

CSEP 524 – Parallel Computation University of Washington

Lecture 4: Parallel Algorithms and Abstractions

Michael Ringenburg
Spring 2015

Announcement

- The class on Tuesday, May 19 has been rescheduled to Thursday, May 21.
 - Same time (6:30pm), same place (CSE 305, MS building 99)
- Next class: Guest lecture from Brad Chamberlain, Chapel lead.
 - Should be the most interesting lecture of the class please don't miss it!
- No homework due next week.
 - Work on project!
 - May turn in Problem 3 of last homework next week.

Bitonic Sort: Setup

Let's walk through Figure 4.7 in text – should help with HW:

```
int t;
                 Number of threads - 2^m
rec L[n];
             Records to be sorted
int \underline{\text{size}} = \underline{\text{n}}/\underline{\text{t}}; Local size - assume t divides m
key BufK[t][size]; Buffer for passing data to partners
bool free'[t] = false; ready'[t]; synchronization variables
forall(index in(0..t-1) {
  int i,d,p; bool stall;
  rec LocL[size] = localize(L[]); Local piece of L
                        Simplifes copy at end
  rec inputCopy[size];
  key Kn[size]=localize(BufK[]); Local piece of BufK
 key K[size];
  for (i=0; i<size; i++) {
   K[i].x=LocL[i].x; Copy string to sort into work buffer
    K[i].home=localToGlobal(LocL,I,0); Remember global index
```


Bitonic Sort: Data Movement

Let's walk through Figure 4.7 in text – should help with HW:

```
alphabetizeInPlace(K[],bit(index,0)); Local sort, up or
                                down based on bit 0
for(d=1; d<=m; d++) {
                                Main loop, m phases
 stall=free'[neigh(index,p)]; Stall till can give data
   BufK[neigh(index,p)][i]=K[i]; neigh() finds partner
   ready'[neigh(index,p)]=true; Release neighbor to go
   stall=ready'[index]; Stall till my data is ready
   ... Bitonic merge two buffers (mine in K, partner's in my
   local piece of BufK), I keep half, partner keeps other
   ... Barrier
... Copy back into L (via inputCopy)
```


Agenda

- Discuss parallel algorithms
 - Huge topic, could spend an entire quarter (and more)
- We will just give some highlights
 - Re-conceptualizing computation classic example of SUMMA matrix multiplication
 - Formulating algorithms as generalized reduces and scans

Recall From Lecture 1

Matrix Multiplication on Processor Grid

- Matrices **A** and **B** producing $n \times n$ result **C** where $C_{rs} = \sum_{1 \le k \le n} A_{rk} B_{ks}^*$
- Need to copy partial row from A and partial column from B.
 - In this example, row from P₁, column from P₂

Applying Scalable Techniques

- Assume each processor stores block of *C*, *A*, *B*;
 assume "can't" store all of any matrix
- To compute c_{rs} a processor needs all of row r

of A and column s of B

 Consider strategies for minimizing data movement, because that is the greatest cost – what are they?

Grab All Rows/Columns At Once

• Send each processor all of rows and columns it needs at the beginning – rest is all local.

- If there was that much space, why aren't we using bigger blocks?
- Network congestion all threads doing this in parallel?

Process t x t Blocks

 What if, instead of processing entire m x m block we process smaller t x t chunks?

```
for (r=0; r < t; r++)
  for (s=0; s < t; s++) {
    c[r][s] = 0.0;
    for (k=0; k < n; k++)
        c[r][s] += a[r][k]*b[k][s];
}</pre>
```


Process t x t Blocks

 What if, instead of processing entire m x m block we process smaller t x t chunks?

```
for (r=0; r < t; r++)
  for (s=0; s < t; s++) {
    c[r][s] = 0.0;
    for (k=0; k < n; k++)
        c[r][s] += a[r][k]*b[k][s];
}</pre>
```


Process t x t Blocks

 What if, instead of processing entire m x m block we process smaller t x t chunks?

```
for (r=0; r < t; r++)
  for (s=0; s < t; s++) {
    c[r][s] = 0.0;
    for (k=0; k < n; k++)
        c[r][s] += a[r][k]*b[k][s];
}</pre>
```


(or memory overhead)

$$\mathbf{C}_{rs} = \sum_{1 \le k \le n} A_{rk} B_{ks}$$

```
// Assume c[][] initialized to 0s
for (r=0; r < n; r++) {
  for (s=0; s < n; s++) {
    for (k=0; k < n; k++) {
      c[r][s] += a[r][k]*b[k][s];
    }
  }
}</pre>
```


$$\mathbf{C}_{rs} = \sum_{1 \le k \le n} A_{rk} B_{ks}$$

```
// Assume c[][] initialized to 0s
for (r=0; r < n; r++) {
  for (s=0; s < n; s++) {
    for (k=0; k < n; k++) {
      c[r][s] += a[r][k]*b[k][s];
    }
  }
}</pre>
```

