● local variables are cheaper to access than remote ones 
 

private 

space 0 

private 

space 1 

private 

space 2 

private 

space 3 

private 

space 4 

partitioned shared name-/address space 
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Partitioned Global Address Space (PGAS) 
Languages 
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(Or perhaps: partitioned global namespace languages) 

● abstract concept: 

● support a shared namespace on distributed memory 
● permit parallel tasks to access remote variables by naming them 

● establish a strong sense of ownership 
● every variable has a well-defined location 

● local variables are cheaper to access than remote ones 

● traditional PGAS languages have been SPMD in nature 
● best-known examples: Co-Array Fortran, UPC 

 

private 

space 0 

private 

space 1 

private 

space 2 

private 

space 3 

private 

space 4 

partitioned shared name-/address space 
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Traditional PGAS Languages 
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e.g., Co-Array Fortran, UPC 
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SPMD PGAS Languages (using a pseudo-language) 
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proc main() { 

  var i(*): int;       // declare a shared variable i 

 

i i i i i 
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SPMD PGAS Languages (using a pseudo-language) 

Copyright 2015 Cray Inc. 
27 

proc main() { 

  var i(*): int;       // declare a shared variable i 

  i = 2*this_image();  // each image initializes its 

 

8 6 4 2 0 
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SPMD PGAS Languages (using a pseudo-language) 
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proc main() { 

  var i(*): int;       // declare a shared variable i 

  i = 2*this_image();  // each image initializes its 

  var j: int;          // declare a private variable j 

 

8 6 4 2 0 

j j j j j 
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SPMD PGAS Languages (using a pseudo-language) 
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proc main() { 

  var i(*): int;       // declare a shared variable i 

  i = 2*this_image();  // each image initializes its 

  var j: int;          // declare a private variable j 

  j = i( (this_image()+1) % num_images() ); 

    // ^^ access our neighbor’s copy of i 

    // communication implemented by compiler + runtime 
 

    // How did we know our neighbor had an i? 

    // Because it’s SPMD – we’re all running the same  

    // program.  (Simple, but restrictive) 

8 6 4 2 0 

0 8 6 4 2 
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Traditional PGAS Languages 

 

 

founding PGAS members: Co-Array Fortran, UPC, Titanium 
● extensions to Fortran, C, and Java, respectively 

● details vary, but potential for: 
● arrays that are decomposed across compute nodes 

● pointers that refer to remote objects 

● note that earlier languages could also be considered PGAS, but 
the term hadn’t been coined yet 

30 
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UPC: Unified Parallel C 

UPC: A “traditional” PGAS language 

● developed ~1999 

● “unified” in the sense that it combined 3 distinct parallel C’s: 
● AC, Split-C, Parallel C Preprocessor 

● though a sibling to CAF, philosophically quite different 

 
 

Motivating Philosophy: 

● extend C concepts logically to support SPMD execution 
● 1D arrays 

● for loops 

● pointers (and pointer/array equivalence) 

31 
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UPC is also SPMD 

● SPMD programming/execution model 

● program copies are referred to as ‘threads’ 
 

● Built-in constants provide the basics: 
int p, me; 

p = THREADS;    // returns number of processes 

me = MYTHREAD;  // returns a value in 0..THREADS-1 
 

● Barrier synch statement: 
upc_barrier;    // wait for all processes/threads 

 

32 
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Distributed Arrays in UPC 

● Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 
● uses a cyclic distribution by default 

#define N 10 

shared float a[N], b[N], c[N]; 

a[0] a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9] 

b[] and c[] distributed similarly 

33 
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Distributed Arrays in UPC 

● Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 
● uses a cyclic distribution by default 

#define N 10 

shared float a[N], b[N], c[N]; 

int i=0; // no “shared” keyword => stored privately 

a[0] 

i i i i i 

a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9] 

34 
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Distributed Arrays in UPC 

● Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 
● uses a cyclic distribution by default 

#define N 10 

shared float a[N], b[N], c[N]; 

for (int i=0; i<N; i++) { // dumb loop: O(N) 

  if (i%THREADS == MYTHREAD) { 

    c[i] = a[i] + alpha * b[i]; 

  } 

} 

a[0] 

i i i i i 

a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9] 

35 
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Distributed Arrays in UPC 

● Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 
● uses a cyclic distribution by default 

#define N 10 

shared float a[N], b[N], c[N]; 

// smarter loop: O(N/THREADS) 

for (int i=MYTHREAD; i<N; i+=THREADS) { 

  c[i] = a[i] + alpha * b[i]; 

} 

a[0] 

i i i i i 

a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9] 

36 
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Distributed Arrays in UPC 

● Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 
● uses a cyclic distribution by default 

#define N 10 

shared float a[N], b[N], c[N]; 

upc_forall (int i=0; i<N; i++; i) { 

  c[i] = a[i] + alpha * b[i]; 

} 

a[0] 

i i i i i 

a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9] 

Affinity field: Which thread 

should execute this iteration? 

(if int, %THREADS to get ID) 

37 
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Distributed Arrays in UPC 

● Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 
● can specify a block-cyclic distribution as well 

#define N 10 

shared [2] float a[N], b[N], c[N]; 

upc_forall (int i=0; i<N; i++; &c[i]) { 

  c[i] = a[i] + alpha * b[i]; 

} 

a[0] 

i i i i i 

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

Affinity field: Which thread 

should execute this iteration? 

(if ptr-to-shared, owner does) 

38 
Copyright 2015 Cray Inc. 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Distributed Arrays in UPC 

● Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 
● can specify a block-cyclic distribution as well 

#define N 10 

shared [3] float a[N], b[N], c[N]; 

upc_forall (int i=0; i<N; i++; &c[i]) { 

  c[i] = a[i] + alpha * b[i]; 

} 

a[0] 

i i i i i 

a[1] a[3] a[4] a[6] a[7] a[9] a[2] a[5] a[8] 

39 
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Distributed Arrays in UPC 

● Arrays declared with the ‘shared’ keyword are 
distributed within the shared space 
● can specify a block-cyclic distribution as well 

#define N 15 

shared [2] float a[N], b[N], c[N]; 

upc_forall (int i=0; i<N; i++; &c[i]) { 

  c[i] = a[i] + alpha * b[i]; 

} 

a[0] 

i i i i i 

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13] a[14] 

40 
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Scalars in UPC 

● Somewhat confusingly (to me anyway*), shared 
scalars in UPC result in a single copy on thread 0 

int i; 

shared int j; 

 

 

 

 

