
C O M P U T E | S T O R E | A N A L Y Z E

PGAS Programming and Chapel

Brad Chamberlain, Chapel Team, Cray Inc.

UW CSEP 524, Spring 2015

April 28th, 2015

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

 Safe Harbor Statement

Copyright 2015 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

“Who is this guy Mike dumped on us?”

Copyright 2015 Cray Inc.
3

2001: graduated from UW CSE with a PhD
● worked on the ZPL parallel programming language

● advisor: Larry Snyder (now emeritus)

2001-2002: spent a lost/instructive year at a startup

2002-present: have been working at Cray Inc.
● Hired to help with the HPCS program

● Convinced execs/customers that we should do a language

● Have been working on Chapel ever since

Also a UW CSE affiliate faculty member
● taught this class last time around Winter 2013

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s Origins: HPCS

Copyright 2015 Cray Inc.
4

DARPA HPCS: High Productivity Computing Systems
● Goal: improve productivity by a factor of 10x

● Timeframe: Summer 2002 – Fall 2012

● Cray developed a new system architecture, network, software stack…
● this became the very successful Cray XC30™ Supercomputer Series

 …and a new programming language: Chapel

C O M P U T E | S T O R E | A N A L Y Z E

What is Chapel?

Copyright 2015 Cray Inc.
5

● An emerging parallel programming language
● Design and development led by Cray Inc.

● in collaboration with academia, labs, industry; domestically & internationally

● A work-in-progress

● Goal: Improve productivity of parallel programming

C O M P U T E | S T O R E | A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2015 Cray Inc.
6

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

C O M P U T E | S T O R E | A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2015 Cray Inc.
7

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

C O M P U T E | S T O R E | A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2015 Cray Inc.
8

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

 want full control

 to ensure performance”

C O M P U T E | S T O R E | A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2015 Cray Inc.
9

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations

 without having to wrestle with architecture-specific details”

want full control

 to ensure performance”

C O M P U T E | S T O R E | A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2015 Cray Inc.
10

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations

 without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,

 without taking away the control that HPC programmers want,

 implemented in a language as attractive as recent graduates want.”

want full control

 to ensure performance”

C O M P U T E | S T O R E | A N A L Y Z E

Chapel's Implementation

Copyright 2015 Cray Inc.
11

● Being developed as open source at GitHub
● Uses Apache v2.0 license

● Portable design and implementation, targeting:
● multicore desktops and laptops

● commodity clusters and the cloud

● HPC systems from Cray and other vendors

● in-progress: manycore processors, CPU+accelerator hybrids, …

C O M P U T E | S T O R E | A N A L Y Z E

Game Plan for Tonight

Copyright 2015 Cray Inc.
12

● Rough outline:
● a bit of context: PGAS programming languages

● lots of Chapel

● Please feel free to ask questions as we go
● I can throttle as necessary

● optionally: “Happy Office Hour” afterwards
● or: go catch Lightning Bolt at Neumo’s

C O M P U T E | S T O R E | A N A L Y Z E

Terminology Check

+

Introduction to PGAS* Programming

(* Partitioned Global Address Space)

Copyright 2015 Cray Inc.
13

C O M P U T E | S T O R E | A N A L Y Z E

Shared vs. Distributed Memory

Copyright 2015 Cray Inc.
14

● Shared Memory Architectures:

● Distributed Memory Architectures:

C O M P U T E | S T O R E | A N A L Y Z E

Global Address Space Programming Models
(Shared Memory)

Copyright 2015 Cray Inc.
15

e.g., OpenMP, Pthreads

+ support dynamic, fine-grain parallelism

+ considered simpler, more like traditional programming
● “if you want to access something, simply name it”

– no support for expressing locality/affinity; limits scalability

– bugs can be subtle, difficult to track down (race conditions)

– tend to require complex memory consistency models

C O M P U T E | S T O R E | A N A L Y Z E

SPMD Programming/Execution Models

SPMD =

Copyright 2015 Cray Inc.
16

C O M P U T E | S T O R E | A N A L Y Z E

SPMD Programming/Execution Models

SPMD = Single Program, Multiple Data

● the dominant model for distributed memory programming

● Concept:
● write one copy of a program

● execute multiple copies of it simultaneously
● various terms: images, processes, PEs (Processing Elements), ranks, …

● one per compute node? one per core?

● in a pure SPMD model, this is the only source of parallelism
● i.e., run p copies of my program in parallel

● our parallel tasks are essentially the program images

● in practice, each program can also contain parallelism
● typically achieved by mixing two notations (e.g., MPI + OpenMP)

Copyright 2015 Cray Inc.
17

C O M P U T E | S T O R E | A N A L Y Z E

How Do SPMD Program Images Interact?

● Message Passing (the most common HPC paradigm):
● “messages”: essentially buffers of data

● primitive message passing operations: send/receive

● primary example: MPI

Copyright 2015 Cray Inc.
18

C O M P U T E | S T O R E | A N A L Y Z E

Message Passing Programming Models
(Distributed Memory)

Copyright 2015 Cray Inc.
19

e.g., MPI

+ a more constrained model; can only access local data

+ runs on most large-scale parallel platforms
● and for many of them, can achieve near-optimal performance

+ is relatively easy to implement

+ can serve as a strong foundation for higher-level models

+ users have been able to get real work done with it

C O M P U T E | S T O R E | A N A L Y Z E

Message Passing Programming Models
(Distributed Memory)

Copyright 2015 Cray Inc.
20

e.g., MPI

– communication must be used to get copies of remote data
– tends to reveal too much about how to transfer data, not simply what

– only supports “cooperating executable”-level parallelism

– couples data transfer and synchronization

– has frustrating classes of bugs of its own
– e.g., mismatches between sends/recvs, buffer overflows, etc.

C O M P U T E | S T O R E | A N A L Y Z E

How Do SPMD Program Images Interact?

● Message Passing (the most common HPC paradigm):
● “messages”: essentially buffers of data

● primitive message passing operations: send/receive

● primary example: MPI

● Other alternatives:
● Single-Sided Communication

● Partitioned Global Address Spaces

● Active Messages

● …

Copyright 2015 Cray Inc.
21

C O M P U T E | S T O R E | A N A L Y Z E

Partitioned Global Address Space (PGAS)
Languages

Copyright 2015 Cray Inc.
22

(Or perhaps: partitioned global namespace languages)

● abstract concept:

● support a shared namespace on distributed memory
● permit parallel tasks to access remote variables by naming them

private

space 0

private

space 1

private

space 2

private

space 3

private

space 4

partitioned shared name-/address space

C O M P U T E | S T O R E | A N A L Y Z E

Partitioned Global Address Space (PGAS)
Languages

Copyright 2015 Cray Inc.
23

(Or perhaps: partitioned global namespace languages)

● abstract concept:

● support a shared namespace on distributed memory
● permit parallel tasks to access remote variables by naming them

● establish a strong sense of ownership
● every variable has a well-defined location

