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e Announcement

* The class on Tuesday, May 19 has been rescheduled
to Thursday, May 21.

— Same time (6:30pm), same place (CSE 305, MS building 99)

 Next class: Guest lecture from Brad Chamberlain,
Chapel lead.

— Should be the most interesting lecture of the class — please
don't miss it!

* No homework due next week.
— Work on project!
— May turn in Problem 3 of last homework next week.



Bitonic Sort: Setup

Let's walk through Figure 4.7 in text — should help with HW:

int t; Number of threads - 2”m

rec L[n]; Records to be sorted

int size = n/t; Local size — assume t divides m

key BufK[t] [size]; Buffer for passing data to partners

bool free'[t] = false; ready'[t]; synchronization variables

forall (index in(0..t-1) {

int i,d,p; bool stall;

rec LocL[size] = localize(L[]); Local piece of L

rec inputCopylsize]; Simplifes copy at end

key Kn[size]=localize (BufK|[]); Local piece of BufK

key Klsize];

for (1=0; i<size; 1i++) {
K[i] .x=LocL[1].x; Copy string to sort into work buffer
K[1] .home=1localToGlobal (LocL,I,0); Remember global index

}
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Bitonic Sort: Data

Movement
Let's walk through Figure 4.7 in text — should help with HW:

alphabetizeInPlace (K[],bit (index,0)); Local sort, up or
down based on bit 0
for (d=1; d<=m; d++) { Main loop, m phases
for (p=d-1; p<0; p—-) { Define p for each sub-phase
stall=free' [neigh (index, p)]: Stall till can give data
for (i=0; i<size; 1i++) { Send my data to partner
BufK[neigh (index,p) ] [1]=K[1]; neigh () finds partner

}

ready' [neigh (index, p) ]=true; Release neighbor to go
stall=ready' [1index]; Stall till my data 1s ready

. Bitonic merge two buffers (mine in K, partner's in my
local piece of BufK), I keep half, partner keeps other
. Barrier

}

}
. Copy back into L (via inputCopy)



e Agenda

* Discuss parallel algorithms

— Huge topic, could spend an entire quarter (and
more)

* We will just give some highlights

— Re-conceptualizing computation — classic
example of SUMMA matrix multiplication

— Formulating algorithms as generalized reduces
and scans
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9 Recall From Lecture 1

* Matrix Multiplication on Processor Grid
IDO I31 IDO I31 IDO I31
I R
P2 P3 _ P2 P3 P2 P3
C A B
— Matrices A and B producing n x n P,
result Cwhere C.. =), ., A,*B,. I
— Need to copy partial row from A
: Temp
and partial column from B. R
* In this example, row from P, column

from P,
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e Applying Scalable
Technigues
* Assume each processor stores block of C, A, B;
assume “can’t” store all of any matrix

* To compute c,, a processor needs all of row r

of A and column s of B >
* Consider strategies for p—
minimizing data movement, Temp
. I
because that is the greatest
cost — what are they? . ® B,

o0, 0O, =
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Grab All Rows/Columns At
Once

* Send each processor all of rows and columns it needs
at the beginning —rest is all local.

C / A B

* If there was that much space, why aren’t we using
bigger blocks?

* Network congestion — all threads doing this in parallel?
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Process t x t Blocks

* What if, instead of

. _ for (r=0; r < t; r++)
processing entire for (s=0; s < t; s++){
cl[rl[s] = 0.0;
m x m block we for (k=0; k < n; k++)
process smaller alelli=g w= el e lie il
}

t xt chunks?

C
txt{ Po Py
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Process t x t Blocks

* What if, instead of

. _ for (r=0; r < t; r++)
processing entire for (s=0; s < t; s++){
cl[rl[s] = 0.0;
m x m block we for (k=0; k < n; k++)
process smaller alelli=g w= el e lie il
}

t xt chunks?

C
txt{
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e Revisit The Formula

— 3
Crs - ElskSn Ark Bks

// Assume c[][] initialized to Os
for (r=0; r < n; r++) {
for (s=0; s < n; s++){
for (k=0; k < n; k++) {
c[r][s] += a[r][k]*b[k][s];
}
}
}




Spring 2015

Revisit The Formula

— 3
Crs - ElskSn Ark Bks

// Assume c[][] initialized to Os
for (r=0; r < n; r++) {
for (s=0; s < n; s++){
for (k=0; k < n; k++) {
c[r][s] += a[r][k]*b[k][s];
}

What if we lift the k-loop out of the nest?
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Revisit The Formula