* = because it seems contrary to SPMD programming 

j 

i i i i i 

41 
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Pointers in UPC 

● UPC Pointers may be private/shared and may point to 
private/shared 
int* PP;  // private pointer to local data 

i 

PP 

i i i i 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

j 

PP PP PP PP 

42 
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Pointers in UPC 

● UPC Pointers may be private/shared and may point to 
private/shared 
int* PP;  // private pointer to local data 

shared int* PS;  // private pointer to shared data 

i 

PP 

i i i i PS 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

j 

PP 

PS 

PP 

PS 

PP 

PS 

PP 

PS 

43 
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Pointers in UPC 

● UPC Pointers may be private/shared and may point to 
private/shared 
int* PP;  // private pointer to local data 

shared int* PS;  // private pointer to shared data 

shared int* shared ss;  // shared pointer to shared data 

i 

PP 

i i i i PS 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

ss 

j 

PP 

PS 

PP 

PS 

PP 

PS 

PP 

PS 

44 
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Arrays of Pointers in UPC 

● Of course, one can also create arrays of pointers 

// array of shared pointer to shared data 
shared int* shared SS[THREADS]; 

● As you can imagine, one UPC’s strengths is its ability 
to create fairly arbitrary distributed data structures   

i 

PP 

i i i i PS 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

ss 

j 

PP 

PS 

PP 

PS 

PP 

PS 

PP 

PS 

SS[0] SS[1] SS[2] SS[3] SS[4] 

45 
Copyright 2015 Cray Inc. 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Array/Pointer Equivalence in UPC 

● As in C, pointers can be walked through memory 
shared [2] float a[N]; 

shared float* aPtr[THREADS] = &(a[2]); 

aPtr 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

aPtr aPtr aPtr aPtr 

46 
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Array/Pointer Equivalence in UPC 

● As in C, pointers can be walked through memory 
shared [2] float a[N]; 

shared float* aPtr[THREADS] = &(a[2]); 

aPtr++; 

aPtr 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

aPtr aPtr aPtr aPtr 

47 
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Array/Pointer Equivalence in UPC 

● As in C, pointers can be walked through memory 
shared [2] float a[N]; 

shared float* aPtr[THREADS] = &(a[2]); 

aPtr++; 

aPtr++; 

aPtr 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

aPtr aPtr aPtr aPtr 

48 
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How are UPC Pointers Implemented? 

Local pointers to local: just an address, as always 

Pointers to shared: 3 parts 
● thread ID 

● base address of block within the thread 

● phase/offset within the block (0..blocksize-1) 
 

● UPC supports a number of utility functions that permit 
you to query this information from pointers 
 

● Casting between pointer types is permitted 
● but can be dangerous (as in C) and/or lossy 

49 
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Other Features in UPC 

● Collectives Library 

● Memory Consistency Model 
● among the first/foremost memory models in HPC 

● ability to move between strict and relaxed models 

● fence operations 

● Dynamic Memory Management 

● Locks 

● Parallel I/O 

● … 

50 
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UPC Summary 

● Program in SPMD style 

● Communicate via shared arrays/pointers 

● cyclic and block-cyclic arrays 

● pointers to shared and private data 

● array-pointer equivalence 

● Other stuff too, but this gives you the main idea 

● For more information, see https://upc-lang.org/upc/  

 

51 
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Other Notable SPMD PGAS Languages 

Copyright 2015 Cray Inc. 
52 

Founding Fathers: 

● Co-Array Fortran (CAF): A Fortran-based PGAS language 
● Remote accesses are much more explicit than in UPC 

● Distributed arrays are better (multidimensional, like Fortran’s) 
● …but also worse (must declare in terms of per-image chunks) 

● Adopted into the Fortran 2008 standard 

● Titanium: A Java-based PGAS language 
● my favorite of the three 

 

New Kids on the Block: 

● UPC++ 

● Co-Array C++ 

 

C++ PGAS languages designed using template 

meta-programming (so, no compiler required) 
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Traditional PGAS Languages 

Copyright 2015 Cray Inc. 
53 

e.g., Co-Array Fortran, UPC 
+ support a shared namespace, like shared-memory 
+ support a strong sense of ownership and locality 

• each variable is stored in a particular memory segment 
• tasks can access any visible variable, local or remote 
• local variables are cheaper to access than remote ones 

+ implicit communication eases user burden; permits 
compiler to use best mechanisms available 
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Traditional PGAS Languages 
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e.g., Co-Array Fortran, UPC 
– restricted to SPMD programming and execution models 

– data structures not as flexible/rich as one might like 

– retain many of the downsides of shared-memory 
● error cases, memory consistency models 
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Next-Generation PGAS Languages 
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e.g., Chapel (also Charm++, X10, Fortress, …) 
+ breaks out of SPMD mold via global multithreading 

+ richer set of distributed data structures 

– retains many of the downsides of shared-memory 
● error cases, memory consistency models 
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Chapel Motivation 
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Sustained Performance Milestones 
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• Static finite element analysis 

 

1  GF – 1988: Cray Y-MP; 8 Processors 

• Modeling of metallic magnet atoms 

 

1 TF – 1998: Cray T3E; 1,024 Processors 

• Superconductive materials 

 

1 PF – 2008: Cray XT5; 150,000  Processors 

• TBD 

 

1 EF – ~2018: Cray ____; ~10,000,000  

Processors  
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Sustained Performance Milestones 
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• Static finite element analysis 

• Fortran77 + Cray autotasking + vectorization 

1  GF – 1988: Cray Y-MP; 8 Processors 

• Modeling of metallic magnet atoms 

• Fortran + MPI (Message Passing Interface) 

1 TF – 1998: Cray T3E; 1,024 Processors 

• Superconductive materials 

• C++/Fortran + MPI + vectorization 

1 PF – 2008: Cray XT5; 150,000  Processors 

• TBD 

• TBD: C/C++/Fortran + MPI + OpenMP/OpenACC/CUDA/OpenCL?      

1 EF – ~2018: Cray ____; ~10,000,000  

Processors  Or, perhaps  

something  

completely  

different? 
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures: 

STREAM Triad: a trivial parallel computation  
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures, in parallel: 

STREAM Triad: a trivial parallel computation  
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures, in parallel (distributed memory): 

STREAM Triad: a trivial parallel computation  
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures, in parallel (distributed memory multicore): 

STREAM Triad: a trivial parallel computation  
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STREAM Triad: MPI 
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#include <hpcc.h> 

 

 

 

 

static int VectorSize; 

static double *a, *b, *c; 

 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 

 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 

 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 

0, comm ); 

 

  return errCount; 

} 

 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 

 

  VectorSize = HPCC_LocalVectorSize( params, 3, 

sizeof(double), 0 ); 

 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 

 

MPI 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory 

(%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 

 

 

 

 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 

 

  scalar = 3.0; 

 

 

 

 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 

 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 

 

  return 0; 

} 
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STREAM Triad: MPI+OpenMP 
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#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 

 

static int VectorSize; 

static double *a, *b, *c; 

 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 

 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 

 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 

0, comm ); 

 

  return errCount; 

} 

 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 

 