● local variables are cheaper to access than remote ones

private

space 0

private

space 1

private

space 2

private

space 3

private

space 4

partitioned shared name-/address space

C O M P U T E | S T O R E | A N A L Y Z E

Partitioned Global Address Space (PGAS)
Languages

Copyright 2015 Cray Inc.
24

(Or perhaps: partitioned global namespace languages)

● abstract concept:

● support a shared namespace on distributed memory
● permit parallel tasks to access remote variables by naming them

● establish a strong sense of ownership
● every variable has a well-defined location

● local variables are cheaper to access than remote ones

● traditional PGAS languages have been SPMD in nature
● best-known examples: Co-Array Fortran, UPC

private

space 0

private

space 1

private

space 2

private

space 3

private

space 4

partitioned shared name-/address space

C O M P U T E | S T O R E | A N A L Y Z E

Traditional PGAS Languages

Copyright 2015 Cray Inc.
25

e.g., Co-Array Fortran, UPC

C O M P U T E | S T O R E | A N A L Y Z E

SPMD PGAS Languages (using a pseudo-language)

Copyright 2015 Cray Inc.
26

proc main() {

 var i(*): int; // declare a shared variable i

i i i i i

C O M P U T E | S T O R E | A N A L Y Z E

SPMD PGAS Languages (using a pseudo-language)

Copyright 2015 Cray Inc.
27

proc main() {

 var i(*): int; // declare a shared variable i

 i = 2*this_image(); // each image initializes its

8 6 4 2 0

C O M P U T E | S T O R E | A N A L Y Z E

SPMD PGAS Languages (using a pseudo-language)

Copyright 2015 Cray Inc.
28

proc main() {

 var i(*): int; // declare a shared variable i

 i = 2*this_image(); // each image initializes its

 var j: int; // declare a private variable j

8 6 4 2 0

j j j j j

C O M P U T E | S T O R E | A N A L Y Z E

SPMD PGAS Languages (using a pseudo-language)

Copyright 2015 Cray Inc.
29

proc main() {

 var i(*): int; // declare a shared variable i

 i = 2*this_image(); // each image initializes its

 var j: int; // declare a private variable j

 j = i((this_image()+1) % num_images());

 // ^^ access our neighbor’s copy of i

 // communication implemented by compiler + runtime

 // How did we know our neighbor had an i?

 // Because it’s SPMD – we’re all running the same

 // program. (Simple, but restrictive)

8 6 4 2 0

0 8 6 4 2

C O M P U T E | S T O R E | A N A L Y Z E

Traditional PGAS Languages

founding PGAS members: Co-Array Fortran, UPC, Titanium
● extensions to Fortran, C, and Java, respectively

● details vary, but potential for:
● arrays that are decomposed across compute nodes

● pointers that refer to remote objects

● note that earlier languages could also be considered PGAS, but
the term hadn’t been coined yet

30
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

UPC: Unified Parallel C

UPC: A “traditional” PGAS language

● developed ~1999

● “unified” in the sense that it combined 3 distinct parallel C’s:
● AC, Split-C, Parallel C Preprocessor

● though a sibling to CAF, philosophically quite different

Motivating Philosophy:

● extend C concepts logically to support SPMD execution
● 1D arrays

● for loops

● pointers (and pointer/array equivalence)

31
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

UPC is also SPMD

● SPMD programming/execution model

● program copies are referred to as ‘threads’

● Built-in constants provide the basics:
int p, me;

p = THREADS; // returns number of processes

me = MYTHREAD; // returns a value in 0..THREADS-1

● Barrier synch statement:
upc_barrier; // wait for all processes/threads

32
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Arrays in UPC

● Arrays declared with the ‘shared’ keyword are
distributed within the shared space
● uses a cyclic distribution by default

#define N 10

shared float a[N], b[N], c[N];

a[0] a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9]

b[] and c[] distributed similarly

33
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Arrays in UPC

● Arrays declared with the ‘shared’ keyword are
distributed within the shared space
● uses a cyclic distribution by default

#define N 10

shared float a[N], b[N], c[N];

int i=0; // no “shared” keyword => stored privately

a[0]

i i i i i

a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9]

34
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Arrays in UPC

● Arrays declared with the ‘shared’ keyword are
distributed within the shared space
● uses a cyclic distribution by default

#define N 10

shared float a[N], b[N], c[N];

for (int i=0; i<N; i++) { // dumb loop: O(N)

 if (i%THREADS == MYTHREAD) {

 c[i] = a[i] + alpha * b[i];

 }

}

a[0]

i i i i i

a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9]

35
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Arrays in UPC

● Arrays declared with the ‘shared’ keyword are
distributed within the shared space
● uses a cyclic distribution by default

#define N 10

shared float a[N], b[N], c[N];

// smarter loop: O(N/THREADS)

for (int i=MYTHREAD; i<N; i+=THREADS) {

 c[i] = a[i] + alpha * b[i];

}

a[0]

i i i i i

a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9]

36
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Arrays in UPC

● Arrays declared with the ‘shared’ keyword are
distributed within the shared space
● uses a cyclic distribution by default

#define N 10

shared float a[N], b[N], c[N];

upc_forall (int i=0; i<N; i++; i) {

 c[i] = a[i] + alpha * b[i];

}

a[0]

i i i i i

a[5] a[1] a[6] a[2] a[7] a[3] a[8] a[4] a[9]

Affinity field: Which thread

should execute this iteration?

(if int, %THREADS to get ID)

37
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Arrays in UPC

● Arrays declared with the ‘shared’ keyword are
distributed within the shared space
● can specify a block-cyclic distribution as well

#define N 10

shared [2] float a[N], b[N], c[N];

upc_forall (int i=0; i<N; i++; &c[i]) {

 c[i] = a[i] + alpha * b[i];

}

a[0]

i i i i i

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Affinity field: Which thread

should execute this iteration?

(if ptr-to-shared, owner does)

38
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Arrays in UPC

● Arrays declared with the ‘shared’ keyword are
distributed within the shared space
● can specify a block-cyclic distribution as well

#define N 10

shared [3] float a[N], b[N], c[N];

upc_forall (int i=0; i<N; i++; &c[i]) {

 c[i] = a[i] + alpha * b[i];

}

a[0]

i i i i i

a[1] a[3] a[4] a[6] a[7] a[9] a[2] a[5] a[8]

39
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Arrays in UPC

● Arrays declared with the ‘shared’ keyword are
distributed within the shared space
● can specify a block-cyclic distribution as well

#define N 15

shared [2] float a[N], b[N], c[N];

upc_forall (int i=0; i<N; i++; &c[i]) {

 c[i] = a[i] + alpha * b[i];

}

a[0]

i i i i i

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13] a[14]

40
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Scalars in UPC

● Somewhat confusingly (to me anyway*), shared
scalars in UPC result in a single copy on thread 0

int i;

shared int j;