What if we lift the *k*-loop out of the nest?

$$C_{rs} = \sum_{1 \le k \le n} A_{rk} B_{ks}$$

```
// Assume c[][] initialized to 0s
for (k=0; k < n; k++) {
  for (r=0; r < n; r++) {
    for (s=0; s < n; s++) {
      c[r][s] += a[r][k]*b[k][s];
    }
  }
}</pre>
```

Does this still compute the same values? What have we done?

$$\mathbf{C}_{rs} = \sum_{1 \le k \le n} A_{rk} B_{ks}$$

```
// Assume c[][] initialized to 0s
for (k=0; k < n; k++) {
  for (r=0; r < n; r++) {
    for (s=0; s < n; s++) {
      c[r][s] += a[r][k]*b[k][s];
    }
  }
}</pre>
```

Computing C term-by-term rather than element-by-element (all 1st terms, all 2nd terms, etc.)

 Consider this m x m block – what do we need to compute 1st terms?

 Consider this m x m block – what do we need to compute 1st terms?

Switch orientation -- by using a *column* of *A* and a *row* of *B* compute all 1st terms of the dot products

 Consider this m x m block – what do we need to compute 1st t terms?

Need t columns of A and t rows of B ...

 Consider this m x m block – what do we need to compute arbitrary set of the same t terms?

Need different t columns of A and t rows of B ...

 Consider this m x m block – what do we need to compute arbitrary set of t terms?

Need different t columns of A and t rows of B ...

 Key: each block only needs each value once, can compute all terms that depend on it

Higher Level SUMMA View

- SUMMA communication: send my portion of row (or block of rows) to everyone in my column, my portion of column (or block of columns) to everyone in my row
- Followed by a step of computing next term(s) locally
- Repeat with next (block of) partial row(s)/column(s)...

SUMMA

- Scalable Universal Matrix Multiplication Algorithm
 - Invented by van de Geijn & Watts of UT Austin
 - Generally considered best machine independent Matrix Multiplication
 - Many linear algebra libraries implement variations of this
- Whereas MM is usually A row x B column, SUMMA is A column x B row because computation switches sense
 - Normal: Compute all terms of a dot product
 - SUMMA: Computer a term of all dot products
- Key: Don't have to send data twice!
 - By computing term-by-term, and "flipping the sense", each processor can do all computations from a received block at once.

Schwartz's Algorithm

- Recall our observation earlier that it made sense to locally sum numbers before combining them in a tree.
- The generalized version of this is due to Jack Schwartz. Idea:
 - Can combine N items on P = N threads/processors in log P (=log N) time
 - If we first combine O(log N) values at each leaf, we end up with the same time complexity (O(log N)), but CN log N values!

In practice, communication >>_{cost} local computation, so this is a big win regardless of C

Schwartz

- Generally P is not a variable, and P << N
- Use Schwartz as heuristic: Prefer to work at leaves (no matter how much bigger N is than P) rather than enlarge (make a deeper) tree, implying tree will have no more than log₂ P height
- Also, consider higher degree tree – especially if communication can be overlapped (multiple outstanding fetches/receives)

Generalized Reduce and Scan

- We've seen the notions of tree-based reduce and scan pop up repeatedly
 - Reduce aggregates elements into a single result (e.g., sum)
 - Scan also computes all "partial results" (e.g., prefix sum)
- Language-level support for +, *, min, max, &&, || is common
- Turns out that many algorithms can be formulated (and parallelized) as generalized reduces or scans
- If so, can practically apply to "recipe" to achieve efficient tree-based (Schwartz) parallelization
- Note: Scans can be inclusive (output[0] = input[0]) or exclusive (output[0] = identity, output[1] = input[0])
 - Exclusive is more flexible, as we will see...

Examples

- Reduce examples
 - Second smallest value (!= smallest): send two smallest to parent, parent combines by keeping two smallest across children.
 - Length of longest run of 1's: compute longest in each leaf, take max at parent. Requires edge cases to track/handle 1s that cross child boundaries
 - Histogram, counts items in k buckets: how would you?
 - Index of first occurrence of x: how would you?