  VectorSize = HPCC_LocalVectorSize( params, 3, 

sizeof(double), 0 ); 

 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 

 

MPI + OpenMP 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory 

(%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 

 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 

 

  scalar = 3.0; 

 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 

 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 

 

  return 0; 

} 
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STREAM Triad: MPI+OpenMP vs. CUDA 
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#define N       2000000 
 

int main() { 

  float *d_a, *d_b, *d_c; 

  float scalar; 
 

  cudaMalloc((void**)&d_a, sizeof(float)*N); 

  cudaMalloc((void**)&d_b, sizeof(float)*N); 

  cudaMalloc((void**)&d_c, sizeof(float)*N); 
 

  dim3 dimBlock(128); 

  dim3 dimGrid(N/dimBlock.x ); 

  if( N % dimBlock.x != 0 ) dimGrid.x+=1; 
 

  set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N); 

  set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N); 
 

  scalar=3.0f; 

  STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N); 

  cudaThreadSynchronize(); 
 

  cudaFree(d_a); 

  cudaFree(d_b); 

  cudaFree(d_c); 

} 
 

__global__ void set_array(float *a,  float value, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) a[idx] = value; 

} 
 

__global__ void STREAM_Triad( float *a, float *b, float *c, 

                              float scalar, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) c[idx] = a[idx]+scalar*b[idx]; 

} 

#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 
 

static int VectorSize; 

static double *a, *b, *c; 
 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 
 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 
 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); 
 

  return errCount; 

} 
 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 
 

  VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 ); 
 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 
 

  scalar = 3.0; 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 
 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 
 

  return 0; 

} 

CUDA MPI + OpenMP 

HPC suffers from too many distinct notations for expressing parallelism and locality 
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Why so many programming models? 
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HPC has traditionally given users… 

…low-level, control-centric programming models 

…ones that are closely tied to the underlying hardware 

…ones that support only a single type of parallelism 
 

 

 

 

 

 
 

 

benefits: lots of control; decent generality; easy to implement 

downsides: lots of user-managed detail; brittle to changes 

 

Type of HW Parallelism Programming Model Unit of Parallelism 

Inter-node MPI executable 

Intra-node/multicore OpenMP/pthreads iteration/task 

Instruction-level vectors/threads pragmas iteration 

GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task 
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By Analogy: Let’s Cross the United States! 
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OK, got my walking shoes on! 

By Analogy: Let’s Cross the United States! 
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OK, let’s upgrade to hiking boots 

By Analogy: Let’s Cross the United States! 
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Oops, need my ice axe 

By Analogy: Let’s Cross the United States! 
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I guess we need a canoe?! 

By Analogy: Let’s Cross the United States! 

Copyright 2015 Cray Inc. 
71 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

What a bunch of gear we have to carry around!  This is getting old… 

By Analogy: Let’s Cross the United States! 
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…Hey, what’s that sound? 

By Analogy: Let’s Cross the United States! 
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Rewinding a few slides… 
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#define N       2000000 
 

int main() { 

  float *d_a, *d_b, *d_c; 

  float scalar; 
 

  cudaMalloc((void**)&d_a, sizeof(float)*N); 

  cudaMalloc((void**)&d_b, sizeof(float)*N); 

  cudaMalloc((void**)&d_c, sizeof(float)*N); 
 

  dim3 dimBlock(128); 

  dim3 dimGrid(N/dimBlock.x ); 

  if( N % dimBlock.x != 0 ) dimGrid.x+=1; 
 

  set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N); 

  set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N); 
 

  scalar=3.0f; 

  STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N); 

  cudaThreadSynchronize(); 
 

  cudaFree(d_a); 

  cudaFree(d_b); 

  cudaFree(d_c); 

} 
 

__global__ void set_array(float *a,  float value, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) a[idx] = value; 

} 
 

__global__ void STREAM_Triad( float *a, float *b, float *c, 

                              float scalar, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) c[idx] = a[idx]+scalar*b[idx]; 

} 

#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 
 

static int VectorSize; 

static double *a, *b, *c; 
 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 
 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 
 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); 
 

  return errCount; 

} 
 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 
 

  VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 ); 
 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 
 

  scalar = 3.0; 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 
 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 
 

  return 0; 

} 

CUDA MPI + OpenMP 

HPC suffers from too many distinct notations for expressing parallelism and locality 
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STREAM Triad: Chapel 
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#define N       2000000 
 

int main() { 

  float *d_a, *d_b, *d_c; 

  float scalar; 
 

  cudaMalloc((void**)&d_a, sizeof(float)*N); 

  cudaMalloc((void**)&d_b, sizeof(float)*N); 

  cudaMalloc((void**)&d_c, sizeof(float)*N); 
 

  dim3 dimBlock(128); 

  dim3 dimGrid(N/dimBlock.x ); 

  if( N % dimBlock.x != 0 ) dimGrid.x+=1; 
 

  set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N); 

  set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N); 
 

  scalar=3.0f; 

  STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N); 

  cudaThreadSynchronize(); 
 

  cudaFree(d_a); 

  cudaFree(d_b); 

  cudaFree(d_c); 

} 
 

__global__ void set_array(float *a,  float value, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) a[idx] = value; 

} 
 

__global__ void STREAM_Triad( float *a, float *b, float *c, 

                              float scalar, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) c[idx] = a[idx]+scalar*b[idx]; 

} 

#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 
 

static int VectorSize; 

static double *a, *b, *c; 
 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 
 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 
 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); 
 

  return errCount; 

} 
 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 
 

  VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 ); 
 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 
 

  scalar = 3.0; 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 
 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 
 

  return 0; 

} 

CUDA MPI + OpenMP 

Philosophy:  Good language design can tease details of locality and 

parallelism away from an algorithm, permitting the compiler, runtime, 

applied scientist, and HPC expert to each focus on their strengths. 

 

 

 

config const m = 1000, 

             alpha = 3.0; 
 

const ProblemSpace = {1..m} dmapped …; 
 

var A, B, C: [ProblemSpace] real; 
 

B = 2.0;           

C = 3.0; 
 

A = B + alpha * C; 

the special 

sauce 

Chapel 
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Outline 
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Motivation 

Chapel Background and Themes 

● Survey of Chapel Concepts  

● Project Status and Next Steps 
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Motivating Chapel Themes 
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1) General Parallel Programming 

2) Global-View Abstractions 

3) Multiresolution Design 

4) Control over Locality/Affinity 

5) Reduce HPC ↔ Mainstream Language Gap 
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Type of HW Parallelism Programming Model Unit of Parallelism 

Inter-node MPI executable 

Intra-node/multicore OpenMP/pthreads iteration/task 

Instruction-level vectors/threads pragmas iteration 

GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task 

1) General Parallel Programming 

Copyright 2015 Cray Inc. 
78 

With a unified set of concepts... 