* = because it seems contrary to SPMD programming

j

i i i i i

41
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Pointers in UPC

● UPC Pointers may be private/shared and may point to
private/shared
int* PP; // private pointer to local data

i

PP

i i i i

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

j

PP PP PP PP

42
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Pointers in UPC

● UPC Pointers may be private/shared and may point to
private/shared
int* PP; // private pointer to local data

shared int* PS; // private pointer to shared data

i

PP

i i i i PS

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

j

PP

PS

PP

PS

PP

PS

PP

PS

43
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Pointers in UPC

● UPC Pointers may be private/shared and may point to
private/shared
int* PP; // private pointer to local data

shared int* PS; // private pointer to shared data

shared int* shared ss; // shared pointer to shared data

i

PP

i i i i PS

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

ss

j

PP

PS

PP

PS

PP

PS

PP

PS

44
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Arrays of Pointers in UPC

● Of course, one can also create arrays of pointers

// array of shared pointer to shared data
shared int* shared SS[THREADS];

● As you can imagine, one UPC’s strengths is its ability
to create fairly arbitrary distributed data structures

i

PP

i i i i PS

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

ss

j

PP

PS

PP

PS

PP

PS

PP

PS

SS[0] SS[1] SS[2] SS[3] SS[4]

45
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Array/Pointer Equivalence in UPC

● As in C, pointers can be walked through memory
shared [2] float a[N];

shared float* aPtr[THREADS] = &(a[2]);

aPtr

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

aPtr aPtr aPtr aPtr

46
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Array/Pointer Equivalence in UPC

● As in C, pointers can be walked through memory
shared [2] float a[N];

shared float* aPtr[THREADS] = &(a[2]);

aPtr++;

aPtr

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

aPtr aPtr aPtr aPtr

47
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Array/Pointer Equivalence in UPC

● As in C, pointers can be walked through memory
shared [2] float a[N];

shared float* aPtr[THREADS] = &(a[2]);

aPtr++;

aPtr++;

aPtr

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

aPtr aPtr aPtr aPtr

48
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

How are UPC Pointers Implemented?

Local pointers to local: just an address, as always

Pointers to shared: 3 parts
● thread ID

● base address of block within the thread

● phase/offset within the block (0..blocksize-1)

● UPC supports a number of utility functions that permit
you to query this information from pointers

● Casting between pointer types is permitted
● but can be dangerous (as in C) and/or lossy

49
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Other Features in UPC

● Collectives Library

● Memory Consistency Model
● among the first/foremost memory models in HPC

● ability to move between strict and relaxed models

● fence operations

● Dynamic Memory Management

● Locks

● Parallel I/O

● …

50
Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

UPC Summary

● Program in SPMD style

● Communicate via shared arrays/pointers

● cyclic and block-cyclic arrays

● pointers to shared and private data

● array-pointer equivalence

● Other stuff too, but this gives you the main idea

● For more information, see https://upc-lang.org/upc/

51
Copyright 2015 Cray Inc.

https://upc-lang.org/upc/
https://upc-lang.org/upc/
https://upc-lang.org/upc/
https://upc-lang.org/upc/

C O M P U T E | S T O R E | A N A L Y Z E

Other Notable SPMD PGAS Languages

Copyright 2015 Cray Inc.
52

Founding Fathers:

● Co-Array Fortran (CAF): A Fortran-based PGAS language
● Remote accesses are much more explicit than in UPC

● Distributed arrays are better (multidimensional, like Fortran’s)
● …but also worse (must declare in terms of per-image chunks)

● Adopted into the Fortran 2008 standard

● Titanium: A Java-based PGAS language
● my favorite of the three

New Kids on the Block:

● UPC++

● Co-Array C++

C++ PGAS languages designed using template

meta-programming (so, no compiler required)

C O M P U T E | S T O R E | A N A L Y Z E

Traditional PGAS Languages

Copyright 2015 Cray Inc.
53

e.g., Co-Array Fortran, UPC
+ support a shared namespace, like shared-memory
+ support a strong sense of ownership and locality

• each variable is stored in a particular memory segment
• tasks can access any visible variable, local or remote
• local variables are cheaper to access than remote ones

+ implicit communication eases user burden; permits
compiler to use best mechanisms available

C O M P U T E | S T O R E | A N A L Y Z E

Traditional PGAS Languages

Copyright 2015 Cray Inc.
54

e.g., Co-Array Fortran, UPC
– restricted to SPMD programming and execution models

– data structures not as flexible/rich as one might like

– retain many of the downsides of shared-memory
● error cases, memory consistency models

C O M P U T E | S T O R E | A N A L Y Z E

Next-Generation PGAS Languages

Copyright 2015 Cray Inc.
55

e.g., Chapel (also Charm++, X10, Fortress, …)
+ breaks out of SPMD mold via global multithreading

+ richer set of distributed data structures

– retains many of the downsides of shared-memory
● error cases, memory consistency models

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Motivation

Copyright 2015 Cray Inc.
56

C O M P U T E | S T O R E | A N A L Y Z E

Sustained Performance Milestones

Copyright 2015 Cray Inc.
57

• Static finite element analysis

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

1 EF – ~2018: Cray ____; ~10,000,000

Processors

C O M P U T E | S T O R E | A N A L Y Z E

Sustained Performance Milestones

Copyright 2015 Cray Inc.
58

• Static finite element analysis

• Fortran77 + Cray autotasking + vectorization

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

• Fortran + MPI (Message Passing Interface)

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

• C++/Fortran + MPI + vectorization

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

• TBD: C/C++/Fortran + MPI + OpenMP/OpenACC/CUDA/OpenCL?

1 EF – ~2018: Cray ____; ~10,000,000

Processors Or, perhaps

something

completely

different?

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element vectors A, B, C

Compute: i  1..m, Ai = Bi + αCi

In pictures:

STREAM Triad: a trivial parallel computation

Copyright 2015 Cray Inc.
59

=

α

+

A

B

C

·

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element vectors A, B, C

Compute: i  1..m, Ai = Bi + αCi

In pictures, in parallel:

STREAM Triad: a trivial parallel computation

Copyright 2015 Cray Inc.
60

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·

α

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element vectors A, B, C

Compute: i  1..m, Ai = Bi + αCi

In pictures, in parallel (distributed memory):

STREAM Triad: a trivial parallel computation

Copyright 2015 Cray Inc.
61

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element vectors A, B, C

Compute: i  1..m, Ai = Bi + αCi

In pictures, in parallel (distributed memory multicore):

STREAM Triad: a trivial parallel computation

Copyright 2015 Cray Inc.
62

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: MPI

Copyright 2015 Cray Inc.
63

#include <hpcc.h>

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

MPI

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: MPI+OpenMP

Copyright 2015 Cray Inc.
64

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: MPI+OpenMP vs. CUDA

Copyright 2015 Cray Inc.
65

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

C O M P U T E | S T O R E | A N A L Y Z E

Why so many programming models?

Copyright 2015 Cray Inc.
66

HPC has traditionally given users…

…low-level, control-centric programming models

…ones that are closely tied to the underlying hardware

…ones that support only a single type of parallelism

benefits: lots of control; decent generality; easy to implement

downsides: lots of user-managed detail; brittle to changes

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP/pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task

C O M P U T E | S T O R E | A N A L Y Z E

By Analogy: Let’s Cross the United States!