— 3
Crs - ElskSn Ark Bks

// Assume c[][] initialized to Os
for (k=0; k < n; k++){
for (r=0; r < n; r++) {
for (s=0; s < n; s++) {
c[r] [s] += a[r] [k]*b[k][s]’

Does this still compute the same values?
What have we done?
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Revisit The Formula

— 3
Crs - ElskSn Ark Bks

// Assume c[][] initialized to Os
for (k=0; k < n; k++){
for (r=0; r < n; r++) {
for (s=0; s < n; s++) {
c[r] [s] += a[r] [k]*b[k][s]’

Computing C term-by-term rather than
element-by-element (all 15t terms, all 2@

terms, etc.)
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9 Change Of View Point

 Consider this m x m block — what do we need

to compute 15t terms?
C A B
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P

Change Of View Point

 Consider this m x m block — what do we need
to compute 15t terms?

C

Spring 2015

A B

Switch orientation -- by using a column of A
and a row of B compute all 1st terms of the

dot products
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9 Change Of View Point

 Consider this m x m block — what do we need
to compute 15t t terms?

Hton

Need t columns of A and t rows of B ... '
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9 Change Of View Point

e Consider this m x m block —what do we need
to compute arbitrary set of the same t terms?

C A i B

Need different t columns of A and t rows of B ... '
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9 Change Of View Point

e Consider this m x m block —what do we need
to compute arbitrary set of t terms?

C A i B

Need different t columns of A and t rows of B ... '

* Key: each block only needs each value once,
can compute all terms that depend on it
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9 Higher Level SUMMA View

 SUMMA communication: send my portion of row (or
block of rows) to everyone in my column, my portion
of column (or block of columns) to everyone in my row

* Followed by a step of computing next term(s) locally
* Repeat with next (block of) partial row(s)/column(s)...

C A B
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P sovmn

* Scalable Universal Matrix Multiplication Algorithm
— Invented by van de Geijn & Watts of UT Austin

— Generally considered best machine independent Matrix
Multiplication

— Many linear algebra libraries implement variations of this
* Whereas MM is usually A row x B column, SUMMA is A

column x B row because computation switches sense

— Normal: Compute all terms of a dot product

— SUMMA: Computer a term of all dot products

* Key: Don't have to send data twice!

— By computing term-by-term, and “flipping the sense”,
each processor can do all computations from a received
block at once .




thm

* Recall our observation earlier that it made sense to locally sum
numbers before combining them in a tree.

* The generalized version of this is due to Jack Schwartz. Idea:
— Can combine N items on P= N threads/processors in log P (=log N) time

— If we first combine O(log N) values at each leaf, we end up with the
same time complexity (O(log N)), but CN log N values!

— In practice, communication >>__, local computation, so this is a big win

regardless of C r-
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9 Schwartz

* Generally Pis not a variable, and P << N

e Use Schwartz as heuristic: Prefer to work at leaves (no
matter how much bigger N is than P) rather than
enlarge (make a deeper) tree, implying tree will have no
more than log, P height

* Also, consider higher degree
tree — especially if
communication can be
overlapped (multiple
outstanding fetches/receives)
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Recall Parallel Prefix
Algorithm — Canonical Scan

Compute sum going up: reduce j | Introduce a virtual

Compute prefixes going down o parent, the sum of

values to tree’ s left: 0

36 40

10

AN L AN /AN /]

6 4 16 10 16 14 2 8

10
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Compute sum going up: reduce

Compute prefixes going down

Recall Parallel Prefix
Algorithm — Canonical Scan

(|
76

0

0+36

36 —

10

[

[

i

Invariant: Parent sends
sum of elements to left
of child’s subtree

40

v

10

[

10

16

14 2 8

6 4 16

Spring 2015

10

16 14
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Recall Parallel Prefix
Algorithm — Canonical Scan

Compute sum going up: reduce 1) Invariant: Parent sends
Compute prefixes going down — sum of elements to left
0| 0+36 of child’s subtree
36 0 36 40
10 26 30 10
6 4 16 10| |16 14 2 8

6 4 16 10 16 14
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Recall Parallel Prefix
Algorithm — Canonical Scan

Compute sum going up: reduce i Invariant: Parent sends
Compute prefixes going down o sum of elements to left

0| 0+36 of child’s subtree

3 0 36 40
0| 0+1 36 | 36+30
10| 26 30— 10
6 4 16 10 16 14 2 8
6 4 16 10 16 14 2 8
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Recall Parallel Prefix
Algorithm — Canonical Scan