...express any parallelism desired in a user’s program 
● Styles: data-parallel, task-parallel, concurrency, nested, … 

● Levels: model, function, loop, statement, expression 

...target any parallelism available in the hardware 
● Types: machines, nodes, cores, instructions 
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Type of HW Parallelism Programming Model Unit of Parallelism 

Inter-node MPI executable 

Intra-node/multicore OpenMP/pthreads iteration/task 

Instruction-level vectors/threads pragmas iteration 

GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task 

Type of HW Parallelism Programming Model Unit of Parallelism 

Inter-node Chapel executable/task 

Intra-node/multicore Chapel iteration/task 

Instruction-level vectors/threads Chapel iteration 

GPU/accelerator Chapel SIMD function/task 

1) General Parallel Programming 
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With a unified set of concepts... 

...express any parallelism desired in a user’s program 
● Styles: data-parallel, task-parallel, concurrency, nested, … 

● Levels: model, function, loop, statement, expression 

...target any parallelism available in the hardware 
● Types: machines, nodes, cores, instructions 
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2) Global-View Abstractions 
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In pictures: “Apply a 3-Point Stencil to a vector” 

Global-View 

( 

+ 

= 

)/2 

Local-View 
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2) Global-View Abstractions 
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In pictures: “Apply a 3-Point Stencil to a vector” 

Global-View 

( 

+ 

= 

)/2 

( 

+ 

= 

)/2 
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Local-View 
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2) Global-View Abstractions 
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In code: “Apply a 3-Point Stencil to a vector” 

Global-View 

proc main() { 

  var n = 1000; 

  var A, B: [1..n] real; 

 

  forall i in 2..n-1 do 

    B[i] = (A[i-1] + A[i+1])/2; 

} 

proc main() { 

  var n = 1000; 

  var p = numProcs(), 

      me = myProc(), 

      myN = n/p, 

  var A, B: [0..myN+1] real; 

 

  if (me < p-1) { 

    send(me+1, A[myN]); 

    recv(me+1, A[myN+1]); 

  } 

  if (me > 0) { 

    send(me-1, A[1]); 

    recv(me-1, A[0]); 

  } 

  forall i in 1..myN do 

    B[i] = (A[i-1] + A[i+1])/2; 

} 

Local-View (SPMD) 

Bug: Refers to uninitialized values at ends of A 
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Assumes p divides n 

2) Global-View Abstractions 
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In code: “Apply a 3-Point Stencil to a vector” 

proc main() { 

  var n = 1000; 

  var A, B: [1..n] real; 

 

  forall i in 2..n-1 do 

    B[i] = (A[i-1] + A[i+1])/2; 

} 

proc main() { 

  var n = 1000; 

  var p = numProcs(), 

      me = myProc(), 

      myN = n/p, 

      myLo = 1, 

      myHi = myN; 

  var A, B: [0..myN+1] real; 

 

  if (me < p-1) { 

    send(me+1, A[myN]); 

    recv(me+1, A[myN+1]); 

  } else 

    myHi = myN-1; 

  if (me > 0) { 

    send(me-1, A[1]); 

    recv(me-1, A[0]); 

  } else 

    myLo = 2; 

  forall i in myLo..myHi do 

    B[i] = (A[i-1] + A[i+1])/2; 

} 

Communication becomes 

geometrically more complex 

for higher-dimensional arrays 

Global-View Local-View (SPMD) 
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2) Global-View Programming: A Final Note 
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● A language may support both global- and local-view 

programming — in particular, Chapel does 

 
proc main() { 

  coforall loc in Locales do 

    on loc do 

      MySPMDProgram(loc.id, Locales.numElements); 

 

} 

 

proc MySPMDProgram(myImageID, numImages) { 

  ... 

} 
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3) Multiresolution Design: Motivation 
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MPI 

OpenMP 

Pthreads 

Target Machine 

Low-Level 

Implementation 

Concepts 

“Why is everything so tedious/difficult?” 

“Why don’t my programs port trivially?” 
“Why don’t I have more control?” 

ZPL 

HPF 

Target Machine 

High-Level 

Abstractions 
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3) Multiresolution Design 
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Multiresolution Design: Support multiple tiers of features 
● higher levels for programmability, productivity 

● lower levels for greater degrees of control 

 

 

 

 

 

 

 

 

 

● build the higher-level concepts in terms of the lower 

● permit the user to intermix layers arbitrarily 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 

Chapel language concepts 
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4) Control over Locality/Affinity 
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Consider: 

● Scalable architectures package memory near processors 

● Remote accesses take longer than local accesses 

 

Therefore: 

● Placement of data relative to tasks affects scalability 

● Give programmers control of data and task placement 

 

Note: 

● Over time, we expect locality to matter more and more 

within the compute node as well 
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Chapel and PGAS 
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● Chapel is PGAS, but unlike most, it’s not restricted to 

SPMD 

  never think about “the other copies of the program” 

  “global name/address space” comes from lexical scoping  
● as in traditional languages, each declaration yields one variable 

● variables are stored on the locale where the task declaring it is executing 

 

 

0 

 

1 

 

2 

 

3 

 

4 

Locales (think: “compute nodes”) 
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5) Reduce HPC ↔ Mainstream Language Gap 
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Consider: 
● Students graduate with training in Java, Matlab, Python, etc. 

● Yet HPC programming is dominated by Fortran, C/C++, MPI 

 

We’d like to narrow this gulf with Chapel: 
● to leverage advances in modern language design 

● to better utilize the skills of the entry-level workforce... 

● ...while not alienating the traditional HPC programmer 
● e.g., support object-oriented programming, but make it optional 
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Outline 
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Motivation 

Chapel Background and Themes 

Survey of Chapel Concepts 

 

 

 

 

 

● Project Status and Next Steps 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 
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Static Type Inference 
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const pi = 3.14,           // pi is a real 

      coord = 1.2 + 3.4i,  // coord is a complex… 

      coord2 = pi*coord,   // …as is coord2 

      name = “brad”,       // name is a string 

      verbose = false;     // verbose is boolean 

 

proc addem(x, y) {         // addem() has generic arguments 

  return x + y;            //   and an inferred return type 

} 

 

var sum = addem(1, pi),              // sum is a real 

    fullname = addem(name, “ford”);  // fullname is a string 

 

writeln((sum, fullname)); 

(4.14, bradford) 
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Range Types and Algebra 
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const r = 1..10; 

 

printVals(r); 

printVals(r # 3); 

printVals(r by 2); 

printVals(r by -2); 

printVals(r by 2 # 3); 

printVals(r # 3 by 2); 

printVals(0.. #n); 

 

proc printVals(r) { 

  for i in r do 

    write(r, “ ”); 

  writeln(); 