Copyright 2015 Cray Inc.
67

C O M P U T E | S T O R E | A N A L Y Z E

OK, got my walking shoes on!

By Analogy: Let’s Cross the United States!

Copyright 2015 Cray Inc.
68

C O M P U T E | S T O R E | A N A L Y Z E

OK, let’s upgrade to hiking boots

By Analogy: Let’s Cross the United States!

Copyright 2015 Cray Inc.
69

C O M P U T E | S T O R E | A N A L Y Z E

Oops, need my ice axe

By Analogy: Let’s Cross the United States!

Copyright 2015 Cray Inc.
70

C O M P U T E | S T O R E | A N A L Y Z E

I guess we need a canoe?!

By Analogy: Let’s Cross the United States!

Copyright 2015 Cray Inc.
71

C O M P U T E | S T O R E | A N A L Y Z E

What a bunch of gear we have to carry around! This is getting old…

By Analogy: Let’s Cross the United States!

Copyright 2015 Cray Inc.
72

C O M P U T E | S T O R E | A N A L Y Z E

…Hey, what’s that sound?

By Analogy: Let’s Cross the United States!

Copyright 2015 Cray Inc.
73

C O M P U T E | S T O R E | A N A L Y Z E

Rewinding a few slides…

Copyright 2015 Cray Inc.
74

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: Chapel

Copyright 2015 Cray Inc.
75

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

Philosophy: Good language design can tease details of locality and

parallelism away from an algorithm, permitting the compiler, runtime,

applied scientist, and HPC expert to each focus on their strengths.

config const m = 1000,

 alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A = B + alpha * C;

the special

sauce

Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2015 Cray Inc.
76

Motivation

Chapel Background and Themes

● Survey of Chapel Concepts

● Project Status and Next Steps

C O M P U T E | S T O R E | A N A L Y Z E

Motivating Chapel Themes

Copyright 2015 Cray Inc.
77

1) General Parallel Programming

2) Global-View Abstractions

3) Multiresolution Design

4) Control over Locality/Affinity

5) Reduce HPC ↔ Mainstream Language Gap

C O M P U T E | S T O R E | A N A L Y Z E

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP/pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task

1) General Parallel Programming

Copyright 2015 Cray Inc.
78

With a unified set of concepts...

...express any parallelism desired in a user’s program
● Styles: data-parallel, task-parallel, concurrency, nested, …

● Levels: model, function, loop, statement, expression

...target any parallelism available in the hardware
● Types: machines, nodes, cores, instructions

C O M P U T E | S T O R E | A N A L Y Z E

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP/pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node Chapel executable/task

Intra-node/multicore Chapel iteration/task

Instruction-level vectors/threads Chapel iteration

GPU/accelerator Chapel SIMD function/task

1) General Parallel Programming

Copyright 2015 Cray Inc.
79

With a unified set of concepts...

...express any parallelism desired in a user’s program
● Styles: data-parallel, task-parallel, concurrency, nested, …

● Levels: model, function, loop, statement, expression

...target any parallelism available in the hardware
● Types: machines, nodes, cores, instructions

C O M P U T E | S T O R E | A N A L Y Z E

2) Global-View Abstractions

Copyright 2015 Cray Inc.
80

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View

(

+

=

)/2

Local-View

C O M P U T E | S T O R E | A N A L Y Z E

2) Global-View Abstractions

Copyright 2015 Cray Inc.
81

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View

(

+

=

)/2

(

+

=

)/2

(

+

=

)/2

(

+

=

)/2

Local-View

C O M P U T E | S T O R E | A N A L Y Z E

2) Global-View Abstractions

Copyright 2015 Cray Inc.
82

In code: “Apply a 3-Point Stencil to a vector”

Global-View

proc main() {

 var n = 1000;

 var A, B: [1..n] real;

 forall i in 2..n-1 do

 B[i] = (A[i-1] + A[i+1])/2;

}

proc main() {

 var n = 1000;

 var p = numProcs(),

 me = myProc(),

 myN = n/p,

 var A, B: [0..myN+1] real;

 if (me < p-1) {

 send(me+1, A[myN]);

 recv(me+1, A[myN+1]);

 }

 if (me > 0) {

 send(me-1, A[1]);

 recv(me-1, A[0]);

 }

 forall i in 1..myN do

 B[i] = (A[i-1] + A[i+1])/2;

}

Local-View (SPMD)

Bug: Refers to uninitialized values at ends of A

C O M P U T E | S T O R E | A N A L Y Z E

Assumes p divides n

2) Global-View Abstractions

Copyright 2015 Cray Inc.
83

In code: “Apply a 3-Point Stencil to a vector”

proc main() {

 var n = 1000;

 var A, B: [1..n] real;

 forall i in 2..n-1 do

 B[i] = (A[i-1] + A[i+1])/2;

}

proc main() {

 var n = 1000;

 var p = numProcs(),

 me = myProc(),

 myN = n/p,

 myLo = 1,

 myHi = myN;

 var A, B: [0..myN+1] real;

 if (me < p-1) {

 send(me+1, A[myN]);

 recv(me+1, A[myN+1]);

 } else

 myHi = myN-1;

 if (me > 0) {

 send(me-1, A[1]);

 recv(me-1, A[0]);

 } else

 myLo = 2;

 forall i in myLo..myHi do

 B[i] = (A[i-1] + A[i+1])/2;

}

Communication becomes

geometrically more complex

for higher-dimensional arrays

Global-View Local-View (SPMD)

C O M P U T E | S T O R E | A N A L Y Z E

2) Global-View Programming: A Final Note

Copyright 2015 Cray Inc.
84

● A language may support both global- and local-view

programming — in particular, Chapel does

proc main() {

 coforall loc in Locales do

 on loc do

 MySPMDProgram(loc.id, Locales.numElements);

}

proc MySPMDProgram(myImageID, numImages) {

 ...

}

C O M P U T E | S T O R E | A N A L Y Z E

3) Multiresolution Design: Motivation

Copyright 2015 Cray Inc.
85

MPI

OpenMP

Pthreads

Target Machine

Low-Level

Implementation

Concepts

“Why is everything so tedious/difficult?”

“Why don’t my programs port trivially?”
“Why don’t I have more control?”

ZPL

HPF

Target Machine

High-Level

Abstractions

C O M P U T E | S T O R E | A N A L Y Z E

3) Multiresolution Design

Copyright 2015 Cray Inc.
86

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity

● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower

● permit the user to intermix layers arbitrarily

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

C O M P U T E | S T O R E | A N A L Y Z E

4) Control over Locality/Affinity

Copyright 2015 Cray Inc.
87

Consider:

● Scalable architectures package memory near processors

● Remote accesses take longer than local accesses

Therefore:

● Placement of data relative to tasks affects scalability

● Give programmers control of data and task placement

Note:

● Over time, we expect locality to matter more and more

within the compute node as well

C O M P U T E | S T O R E | A N A L Y Z E

Chapel and PGAS

Copyright 2015 Cray Inc.
88

● Chapel is PGAS, but unlike most, it’s not restricted to

SPMD

 never think about “the other copies of the program”

 “global name/address space” comes from lexical scoping
● as in traditional languages, each declaration yields one variable

● variables are stored on the locale where the task declaring it is executing

0

1

2

3

4

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

5) Reduce HPC ↔ Mainstream Language Gap

Copyright 2015 Cray Inc.
89

Consider:
● Students graduate with training in Java, Matlab, Python, etc.