Each prefix is computed 0
in 2log ntime, if P=n l

76

0| 0+36
36 40
0| 0O+10 36 | 36+30
0+6 10+16 36+16 66+2

6 6+0 4+6 4 16| 16+10 10+26 | 10 16 | 16+36 14+52 | 14 2 | 2+66 8+68
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Generalized Reduce and
Scan

We've seen the notions of tree-based reduce and scan pop
up repeatedly

— Reduce aggregates elements into a single result (e.g., sum)
— Scan also computes all “partial results” (e.g., prefix sum)
Language-level support for +, *, min, max, &&, || is
common

Turns out that many algorithms can be formulated (and
parallelized) as generalized reduces or scans

If so, can practically apply to “recipe” to achieve efficient
tree-based (Schwartz) parallelization

Note: Scans can be inclusive (output[0] = input[0]) or
exclusive (output[0] = identity, output[1] = input[0])
— Exclusive is more flexible, as we will see...




e Examples

 Reduce examples

— Second smallest value (!= smallest): send two
smallest to parent, parent combines by keeping
two smallest across children.

— Length of longest run of 1’s: compute longest in
each leaf, take max at parent. Requires edge
cases to track/handle 1s that cross child
boundaries

— Histogram, counts items in k buckets: how would
you?

— Index of first occurrence of x: how would you?
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Examples

e Scan examples

— Team standings at every point from list of game
results:

* Instead of prefix sum of scalar, do a prefix sum of vector v,
where v; is number of wins of team /.

* Treat each game element as a vector with a 1 in the winning
team’s position.
— Index of most recent occurrence of a character:

* Locally compute /ast occurance of each character in term of
global indices.

 Combine at parents by taking max for each character

* On the way down, we will receive the last occurrence to the
left of our leaf — use to initialize local rescan



9 Structure of Computation

* Begin by applying Schwartz idea to problem

— Local accumulate at leaves

\ 4

val..val

val..val

val..val

val..val

val..val

val..val

val..val

val..val
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9 Structure of Computation

* Begin by applying Schwartz idea to problem
— Local computation

— Combine leaf results at parents

combine

val..val

val..val

val..val

val..val

val..val

val..val

val..val

val..val

Spring 2015
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9 Structure of Computation

* Begin by applying Schwartz idea to problem
— Local computation

“to-left”

— Combine leaf results at parents

— If scan: send down “values to left”, apply at leaves

val..val

val..val

val..val

val..val

val..val

val..val

val..val

val..val

Spring 2015
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Generalizing R & S

* Goal: come up with a recipe for parallel reduces
and scans.

* Attempt to define in terms of four sequential
functions:
— init () initialize data structures
— accum () perform local computation
— combine () perform tree combining

— x _gen () produce the final result(s)
 x=reduce
®* X =SCan
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Reduce illustration from
Textbook

init ():Initialize tally [rivctn e
at eaCh |eaf ‘:c-nairi:s‘t,'igm'

accum () : Aggregate e R
each array value into  [emnsiin]  [consig ifrgn] [ambisfourans] (oo ot
ta | |y Tlocal | [tocal]  [ocal|  [local| [tocal]  [ocal] [tocal| [ local
combine ():Combine |

child tallys at each we 1 1

p are nt nit{ } accum j‘:al. val) ac::u'nj‘:al. val) ac::u'n[".al. val)

I

reduceGen (): operand A o
Return root |
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e Reduce Recipe Pseudocode

tally nodeval’ [P]; Global full/empty variables
tally result; tally represents result datatype
forall (index in (0..P-1)) {
int myData[size] = localize(dataarray[]);, Local portion
tally tal;
int stride = 1;
tal = init(); Initialization
for (int i = 0; i < size; i++)
tally = accum(tally, myData[il]); Local accumulation
while (stride < P) {
if(index % (2*stride) == 0) {

tally = combine (tally, nodeval’ [index+stride]) ;
stride = 2 * stride;

} else {
nodeval’ [index] = tally; Done: fill for parent
break;

}

}
}

result = reduceGen (nodeval’ [0]) ; Generate final result




9 Example: Sum Reduce

typedef int tally;

tally init() {
tally tal = new tally;
tal=0;
return tal;

tally combine (tally left,
tally right) {
return left + right;
}

tally accum(int op wval,
tally tal) {
tal += op val;
return tal;

int reduce gen(tally ans) {
return ans;

}




e More Involved Case

* Consider Second Smallest — find second smallest unique
value

* tally tracks smallest and next smallest found so far:

struct tally {
float sm; // smallest
flost nsm; // next smallest

};

* |nitialization:

tally init () {
pair = new tally;
pair.sm = maxFloat;
pair.nsm = maxFloat;
return pair;