} 

1 2 3 4 5 6 7 8 9 10 

1 2 3 

1 3 5 7 9 

10 8 6 4 2 

1 3 5 

1 3 

0 1 2 3 4 … n-1 
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Iterators 
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iter fibonacci(n) { 

  var current = 0, 

      next = 1; 

  for 1..n { 

    yield current; 

    current += next; 

    current <=> next; 

  } 

} 

for f in fibonacci(7) do 

  writeln(f); 

0 

1 

1 

2 

3 

5 

8 

iter tiledRMO(D, tilesize) { 

  const tile = {0..#tilesize, 

                0..#tilesize}; 

  for base in D by tilesize do 

    for ij in D[tile + base] do 

      yield ij; 

} 

for ij in tiledRMO({1..m, 1..n}, 2) do 

  write(ij); 

(1,1)(1,2)(2,1)(2,2) 

(1,3)(1,4)(2,3)(2,4) 

(1,5)(1,6)(2,5)(2,6) 

… 

(3,1)(3,2)(4,1)(4,2) 
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Zippered Iteration 
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for (i,f) in zip(0..#n, fibonacci(n)) do 

  writeln(“fib #”, i, “ is ”, f); 

fib #0 is 0 

fib #1 is 1 

fib #2 is 1 

fib #3 is 2 

fib #4 is 3 

fib #5 is 5 

fib #6 is 8 

… 
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Other Base Language Features 
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● tuple types and values 

● rank-independent programming features 

● interoperability features 

● compile-time features for meta-programming 
● e.g., compile-time functions to compute types, parameters 

● OOP (value- and reference-based) 

● argument intents, default values, match-by-name 

● overloading, where clauses 

● modules (for namespace management) 

● … 
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Outline 
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Motivation 

Chapel Background and Themes 

Survey of Chapel Concepts 

 

 

 

 

 

● Project Status and Next Steps 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 
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Defining our Terms 
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Task: 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Defining our Terms 
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Task: a unit of computation that can/should execute in 

parallel with other tasks 

 

Task Parallelism: a style of parallel programming in which 

parallelism is driven by programmer-specified tasks 

 

(in contrast with): 

Data Parallelism: 
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Defining our Terms 
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Task: a unit of computation that can/should execute in 

parallel with other tasks 

 

Task Parallelism: a style of parallel programming in which 

parallelism is driven by programmer-specified tasks 

 

(in contrast with): 

Data Parallelism: a style of parallel programming in which 

parallelism is driven by computations over collections of 

data elements or their indices 
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Task Parallelism: Begin Statements 
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0 

 
 

 

Possible outputs: 

// create a fire-and-forget task for a statement 

begin writeln(“hello world”); 

writeln(“goodbye”); 

hello world 

goodbye 

goodbye 

hello world 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Task Parallelism: Cobegin Statements 
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// create a task per child statement 

cobegin { 

  producer(1); 

  producer(2); 

  consumer(1); 

}  // implicit join of the three tasks here 
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Task Parallelism: Coforall Loops 
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Sample output: 

// create a task per iteration 

coforall t in 0..#numTasks {   

  writeln(“Hello from task ”, t, “ of ”, numTasks); 

} // implicit join of the numTasks tasks here 

 

writeln(“All tasks done”); 

Hello from task 2 of 4 

Hello from task 0 of 4 

Hello from task 3 of 4 

Hello from task 1 of 4 

All tasks done 
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Task Parallelism: Data-Driven Synchronization 
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1) atomic variables: support atomic operations (as in C++) 
● e.g., compare-and-swap; atomic sum, mult, etc.  

 

2) single-assignment variables: reads block until assigned 

 

3) synchronization variables: store full/empty state 
● by default, reads/writes block until the state is full/empty 
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Bounded Buffer Producer/Consumer Example 
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begin producer(); 

consumer(); 
 

 

// ‘sync’ types store full/empty state along with value 

var buff$: [0..#buffersize] sync real; 
 

 

proc producer() { 

  var i = 0; 

  for … { 

    i = (i+1) % buffersize; 

    buff$[i] = …;  // writes block until empty, leave full 

} } 
 

 

proc consumer() { 

  var i = 0; 

  while … { 

    i= (i+1) % buffersize; 

    …buff$[i]…;   // reads block until full, leave empty 

} } 
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Outline 
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10
5 

Motivation 

Chapel Background and Themes 

Survey of Chapel Concepts 

 

 

 

 

 

● Project Status and Next Steps 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 
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Chapel and PGAS 
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● Chapel is PGAS, but unlike most, it’s not restricted to 

SPMD 

  never think about “the other copies of the program” 

  “global name/address space” comes from lexical scoping  
● as in traditional languages, each declaration yields one variable 

● variables are stored on the locale where the task declaring it is executing 

 

 

0 

 

1 

 

2 

 

3 

 

4 

Locales (think: “compute nodes”) 
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Chapel: Scoping and Locality 
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var i: int; 

 

0 

 

1 

 

2 

 

3 

 

4 

i 

Locales (think: “compute nodes”) 
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Chapel: Scoping and Locality 
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var i: int; 

on Locales[1] { 

   

 

0 

 

1 

 

2 

 

3 

 

4 

i 

Locales (think: “compute nodes”) 
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Chapel: Scoping and Locality 
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var i: int; 

on Locales[1] { 

  var j: int; 

   

 

0 

 

1 

 

2 

 

3 

 

4 

i j 

Locales (think: “compute nodes”) 
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Chapel: Scoping and Locality 
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var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 

      

 

0 

 

1 

 

2 

 

3 

 

4 

i j 

Locales (think: “compute nodes”) 
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Chapel: Scoping and Locality 
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var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 

      var k: int; 

 

      // within this scope, i, j, and k can be referenced; 

             // the implementation manages the communication for i and j 
    } 

  } 

} 

i j k k k k k 

Locales (think: “compute nodes”) 
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Chapel and PGAS: Public vs. Private 
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How public a variable is depends only on scoping 
● who can see it? 