● Yet HPC programming is dominated by Fortran, C/C++, MPI

We’d like to narrow this gulf with Chapel:
● to leverage advances in modern language design

● to better utilize the skills of the entry-level workforce...

● ...while not alienating the traditional HPC programmer
● e.g., support object-oriented programming, but make it optional

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2015 Cray Inc.
90

Motivation

Chapel Background and Themes

Survey of Chapel Concepts

● Project Status and Next Steps

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

C O M P U T E | S T O R E | A N A L Y Z E

Static Type Inference

Copyright 2015 Cray Inc.
91

const pi = 3.14, // pi is a real

 coord = 1.2 + 3.4i, // coord is a complex…

 coord2 = pi*coord, // …as is coord2

 name = “brad”, // name is a string

 verbose = false; // verbose is boolean

proc addem(x, y) { // addem() has generic arguments

 return x + y; // and an inferred return type

}

var sum = addem(1, pi), // sum is a real

 fullname = addem(name, “ford”); // fullname is a string

writeln((sum, fullname));

(4.14, bradford)

C O M P U T E | S T O R E | A N A L Y Z E

Range Types and Algebra

Copyright 2015 Cray Inc.
92

const r = 1..10;

printVals(r);

printVals(r # 3);

printVals(r by 2);

printVals(r by -2);

printVals(r by 2 # 3);

printVals(r # 3 by 2);

printVals(0.. #n);

proc printVals(r) {

 for i in r do

 write(r, “ ”);

 writeln();

}

1 2 3 4 5 6 7 8 9 10

1 2 3

1 3 5 7 9

10 8 6 4 2

1 3 5

1 3

0 1 2 3 4 … n-1

C O M P U T E | S T O R E | A N A L Y Z E

Iterators

Copyright 2015 Cray Inc.
93

iter fibonacci(n) {

 var current = 0,

 next = 1;

 for 1..n {

 yield current;

 current += next;

 current <=> next;

 }

}

for f in fibonacci(7) do

 writeln(f);

0

1

1

2

3

5

8

iter tiledRMO(D, tilesize) {

 const tile = {0..#tilesize,

 0..#tilesize};

 for base in D by tilesize do

 for ij in D[tile + base] do

 yield ij;

}

for ij in tiledRMO({1..m, 1..n}, 2) do

 write(ij);

(1,1)(1,2)(2,1)(2,2)

(1,3)(1,4)(2,3)(2,4)

(1,5)(1,6)(2,5)(2,6)

…

(3,1)(3,2)(4,1)(4,2)

C O M P U T E | S T O R E | A N A L Y Z E

Zippered Iteration

Copyright 2015 Cray Inc.
94

for (i,f) in zip(0..#n, fibonacci(n)) do

 writeln(“fib #”, i, “ is ”, f);

fib #0 is 0

fib #1 is 1

fib #2 is 1

fib #3 is 2

fib #4 is 3

fib #5 is 5

fib #6 is 8

…

C O M P U T E | S T O R E | A N A L Y Z E

Other Base Language Features

Copyright 2015 Cray Inc.
95

● tuple types and values

● rank-independent programming features

● interoperability features

● compile-time features for meta-programming
● e.g., compile-time functions to compute types, parameters

● OOP (value- and reference-based)

● argument intents, default values, match-by-name

● overloading, where clauses

● modules (for namespace management)

● …

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2015 Cray Inc.
96

Motivation

Chapel Background and Themes

Survey of Chapel Concepts

● Project Status and Next Steps

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

C O M P U T E | S T O R E | A N A L Y Z E

Defining our Terms

Copyright 2015 Cray Inc.
97

Task:

C O M P U T E | S T O R E | A N A L Y Z E

Defining our Terms

Copyright 2015 Cray Inc.
98

Task: a unit of computation that can/should execute in

parallel with other tasks

Task Parallelism: a style of parallel programming in which

parallelism is driven by programmer-specified tasks

(in contrast with):

Data Parallelism:

C O M P U T E | S T O R E | A N A L Y Z E

Defining our Terms

Copyright 2015 Cray Inc.
99

Task: a unit of computation that can/should execute in

parallel with other tasks

Task Parallelism: a style of parallel programming in which

parallelism is driven by programmer-specified tasks

(in contrast with):

Data Parallelism: a style of parallel programming in which

parallelism is driven by computations over collections of

data elements or their indices

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Begin Statements

Copyright 2015 Cray Inc.

10
0

Possible outputs:

// create a fire-and-forget task for a statement

begin writeln(“hello world”);

writeln(“goodbye”);

hello world

goodbye

goodbye

hello world

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Cobegin Statements

Copyright 2015 Cray Inc.

10
1

// create a task per child statement

cobegin {

 producer(1);

 producer(2);

 consumer(1);

} // implicit join of the three tasks here

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Coforall Loops

Copyright 2015 Cray Inc.

10
2

Sample output:

// create a task per iteration

coforall t in 0..#numTasks {

 writeln(“Hello from task ”, t, “ of ”, numTasks);

} // implicit join of the numTasks tasks here

writeln(“All tasks done”);

Hello from task 2 of 4

Hello from task 0 of 4

Hello from task 3 of 4

Hello from task 1 of 4

All tasks done

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Data-Driven Synchronization

Copyright 2015 Cray Inc.

10
3

1) atomic variables: support atomic operations (as in C++)
● e.g., compare-and-swap; atomic sum, mult, etc.

2) single-assignment variables: reads block until assigned

3) synchronization variables: store full/empty state
● by default, reads/writes block until the state is full/empty

C O M P U T E | S T O R E | A N A L Y Z E

Bounded Buffer Producer/Consumer Example

Copyright 2015 Cray Inc.

10
4

begin producer();

consumer();

// ‘sync’ types store full/empty state along with value

var buff$: [0..#buffersize] sync real;

proc producer() {

 var i = 0;

 for … {

 i = (i+1) % buffersize;

 buff$[i] = …; // writes block until empty, leave full

} }

proc consumer() {

 var i = 0;

 while … {

 i= (i+1) % buffersize;

 …buff$[i]…; // reads block until full, leave empty

} }

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2015 Cray Inc.

10
5

Motivation

Chapel Background and Themes

Survey of Chapel Concepts

● Project Status and Next Steps

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

C O M P U T E | S T O R E | A N A L Y Z E

Chapel and PGAS

Copyright 2015 Cray Inc.

10
6

● Chapel is PGAS, but unlike most, it’s not restricted to

SPMD

 never think about “the other copies of the program”

 “global name/address space” comes from lexical scoping
● as in traditional languages, each declaration yields one variable

● variables are stored on the locale where the task declaring it is executing

0

1

2

3

4

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2015 Cray Inc.