Second Smallest
(Continued)

e Accumulate

tally accum(float op val, tally tal) ({

// Check if op val less than smallest

if (op_val < tal.sm) {
tal.nsm = tal.sm;
tal.sm = op val;

} else {
// Otherwise, check if op val betweeen
// smallest and second smallest
if (op_val > tal.sm && op val < tal.nsm) {

tal.nsm = op val;

}

}

return tal;




e Second Smallest
(Continued)

* Combining children

tally combine(tally left, tally right) {
return accum(left.nsm, accum(left.sm, right));

}

* Generating final result

int reduce gen(tally ans) {
return ans.nsm;

}




Recall Parallel Prefix
Algorithm — Canonical Scan

Compute sum going up: reduce i Invariant: Parent sends
Compute prefixes going down o sum of elements to left

0| 0+36 of child’s subtree

3 0 36 40
0| 0+1 36 | 36+30
10| 26 30— 10
6 4 16 10 16 14 2 8
6 4 16 10 16 14 2 8
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Generalized scan

e See textbook errata for full code.

— In combining loop, track left tally — store it with sibling that will need
to add it to parent tally on downsweep:

while (stride < P) {
if(index % (2*stride) == 0) {
ltally[index + stride] = tally;
tally = combine (tally, nodeval’ [index+stride]) ;
stride = 2 * stride;
} else {
nodeval’ [index] = tally; Done: fill for parent

break;




Generalized scan

See textbook errata for full code.

— Then, add downsweep after upsweep. Ensures leaves have combined

value of everything to their left. Recompute local accumulation using
total to left to initialize.

if (index == 0) {
dummy = nodeval’ [0]; nodeval’ [0]
}

for (stride = P/2; stride >= 1;
if(index % (2*stride) == 0) {

ptally nodeval’ [index] ;

nodeval’ [index] = ptally; // Left child gets parent tally,
nodeval’ [index+stride] = // right gets parent + left tally
combine (ptally, ltally[index+stride]) ;

= init () ;

stride = stride/2)

}
ptally = nodeval’ [index]
for(int 1 = 0; i < size i++) {
// Re-accumulate using tally of data to left, apply to data
myResult[i] = scanGen (ptally, myData[i],

localToGlobal (myData, i, 0));
ptally = accum(ptally, myData[i], localToGlobal (myData,i,0))
}




Example: Prefix Sum

typedef int tally; tally combine (tally left,
tally ltally[P] tally right) {

return left + right;
}

tally init() ({

return 0;
} // Already computed prefix

// sum into t when applying
// parent tally to elements
int scan gen(tally ¢t,

tally accum(tally t, int elem,
int elem, int i) {
int i) { // + elem makes inclusive

return t + elem; return t + elem;




//S = # of possible symbols
typedef int[S] tally;

tally ltally[P]

tally init () {
t = new tally;
for(int i=0; i<S; i++)
t[i] = -1;
return t;

tally combine(tally left,
tally right) {
for (int i=0; i<S; i++)
max (left[i] ,right[i])

tally accum(tally t, int sym,
int i) {
tlsym] = 1;
return t;

// Passed in tally will have
// index of last occurrence of
// each symbol to left of elem
// This is why we prefer
// exclusive ordering in
// recipe — can’t undo tally
// updates if non-invertable
int scan gen(tally t, int sym,
int i) {

return t[sym];

}




llustration

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

47



llustration

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

48



llustration

11
7
2 | -1
O]01|O0 1 (1] 1 Ol11]60 1 /0] 1
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llustration

T:/10 | 11

LT:| 2 | 5

11
7
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llustration
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7
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llustration
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PT:| -1
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llustration

LT:| 2 | 5

PT:| -1

LT:| 2 | -1 8 | 7
PT:| -1 | -1 2 |5
-1 -1 2 | -1 PT
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e What's the idea?

 Many computations can be reformulated as
reduces or scans

* You can then apply these techniques +
Schwartz’s algorithm as a recipe for solving
them in parallel

 Some high-level parallel languages have built-
in support for this concept — e.g., Chapel

— Still valuable to understand how it could be done



e Discussion Session

 What did you think of the paper, and the MapReduce
paradigm?
— Flexibility? Can you implement everything you’d want to?
— Ease of use?
— Robustness?

 We've reached the midpoint of the class, and will be
switching gears, to cover languages and more
“applied” topics.
— Anything specifically you want to see covered (no

promises, but I’'m open to suggestions)

— Any thoughts about what we’ve learned, and the papers
you’ve read?