● who actually bothers to refer to it non-locally? 
var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 

      var k = i + j; 

    } 

  } 

} 

 

0 

 

1 

 

2 

 

3 

 

4 

Locales (think: “compute nodes”) 

i j 

k k k k k 
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The Locale Type 
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Definition: 

● Abstract unit of target architecture 

● Supports reasoning about locality 
● defines “here vs. there” / “local vs. remote” 

● Capable of running tasks and storing variables 
● i.e., has processors and memory 

 

 

Typically: A compute node (multicore processor or SMP) 
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Getting started with locales 
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● Specify # of locales when running Chapel programs 

 

 

● Chapel provides built-in locale variables 

 

 

 

● User’s main() begins executing on locale #0 

 

% a.out --numLocales=8 

config const numLocales: int = …; 

const Locales: [0..#numLocales] locale = …; 

L0 L1 L2 L3 L4 L5 L6 L7 Locales: 

% a.out –nl 8 
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Locale Operations 
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● Locale methods support queries about the target system: 

 

 

 

● On-clauses support placement of computations: 

 

proc locale.physicalMemory(…) { … } 

proc locale.numCores { … } 

proc locale.id { … } 

proc locale.name { … } 

writeln(“on locale 0”); 

 

on Locales[1] do 

  writeln(“now on locale 1”); 

 

writeln(“on locale 0 again”); 

begin on A[i,j] do 

    bigComputation(A); 

 

begin on node.left do 

    search(node.left); 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Outline 
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Motivation 

Chapel Background and Themes 

Survey of Chapel Concepts 

 

 

 

 

 

● Project Status and Next Steps 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Domains 
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Domain: 
● A first-class index set 

● The fundamental Chapel concept for data parallelism 

config const m = 4, n = 8; 

 

const D = {1..m, 1..n}; 

const Inner = {2..m-1, 2..n-1}; 

 

 

D 

Inner 
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Domains 
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Domain: 
● A first-class index set 

● The fundamental Chapel concept for data parallelism 

● Useful for declaring arrays and computing with them 

config const m = 4, n = 8; 

 

const D = {1..m, 1..n}; 

const Inner = {2..m-1, 2..n-1}; 

 

var A, B, C: [D] real; 

A 
B 

C 
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Data Parallelism by Example: Jacobi Iteration 

A: 

1.0 

n 

n 

  4 

repeat until max 

change <  
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1}, 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

Copyright 2015 Cray Inc. 
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1}, 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

Declare program parameters 

 
const  can’t change values after initialization 

 

config  can be set on executable command-line 
 prompt> jacobi --n=10000 --epsilon=0.0001 

 

note that no types are given; they’re inferred from initializers 

 n  default integer (64 bits) 

 epsilon  default real floating-point (64 bits) 

Copyright 2015 Cray Inc. 

12
1 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1}, 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

Declare domains (first class index sets) 

 
{lo..hi, lo2..hi2}  2D rectangular domain, with 2-tuple indices 

 

Dom1[Dom2]  computes the intersection of two domains 

 

 

 

 

 

 

 

 
.exterior()  one of several built-in domain generators 

0 

n+1 

BigD D LastRow 

0 n+1 
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1}, 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

Declare arrays 

 
var  can be modified throughout its lifetime 

: [Dom] T  array of size Dom with elements of type T 

(no initializer)  values initialized to default value (0.0 for reals) 

 

A Temp BigD 
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1}, 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

Set Explicit Boundary Condition 

 
Arr[Dom]  refer to array slice (“forall i in Dom do …Arr[i]…”) 

 

A 
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1}, 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

Compute 5-point stencil 
 

forall ind in Dom  parallel forall expression over Dom’s indices,  

                                  binding them to ind 

                                 (here, since Dom is 2D, we can de-tuple the indices) 

  4 
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1}, 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

Compute maximum change 
 

op reduce  collapse aggregate expression to scalar using op 

 
Promotion: abs() and – are scalar operators; providing array operands 

                    results in parallel evaluation equivalent to: 
                          forall (a,t) in zip(A,Temp) do abs(a – t) 
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1}, 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

Copy data back & Repeat until done 
 

uses slicing and whole array assignment 

standard do…while loop construct 
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1}, 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

Write array to console 
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1}, 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

By default, domains and their arrays are mapped to a single locale. 

Any data parallelism over such domains/ arrays will be executed by the cores on that locale. 

Thus, this is a shared-memory parallel program. 

Copyright 2015 Cray Inc. 
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1} dmapped Block({1..n, 1..n}), 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

With this simple change, we specify a mapping from the domains and arrays to locales 

Domain maps describe the mapping of domain indices and array elements to locales 

 specifies how array data is distributed across locales 

 specifies how iterations over domains/arrays are mapped to locales 

BigD D LastRow A Temp 

Copyright 2015 Cray Inc. 
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Jacobi Iteration in Chapel 
config const n = 6, 

             epsilon = 1.0e-5; 

 

const BigD = {0..n+1, 0..n+1} dmapped Block({1..n, 1..n}), 

         D = BigD[1..n, 1..n], 

   LastRow = D.exterior(1,0); 

 

var A, Temp : [BigD] real; 

 

A[LastRow] = 1.0; 

 

do { 

  forall (i,j) in D do 

    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4; 

 

  const delta = max reduce abs(A[D] - Temp[D]); 

  A[D] = Temp[D]; 

} while (delta > epsilon); 

 

writeln(A); 

 

use BlockDist; 

Copyright 2015 Cray Inc. 
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Notes on Forall Loops 
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forall a in A do 

  writeln(“Here is an element of A: ”, a); 

Typically: 
• 1 ≤ #Tasks << #Iterations 

• #Tasks ≈ amount of HW parallelism 

forall (a, i) in zip(A, 1..n) do 

  a = i / 10.0; 

Like for loops, forall-loops may be zippered,  

and corresponding iterations will match up 
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STREAM Triad: Chapel 
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#define N       2000000 
 

int main() { 

  float *d_a, *d_b, *d_c; 

  float scalar; 
 

  cudaMalloc((void**)&d_a, sizeof(float)*N); 

  cudaMalloc((void**)&d_b, sizeof(float)*N); 

  cudaMalloc((void**)&d_c, sizeof(float)*N); 
 

  dim3 dimBlock(128); 

  dim3 dimGrid(N/dimBlock.x ); 

  if( N % dimBlock.x != 0 ) dimGrid.x+=1; 
 

  set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N); 

  set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N); 
 

  scalar=3.0f; 

  STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N); 

  cudaThreadSynchronize(); 
 

  cudaFree(d_a); 

  cudaFree(d_b); 

  cudaFree(d_c); 

} 
 

__global__ void set_array(float *a,  float value, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) a[idx] = value; 

} 
 

__global__ void STREAM_Triad( float *a, float *b, float *c, 

                              float scalar, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) c[idx] = a[idx]+scalar*b[idx]; 

} 

#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 
 

static int VectorSize; 

static double *a, *b, *c; 
 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 
 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 
 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); 
 

  return errCount; 

} 
 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 
 

  VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 ); 
 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 
 

  scalar = 3.0; 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 
 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 
 

  return 0; 

} 

CUDA MPI + OpenMP 

Philosophy:  Good language design can tease details of locality and 

parallelism away from an algorithm, permitting the compiler, runtime, 

applied scientist, and HPC expert to each focus on their strengths. 