10
7

var i: int;

0

1

2

3

4

i

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2015 Cray Inc.

10
8

var i: int;

on Locales[1] {

0

1

2

3

4

i

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2015 Cray Inc.

10
9

var i: int;

on Locales[1] {

 var j: int;

0

1

2

3

4

i j

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2015 Cray Inc.

11
0

var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

0

1

2

3

4

i j

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

0

1

2

3

4

Chapel: Scoping and Locality

Copyright 2015 Cray Inc.

11
1

var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

 var k: int;

 // within this scope, i, j, and k can be referenced;

 // the implementation manages the communication for i and j
 }

 }

}

i j k k k k k

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel and PGAS: Public vs. Private

Copyright 2015 Cray Inc.

11
2

How public a variable is depends only on scoping
● who can see it?

● who actually bothers to refer to it non-locally?
var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

 var k = i + j;

 }

 }

}

0

1

2

3

4

Locales (think: “compute nodes”)

i j

k k k k k

C O M P U T E | S T O R E | A N A L Y Z E

The Locale Type

Copyright 2015 Cray Inc.

11
3

Definition:

● Abstract unit of target architecture

● Supports reasoning about locality
● defines “here vs. there” / “local vs. remote”

● Capable of running tasks and storing variables
● i.e., has processors and memory

Typically: A compute node (multicore processor or SMP)

C O M P U T E | S T O R E | A N A L Y Z E

Getting started with locales

Copyright 2015 Cray Inc.

11
4

● Specify # of locales when running Chapel programs

● Chapel provides built-in locale variables

● User’s main() begins executing on locale #0

% a.out --numLocales=8

config const numLocales: int = …;

const Locales: [0..#numLocales] locale = …;

L0 L1 L2 L3 L4 L5 L6 L7 Locales:

% a.out –nl 8

C O M P U T E | S T O R E | A N A L Y Z E

Locale Operations

Copyright 2015 Cray Inc.

11
5

● Locale methods support queries about the target system:

● On-clauses support placement of computations:

proc locale.physicalMemory(…) { … }

proc locale.numCores { … }

proc locale.id { … }

proc locale.name { … }

writeln(“on locale 0”);

on Locales[1] do

 writeln(“now on locale 1”);

writeln(“on locale 0 again”);

begin on A[i,j] do

 bigComputation(A);

begin on node.left do

 search(node.left);

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2015 Cray Inc.

11
6

Motivation

Chapel Background and Themes

Survey of Chapel Concepts

● Project Status and Next Steps

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

C O M P U T E | S T O R E | A N A L Y Z E

Domains

Copyright 2015 Cray Inc.

11
7

Domain:
● A first-class index set

● The fundamental Chapel concept for data parallelism

config const m = 4, n = 8;

const D = {1..m, 1..n};

const Inner = {2..m-1, 2..n-1};

D

Inner

C O M P U T E | S T O R E | A N A L Y Z E

Domains

Copyright 2015 Cray Inc.

11
8

Domain:
● A first-class index set

● The fundamental Chapel concept for data parallelism

● Useful for declaring arrays and computing with them

config const m = 4, n = 8;

const D = {1..m, 1..n};

const Inner = {2..m-1, 2..n-1};

var A, B, C: [D] real;

A
B

C

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism by Example: Jacobi Iteration

A:

1.0

n

n

  4

repeat until max

change < 

Copyright 2015 Cray Inc.

11
9

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Copyright 2015 Cray Inc.

12
0

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Declare program parameters

const  can’t change values after initialization

config  can be set on executable command-line
 prompt> jacobi --n=10000 --epsilon=0.0001

note that no types are given; they’re inferred from initializers

 n  default integer (64 bits)

 epsilon  default real floating-point (64 bits)

Copyright 2015 Cray Inc.

12
1

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Declare domains (first class index sets)

{lo..hi, lo2..hi2}  2D rectangular domain, with 2-tuple indices

Dom1[Dom2]  computes the intersection of two domains

.exterior()  one of several built-in domain generators

0

n+1

BigD D LastRow

0 n+1

Copyright 2015 Cray Inc.

12
2

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Declare arrays

var  can be modified throughout its lifetime

: [Dom] T  array of size Dom with elements of type T

(no initializer)  values initialized to default value (0.0 for reals)

A Temp BigD

Copyright 2015 Cray Inc.

12
3

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Set Explicit Boundary Condition

Arr[Dom]  refer to array slice (“forall i in Dom do …Arr[i]…”)

A

Copyright 2015 Cray Inc.

12
4

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Compute 5-point stencil

forall ind in Dom  parallel forall expression over Dom’s indices,

 binding them to ind

 (here, since Dom is 2D, we can de-tuple the indices)

  4

Copyright 2015 Cray Inc.

12
5

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Compute maximum change

op reduce  collapse aggregate expression to scalar using op

Promotion: abs() and – are scalar operators; providing array operands

 results in parallel evaluation equivalent to:
 forall (a,t) in zip(A,Temp) do abs(a – t)

Copyright 2015 Cray Inc.

12
6

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Copy data back & Repeat until done

uses slicing and whole array assignment

standard do…while loop construct

Copyright 2015 Cray Inc.

12
7

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Write array to console

Copyright 2015 Cray Inc.

12
8

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

By default, domains and their arrays are mapped to a single locale.

Any data parallelism over such domains/ arrays will be executed by the cores on that locale.

Thus, this is a shared-memory parallel program.

Copyright 2015 Cray Inc.

12
9

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1} dmapped Block({1..n, 1..n}),

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

With this simple change, we specify a mapping from the domains and arrays to locales

Domain maps describe the mapping of domain indices and array elements to locales

 specifies how array data is distributed across locales

 specifies how iterations over domains/arrays are mapped to locales

BigD D LastRow A Temp

Copyright 2015 Cray Inc.

13
0

C O M P U T E | S T O R E | A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

 epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1} dmapped Block({1..n, 1..n}),

 D = BigD[1..n, 1..n],

 LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

 forall (i,j) in D do

 Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

 const delta = max reduce abs(A[D] - Temp[D]);

 A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

use BlockDist;

Copyright 2015 Cray Inc.

13
1

C O M P U T E | S T O R E | A N A L Y Z E

Notes on Forall Loops

Copyright 2015 Cray Inc.

13
2

forall a in A do

 writeln(“Here is an element of A: ”, a);

Typically:
• 1 ≤ #Tasks << #Iterations

• #Tasks ≈ amount of HW parallelism

forall (a, i) in zip(A, 1..n) do

 a = i / 10.0;

Like for loops, forall-loops may be zippered,

and corresponding iterations will match up

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: Chapel

Copyright 2015 Cray Inc.

13
3

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

Philosophy: Good language design can tease details of locality and

parallelism away from an algorithm, permitting the compiler, runtime,

applied scientist, and HPC expert to each focus on their strengths.

config const m = 1000,

 alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A = B + alpha * C;

the special

sauce

Chapel

C O M P U T E | S T O R E | A N A L Y Z E

LULESH: a DOE Proxy Application

Copyright 2015 Cray Inc.