 

 

 

config const m = 1000, 

             alpha = 3.0; 
 

const ProblemSpace = {1..m} dmapped …; 
 

var A, B, C: [ProblemSpace] real; 
 

B = 2.0;           

C = 3.0; 
 

A = B + alpha * C; 

the special 

sauce 

Chapel 
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Goal: Solve one octant of the spherical Sedov problem (blast 

wave) using Lagrangian hydrodynamics for a single 

material 

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL 
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LULESH in Chapel 
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LULESH in Chapel 
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(the corresponding C+MPI+OpenMP version is nearly 4x bigger) 

 

This can be found in Chapel v1.9 in examples/benchmarks/lulesh/*.chpl 

 

1288  lines of source code 
plus  266  lines of comments 

487  blank lines 
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LULESH in Chapel 
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This is all of the representation dependent code. 

It specifies: 

• data structure choices 
• structured vs. unstructured mesh 

• local vs. distributed data 

• sparse vs. dense materials arrays 

• a few supporting iterators 
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LULESH in Chapel 
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Here is some sample representation-independent code 
  IntegrateStressForElems() 

     LULESH spec, section 1.5.1.1 (2.) 

https://codesign.llnl.gov/pdfs/spec-7.pdf
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Representation-Independent Physics 
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Because of domain maps, this code is independent of: 

 structured vs. unstructured mesh 

 shared vs. distributed data 

 sparse vs. dense representation 

proc IntegrateStressForElems(sigxx, sigyy, sigzz, determ) { 

  forall k in Elems { 

    var b_x, b_y, b_z: 8*real; 

    var x_local, y_local, z_local: 8*real; 

    localizeNeighborNodes(k, x, x_local, y, y_local, z, z_local); 

 

    var fx_local, fy_local, fz_local: 8*real; 

 

    local { 

      /* Volume calculation involves extra work for numerical consistency. */ 

      CalcElemShapeFunctionDerivatives(x_local, y_local, z_local,  

                                                                b_x, b_y, b_z, determ[k]); 

     

      CalcElemNodeNormals(b_x, b_y, b_z, x_local, y_local, z_local); 

 

      SumElemStressesToNodeForces(b_x, b_y, b_z, sigxx[k], sigyy[k], sigzz[k],  

                                                            fx_local, fy_local, fz_local); 

    } 

 

    for (noi, t) in elemToNodesTuple(k) { 

      fx[noi].add(fx_local[t]); 

      fy[noi].add(fy_local[t]); 

      fz[noi].add(fz_local[t]); 

    } 

  } 

} 

parallel loop over elements 

collect nodes neighboring this 

element; localize node fields 

update node forces from 

element stresses 
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Motivation 

Chapel Background and Themes 

Survey of Chapel Concepts 

 

 

 

 

 

● Project Status and Next Steps 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 
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Domain maps are “recipes” that instruct the compiler how to 

map the global view of a computation… 

= 

+ 

α • 

Locale 0 

= 

+ 

α • 

= 

+ 

α • 

= 

+ 

α • 

Locale 1 Locale 2 

 …to the target locales’ memory and processors: 

A = B + alpha * C; 
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Chapel’s Domain Map Philosophy 
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1. Chapel provides a library of standard domain maps 
● to support common array implementations effortlessly 
 

2. Expert users can write their own domain maps in Chapel 
● to cope with any shortcomings in our standard library 

 
 

 

 

 

 

 

 

 

3. Chapel’s standard domain maps are written using the 

same end-user framework 
● to avoid a performance cliff between “built-in” and user-defined cases 
 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Locality Control 
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Chapel Domain Types 
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Chapel Array Types 
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All Domain Types Support Domain Maps 
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Domain Maps Summary 
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● Data locality requires mapping arrays to memory well 
● distributions between distinct memories 

● layouts within a single memory 

 

● Most languages define a single data layout & distribution 
● where the distribution is often the degenerate “everything’s local” 

 

● Domain maps… 
…move such policies into user-space… 

…exposing them to the end-user through high-level declarations 
 

const Elems = {0..#numElems} dmapped Block(…) 

14
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Two Other Thematically Similar Features 
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1) parallel iterators:  Define parallel loop policies 
 

2) locale models:  Define target architectures 
 

 

 

 

Like domain maps, these are… 
…written in Chapel by expert users using lower-level features 

● e.g., task parallelism, on-clauses, base language features, … 

…available to the end-user via higher-level abstractions 
● e.g., forall loops, on-clauses, lexically scoped PGAS memory, … 
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Multiresolution Summary 
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Chapel’s multiresolution philosophy allows users to write… 
…custom array implementations via domain maps 

 

…custom parallel iterators via leader-follower iterators 
 

 

…custom architectural models via hierarchical locales 
 

 

The result is a language that decouples crucial policies for 

managing data locality out of the language’s definition 

and into an expert user’s hand… 
 

…while making them available to end-users through high-

level abstractions 

14
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For More Information on… 

Copyright 2015 Cray Inc. 

…domain maps 
User-Defined Distributions and Layouts in Chapel: Philosophy and Framework 

[slides], Chamberlain, Deitz, Iten, Choi; HotPar’10, June 2010. 
 

Authoring User-Defined Domain Maps in Chapel [slides], Chamberlain, Choi, 

Deitz, Iten, Litvinov; Cug 2011, May 2011. 

 

…leader-follower iterators 
User-Defined Parallel Zippered Iterators in Chapel [slides], Chamberlain, Choi, 

Deitz, Navarro; PGAS 2011, October 2011. 

 

…hierarchical locales 
Hierarchical Locales: Exposing Node-Level Locality in Chapel, Choi; 2nd KIISE-

KOCSEA SIG HPC Workshop talk, November 2013. 

 

Status: all of these concepts are in-use in every Chapel program today 
          (pointers to code/docs in the release available by request) 
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http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/presentations/Chamberlain-HotPAR10.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/presentations/ChapelForCUG2011.pdf
http://pgas11.rice.edu/papers/ChamberlainEtAl-Chapel-Iterators-PGAS11.pdf
http://pgas11.rice.edu/papers/ChamberlainEtAl-Chapel-Iterators-PGAS11.pdf
http://pgas11.rice.edu/papers/ChamberlainEtAl-Chapel-Iterators-PGAS11.pdf
http://pgas11.rice.edu/papers/ChamberlainEtAl-Chapel-Iterators-PGAS11.pdf
http://chapel.cray.com/presentations/ChapelForPGAS2011.pdf
http://chapel.cray.com/presentations/KIISE-KOCSEA_HPC_Workshop2013.pdf
http://chapel.cray.com/presentations/KIISE-KOCSEA_HPC_Workshop2013.pdf
http://chapel.cray.com/presentations/KIISE-KOCSEA_HPC_Workshop2013.pdf
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Higher-level programming models can help insulate 

algorithms from parallel implementation details 
● yet, without necessarily abdicating control 

● Chapel does this via its multiresolution design 
● here, we saw it principally in domain maps 

● leader-follower iterators and locale models are other examples 

● these avoid locking crucial policy decisions into the language 

 

We believe Chapel can greatly improve productivity 
…for current and emerging HPC architectures 