13
4

Goal: Solve one octant of the spherical Sedov problem (blast

wave) using Lagrangian hydrodynamics for a single

material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

C O M P U T E | S T O R E | A N A L Y Z E

LULESH in Chapel

Copyright 2015 Cray Inc.

13
5

C O M P U T E | S T O R E | A N A L Y Z E

LULESH in Chapel

Copyright 2015 Cray Inc.

13
6

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in Chapel v1.9 in examples/benchmarks/lulesh/*.chpl

1288 lines of source code
plus 266 lines of comments

487 blank lines

C O M P U T E | S T O R E | A N A L Y Z E

LULESH in Chapel

Copyright 2015 Cray Inc.

13
7

This is all of the representation dependent code.

It specifies:

• data structure choices
• structured vs. unstructured mesh

• local vs. distributed data

• sparse vs. dense materials arrays

• a few supporting iterators

C O M P U T E | S T O R E | A N A L Y Z E

LULESH in Chapel

Copyright 2015 Cray Inc.

13
8

Here is some sample representation-independent code
 IntegrateStressForElems()

 LULESH spec, section 1.5.1.1 (2.)

https://codesign.llnl.gov/pdfs/spec-7.pdf

C O M P U T E | S T O R E | A N A L Y Z E

Representation-Independent Physics

Copyright 2015 Cray Inc.

13
9

Because of domain maps, this code is independent of:

 structured vs. unstructured mesh

 shared vs. distributed data

 sparse vs. dense representation

proc IntegrateStressForElems(sigxx, sigyy, sigzz, determ) {

 forall k in Elems {

 var b_x, b_y, b_z: 8*real;

 var x_local, y_local, z_local: 8*real;

 localizeNeighborNodes(k, x, x_local, y, y_local, z, z_local);

 var fx_local, fy_local, fz_local: 8*real;

 local {

 /* Volume calculation involves extra work for numerical consistency. */

 CalcElemShapeFunctionDerivatives(x_local, y_local, z_local,

 b_x, b_y, b_z, determ[k]);

 CalcElemNodeNormals(b_x, b_y, b_z, x_local, y_local, z_local);

 SumElemStressesToNodeForces(b_x, b_y, b_z, sigxx[k], sigyy[k], sigzz[k],

 fx_local, fy_local, fz_local);

 }

 for (noi, t) in elemToNodesTuple(k) {

 fx[noi].add(fx_local[t]);

 fy[noi].add(fy_local[t]);

 fz[noi].add(fz_local[t]);

 }

 }

}

parallel loop over elements

collect nodes neighboring this

element; localize node fields

update node forces from

element stresses

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2015 Cray Inc.

14
0

Motivation

Chapel Background and Themes

Survey of Chapel Concepts

● Project Status and Next Steps

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

C O M P U T E | S T O R E | A N A L Y Z E

Domain Maps

Copyright 2015 Cray Inc.

14
1

Domain maps are “recipes” that instruct the compiler how to

map the global view of a computation…

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

 …to the target locales’ memory and processors:

A = B + alpha * C;

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s Domain Map Philosophy

Copyright 2015 Cray Inc.

14
2

1. Chapel provides a library of standard domain maps
● to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel
● to cope with any shortcomings in our standard library

3. Chapel’s standard domain maps are written using the

same end-user framework
● to avoid a performance cliff between “built-in” and user-defined cases

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Locality Control

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Domain Types

Copyright 2015 Cray Inc.

14
3

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Array Types

Copyright 2015 Cray Inc.

14
4

C O M P U T E | S T O R E | A N A L Y Z E

All Domain Types Support Domain Maps

Copyright 2015 Cray Inc.

14
5

C O M P U T E | S T O R E | A N A L Y Z E

Domain Maps Summary

Copyright 2015 Cray Inc.

● Data locality requires mapping arrays to memory well
● distributions between distinct memories

● layouts within a single memory

● Most languages define a single data layout & distribution
● where the distribution is often the degenerate “everything’s local”

● Domain maps…
…move such policies into user-space…

…exposing them to the end-user through high-level declarations

const Elems = {0..#numElems} dmapped Block(…)

14
6

C O M P U T E | S T O R E | A N A L Y Z E

Two Other Thematically Similar Features

Copyright 2015 Cray Inc.

14
7

1) parallel iterators: Define parallel loop policies

2) locale models: Define target architectures

Like domain maps, these are…
…written in Chapel by expert users using lower-level features

● e.g., task parallelism, on-clauses, base language features, …

…available to the end-user via higher-level abstractions
● e.g., forall loops, on-clauses, lexically scoped PGAS memory, …

C O M P U T E | S T O R E | A N A L Y Z E

Multiresolution Summary

Copyright 2015 Cray Inc.

Chapel’s multiresolution philosophy allows users to write…
…custom array implementations via domain maps

…custom parallel iterators via leader-follower iterators

…custom architectural models via hierarchical locales

The result is a language that decouples crucial policies for

managing data locality out of the language’s definition

and into an expert user’s hand…

…while making them available to end-users through high-

level abstractions

14
8

C O M P U T E | S T O R E | A N A L Y Z E

For More Information on…

Copyright 2015 Cray Inc.

…domain maps
User-Defined Distributions and Layouts in Chapel: Philosophy and Framework

[slides], Chamberlain, Deitz, Iten, Choi; HotPar’10, June 2010.

Authoring User-Defined Domain Maps in Chapel [slides], Chamberlain, Choi,

Deitz, Iten, Litvinov; Cug 2011, May 2011.

…leader-follower iterators
User-Defined Parallel Zippered Iterators in Chapel [slides], Chamberlain, Choi,

Deitz, Navarro; PGAS 2011, October 2011.

…hierarchical locales
Hierarchical Locales: Exposing Node-Level Locality in Chapel, Choi; 2nd KIISE-

KOCSEA SIG HPC Workshop talk, November 2013.

Status: all of these concepts are in-use in every Chapel program today
 (pointers to code/docs in the release available by request)

 14
9

http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/publications/hotpar10-final.pdf
http://chapel.cray.com/presentations/Chamberlain-HotPAR10.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/presentations/ChapelForCUG2011.pdf
http://pgas11.rice.edu/papers/ChamberlainEtAl-Chapel-Iterators-PGAS11.pdf
http://pgas11.rice.edu/papers/ChamberlainEtAl-Chapel-Iterators-PGAS11.pdf
http://pgas11.rice.edu/papers/ChamberlainEtAl-Chapel-Iterators-PGAS11.pdf
http://pgas11.rice.edu/papers/ChamberlainEtAl-Chapel-Iterators-PGAS11.pdf
http://chapel.cray.com/presentations/ChapelForPGAS2011.pdf
http://chapel.cray.com/presentations/KIISE-KOCSEA_HPC_Workshop2013.pdf
http://chapel.cray.com/presentations/KIISE-KOCSEA_HPC_Workshop2013.pdf
http://chapel.cray.com/presentations/KIISE-KOCSEA_HPC_Workshop2013.pdf

C O M P U T E | S T O R E | A N A L Y Z E

Summary

Copyright 2015 Cray Inc.

15
0

Higher-level programming models can help insulate

algorithms from parallel implementation details
● yet, without necessarily abdicating control

● Chapel does this via its multiresolution design
● here, we saw it principally in domain maps

● leader-follower iterators and locale models are other examples

● these avoid locking crucial policy decisions into the language

We believe Chapel can greatly improve productivity
…for current and emerging HPC architectures

…for emerging mainstream needs for parallelism and locality

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2015 Cray Inc.

15
1

Motivation

Chapel Background and Themes

Survey of Chapel Concepts

Project Status and Next Steps

C O M P U T E | S T O R E | A N A L Y Z E

The Cray Chapel Team (Summer 2014)

Copyright 2015 Cray Inc.

15
2

C O M P U T E | S T O R E | A N A L Y Z E

Chapel…

Copyright 2015 Cray Inc.

15
3

…is a collaborative effort — join us!

C O M P U T E | S T O R E | A N A L Y Z E

A Year in the Life of Chapel

Copyright 2015 Cray Inc.

15
4

● Two major releases per year (April / October)
● latest release: version 1.11, April 2nd, 2015

● ~a month later: detailed release notes
● version 1.11 release notes: http://chapel.cray.com/download.html#releaseNotes

● CHIUW: Chapel Implementers and Users Workshop (May-June)

● workshop focusing on community efforts, code camps

● this year will be held in Portland, June 13-14

● SC (Nov)
● the primary conference for the HPC industry

● we give tutorials, BoFs, talks, etc. to show off year’s work

● Talks, tutorials, research visits, blogs, … (year-round)

http://chapel.cray.com/download.html#releaseNotes
http://chapel.cray.com/download.html#releaseNotes

C O M P U T E | S T O R E | A N A L Y Z E

Implementation Status -- Version 1.11 (Apr 2015)

Copyright 2015 Cray Inc.

15
5

Overall Status:
● User-facing Features: generally in good shape

● some require additional attention (e.g., strings, memory mgmt)
● Multiresolution Features: in use today

● their interfaces are likely to continue evolving over time
● Error Messages: not always as helpful as one would like

● correct code works well, incorrect code can be puzzling
● Performance: hit-or-miss depending on the idioms used

● Chapel designed to ultimately support competitive performance
● to-date, we’ve focused primarily on correctness and local perf.

This is a great time to:
● Try out the language and compiler
● Use Chapel for non-performance-critical projects
● Give us feedback to improve Chapel
● Use Chapel for parallel programming education

C O M P U T E | S T O R E | A N A L Y Z E

Chapel and Education

Copyright 2015 Cray Inc.

15
6

● When teaching parallel programming, I like to cover:
● data parallelism

● task parallelism

● concurrency

● synchronization

● locality/affinity

● deadlock, livelock, and other pitfalls

● performance tuning

● …

● I don’t think there’s been a good language out there…
● for teaching all of these things

● for teaching some of these things well at all

● until now: We believe Chapel can play a crucial role here

http://chapel.cray.com/education.html
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: the next five years

Copyright 2015 Cray Inc.

15
7

● Harden prototype to production-grade
● add/improve lacking features

● optimize performance

● improve interoperability

● Target more complex/modern compute node types
● e.g., Intel Phi, CPU+GPU, AMD APU, …

● Continue to grow the user and developer communities
● including nontraditional circles: desktop parallelism, “big data”

● transition Chapel from Cray-managed to community-governed

C O M P U T E | S T O R E | A N A L Y Z E

Summary

Copyright 2015 Cray Inc.

15
8

Higher-level programming models can help insulate

algorithms from parallel implementation details
● yet, without necessarily abdicating control

● Chapel does this via its multiresolution design
● here, we saw it principally in domain maps

● parallel iterators and locale models are other examples

● these avoid locking crucial policy decisions into the language

We believe Chapel can greatly improve productivity
…for current and emerging HPC architectures

…for emerging mainstream needs for parallelism and locality

C O M P U T E | S T O R E | A N A L Y Z E

For More Information: Online Resources

Copyright 2015 Cray Inc.

15
9

Chapel project page: http://chapel.cray.com
● overview, papers, presentations, language spec, …

Chapel GitHub page: https://github.com/chapel-lang
● download 1.11.0 release, browse source repository

Chapel Facebook page: https://www.facebook.com/ChapelLanguage

http://chapel.cray.com/
https://github.com/chapel-lang
https://github.com/chapel-lang
https://github.com/chapel-lang
https://www.facebook.com/ChapelLanguage

C O M P U T E | S T O R E | A N A L Y Z E

For More Information: Community Resources

Copyright 2015 Cray Inc.

16
0

Chapel SourceForge page: https://sourceforge.net/projects/chapel/

● join community mailing lists; alternative release download site

Mailing Aliases:
● chapel_info@cray.com: contact the team at Cray

● chapel-announce@lists.sourceforge.net: list for announcements only

● chapel-users@lists.sourceforge.net: user-oriented discussion list

● chapel-developers@lists.sourceforge.net: developer discussion

● chapel-education@lists.sourceforge.net: educator discussion

● chapel-bugs@lists.sourceforge.net: public bug forum

https://sourceforge.net/projects/chapel/

C O M P U T E | S T O R E | A N A L Y Z E

For More Information: Suggested Reading

Copyright 2015 Cray Inc.

16
1

Overview Papers:
● A Brief Overview of Chapel, Chamberlain (pre-print of a chapter for A

Brief Overview of Parallel Programming Models, edited by Pavan

Balaji, to be published by MIT Press in 2014).
● a detailed overview of Chapel’s history, motivating themes, features

● The State of the Chapel Union [slides], Chamberlain, Choi, Dumler,

Hildebrandt, Iten, Litvinov, Titus. CUG 2013, May 2013.
● a higher-level overview of the project, summarizing the HPCS period

http://chapel.cray.com/papers/BriefOverviewChapel.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/presentations/ChapelForCUG13-final.pdf

C O M P U T E | S T O R E | A N A L Y Z E

For More Information: Lighter Reading

Copyright 2015 Cray Inc.

16
2

Blog Articles:
● Chapel: Productive Parallel Programming, Chamberlain, Cray Blog,

May 2013.
● a short-and-sweet introduction to Chapel

● Why Chapel? (part 1, part 2, part 3), Chamberlain, Cray Blog, June-

August 2014.
● a current series of articles answering common questions about why we are

pursuing Chapel in spite of the inherent challenges

● [Ten] Myths About Scalable Programming Languages

(index available here), Chamberlain, IEEE TCSC Blog, April-

November 2012.
● a series of technical opinion pieces designed to combat standard

arguments against the development of high-level parallel languages

http://blog.cray.com/?p=5889
http://blog.cray.com/?p=5889
http://blog.cray.com/
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6908
http://blog.cray.com/?p=7060
http://blog.cray.com/
http://chapel.cray.com/editorials.html
https://www.ieeetcsc.org/activities/blog

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2015 Cray Inc.

16
3

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2015 Cray Inc.

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