…for emerging mainstream needs for parallelism and locality 
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Motivation 

Chapel Background and Themes 

Survey of Chapel Concepts 

Project Status and Next Steps 
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The Cray Chapel Team (Summer 2014) 
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Chapel… 
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…is a collaborative effort — join us! 
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A Year in the Life of Chapel 
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● Two major releases per year (April / October) 
● latest release: version 1.11, April 2nd, 2015 

● ~a month later: detailed release notes 
● version 1.11 release notes: http://chapel.cray.com/download.html#releaseNotes  

● CHIUW: Chapel Implementers and Users Workshop (May-June) 

● workshop focusing on community efforts, code camps 

● this year will be held in Portland, June 13-14 

● SC (Nov) 
● the primary conference for the HPC industry 

● we give tutorials, BoFs, talks, etc. to show off year’s work 

● Talks, tutorials, research visits, blogs, … (year-round) 

http://chapel.cray.com/download.html#releaseNotes
http://chapel.cray.com/download.html#releaseNotes
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Implementation Status -- Version 1.11 (Apr 2015) 
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Overall Status: 
● User-facing Features: generally in good shape 

● some require additional attention (e.g., strings, memory mgmt) 
● Multiresolution Features: in use today 

● their interfaces are likely to continue evolving over time 
● Error Messages: not always as helpful as one would like 

● correct code works well, incorrect code can be puzzling 
● Performance: hit-or-miss depending on the idioms used 

● Chapel designed to ultimately support competitive performance 
● to-date, we’ve focused primarily on correctness and local perf. 

 

This is a great time to: 
● Try out the language and compiler 
● Use Chapel for non-performance-critical projects 
● Give us feedback to improve Chapel 
● Use Chapel for parallel programming education 
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Chapel and Education 
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● When teaching parallel programming, I like to cover: 
● data parallelism 

● task parallelism 

● concurrency 

● synchronization 

● locality/affinity 

● deadlock, livelock, and other pitfalls 

● performance tuning 

● … 
 

● I don’t think there’s been a good language out there… 
● for teaching all of these things 

● for teaching some of these things well at all 

● until now: We believe Chapel can play a crucial role here 

http://chapel.cray.com/education.html
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/
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● Harden prototype to production-grade 
● add/improve lacking features 

● optimize performance 

● improve interoperability 

 

● Target more complex/modern compute node types 
● e.g., Intel Phi, CPU+GPU, AMD APU, … 

 

● Continue to grow the user and developer communities 
● including nontraditional circles: desktop parallelism, “big data” 

● transition Chapel from Cray-managed to community-governed 
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Summary 
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Higher-level programming models can help insulate 

algorithms from parallel implementation details 
● yet, without necessarily abdicating control 

● Chapel does this via its multiresolution design 
● here, we saw it principally in domain maps 

● parallel iterators and locale models are other examples 

● these avoid locking crucial policy decisions into the language 

 

We believe Chapel can greatly improve productivity 
…for current and emerging HPC architectures 

…for emerging mainstream needs for parallelism and locality 
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Chapel project page: http://chapel.cray.com  
● overview, papers, presentations, language spec, … 

Chapel GitHub page: https://github.com/chapel-lang  
● download 1.11.0 release, browse source repository 

Chapel Facebook page: https://www.facebook.com/ChapelLanguage  

http://chapel.cray.com/
https://github.com/chapel-lang
https://github.com/chapel-lang
https://github.com/chapel-lang
https://www.facebook.com/ChapelLanguage
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For More Information: Community Resources 
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Chapel SourceForge page: https://sourceforge.net/projects/chapel/ 

● join community mailing lists; alternative release download site 

Mailing Aliases: 
● chapel_info@cray.com: contact the team at Cray  

● chapel-announce@lists.sourceforge.net: list for announcements only 

● chapel-users@lists.sourceforge.net: user-oriented discussion list 

● chapel-developers@lists.sourceforge.net: developer discussion 

● chapel-education@lists.sourceforge.net: educator discussion 

● chapel-bugs@lists.sourceforge.net: public bug forum 

https://sourceforge.net/projects/chapel/
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Overview Papers: 
● A Brief Overview of Chapel, Chamberlain (pre-print of a chapter for A 

Brief Overview of Parallel Programming Models, edited by Pavan 

Balaji, to be published by MIT Press in 2014). 
● a detailed overview of Chapel’s history, motivating themes, features 

 

● The State of the Chapel Union [slides], Chamberlain, Choi, Dumler, 

Hildebrandt, Iten, Litvinov, Titus. CUG 2013, May 2013. 
● a higher-level overview of the project, summarizing the HPCS period 

http://chapel.cray.com/papers/BriefOverviewChapel.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/presentations/ChapelForCUG13-final.pdf


C O M P U T E      |     S T O R E      |     A N A L Y Z E

For More Information: Lighter Reading 
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Blog Articles: 
● Chapel: Productive Parallel Programming, Chamberlain, Cray Blog, 

May 2013. 
● a short-and-sweet introduction to Chapel 

 

● Why Chapel? (part 1, part 2, part 3), Chamberlain, Cray Blog, June-

August 2014. 
● a current series of articles answering common questions about why we are 

pursuing Chapel in spite of the inherent challenges 

 

● [Ten] Myths About Scalable Programming Languages                  

(index available here), Chamberlain, IEEE TCSC Blog, April-

November 2012. 
● a series of technical opinion pieces designed to combat standard 

arguments against the development of high-level parallel languages 

 

http://blog.cray.com/?p=5889
http://blog.cray.com/?p=5889
http://blog.cray.com/
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6908
http://blog.cray.com/?p=7060
http://blog.cray.com/
http://chapel.cray.com/editorials.html
https://www.ieeetcsc.org/activities/blog
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Information in this document is provided in connection with Cray Inc. products. No license, express or 
implied, to any intellectual property rights is granted by this document.  

Cray Inc. may make changes to specifications and product descriptions at any time, without notice. 

All products, dates and figures specified are preliminary based on current expectations, and are subject to 
change without notice.  

Cray hardware and software products may contain design defects or errors known as errata, which may 
cause the product to deviate from published specifications. Current characterized errata are available on 
request.  

Cray uses codenames internally to identify products that are in development and not yet publically 
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames 
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the 
user.  

Performance tests and ratings are measured using specific systems and/or components and reflect the 
approximate performance of Cray Inc. products as measured by those tests. Any difference in system 
hardware or software design or configuration may affect actual performance.  

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY 
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.:  ACE, 
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, 
NODEKARE, THREADSTORM.  The following system family marks, and associated model number marks, 
are trademarks of Cray Inc.:  CS, CX, XC, XE, XK, XMT, and XT.  The registered trademark LINUX is used 
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a 
worldwide basis.  Other trademarks used in this document are the property of their respective owners. 
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