Examples

- Scan examples
 - Team standings at every point from list of game results:
 - Instead of prefix sum of scalar, do a prefix sum of vector v, where v_i is number of wins of team i.
 - Treat each game element as a vector with a 1 in the winning team's position.
 - Index of most recent occurrence of a character:
 - Locally compute last occurance of each character in term of global indices.
 - Combine at parents by taking max for each character
 - On the way down, we will receive the last occurrence to the left of our leaf – use to initialize local rescan

Structure of Computation

Begin by applying Schwartz idea to problem

Structure of Computation

- Begin by applying Schwartz idea to problem
 - Local computation
 - Combine leaf results at parents

Structure of Computation

- Begin by applying Schwartz idea to problem
 - Local computation
 - Combine leaf results at parents

"to-left" – If scan: send down "values to left", apply at leaves

Generalizing R & S

- Goal: come up with a recipe for parallel reduces and scans.
- Attempt to define in terms of four sequential functions:
 - init() initialize data structures
 - accum () perform local computation
 - combine () perform tree combining
 - $-x_{gen}$ () produce the final result(s)
 - *x* = reduce
 - *x* = scan

Reduce illustration from Textbook

- init(): Initialize tally at each leaf
- accum(): Aggregate each array value into tally
- combine (): Combine child tallys at each parent
- reduceGen():Return root

Reduce Recipe Pseudocode


```
tally nodeval' [P]; Global full/empty variables
tally result;
                  tally represents result datatype
forall(index in (0..P-1)) {
 int myData[size] = localize(dataarray[]); Local portion
 tally tal;
 int stride = 1;
 tal = init();
                                       Initialization
 for (int i = 0; i < size; i++)
   tally = accum(tally, myData[i]); Local accumulation
 while(stride < P) {</pre>
   if(index % (2*stride) == 0) {
     tally = combine(tally, nodeval'[index+stride]);
     stride = 2 * stride;
   } else {
     break;
result = reduceGen(nodeval'[0]); Generate final result
```


Example: Sum Reduce


```
typedef int tally;
```

```
tally init() {
  tally tal = new tally;
  tal=0;
  return tal;
}
```

```
int reduce_gen(tally ans) {
   return ans;
}
```


More Involved Case

- Consider Second Smallest find second smallest unique value
- tally tracks smallest and next smallest found so far:

```
struct tally {
  float sm; // smallest
  flost nsm; // next smallest
};
```

Initialization:

```
tally init() {
   pair = new tally;
   pair.sm = maxFloat;
   pair.nsm = maxFloat;
   return pair;
}
```


Second Smallest (Continued)

Accumulate

```
tally accum(float op val, tally tal) {
  // Check if op_val less than smallest
  if (op val < tal.sm) {</pre>
   tal.nsm = tal.sm;
   tal.sm = op_val;
  } else {
    // Otherwise, check if op val betweeen
    // smallest and second smallest
    if (op_val > tal.sm && op_val < tal.nsm) {</pre>
      tal.nsm = op_val;
  return tal;
```


Second Smallest (Continued)

Combining children

```
tally combine(tally left, tally right) {
  return accum(left.nsm, accum(left.sm, right));
}
```

Generating final result

```
int reduce_gen(tally ans){
  return ans.nsm;
}
```


Recall Parallel Prefix Algorithm – Canonical Scan

Generalized scan

- See textbook errata for full code.
 - In combining loop, track left tally store it with sibling that will need to add it to parent tally on downsweep:

```
while(stride < P) {
   if(index % (2*stride) == 0) {
     ltally[index + stride] = tally;
     tally = combine(tally, nodeval'[index+stride]);
     stride = 2 * stride;
} else {
     nodeval'[index] = tally; Done: fill for parent
     break;
}
</pre>
```


Generalized scan

- See textbook errata for full code.
 - Then, add downsweep after upsweep. Ensures leaves have combined value of everything to their left. Recompute local accumulation using total to left to initialize.

```
if (index == 0) {
  dummy = nodeval'[0]; nodeval'[0] = init();
for (stride = P/2; stride >= 1; stride = stride/2)
  if(index % (2*stride) == 0) {
    ptally = nodeval'[index];
    nodeval'[index] = ptally; // Left child gets parent tally,
    nodeval'[index+stride] = // right gets parent + left tally
      combine(ptally, ltally[index+stride]);
ptally = nodeval'[index]
for(int i = 0; i < size i++) {</pre>
  // Re-accumulate using tally of data to left, apply to data
 myResult[i] = scanGen(ptally, myData[i],
                        localToGlobal(myData, i, 0));
 ptally = accum(ptally, myData[i], localToGlobal(myData,i,0));
```


Example: Prefix Sum


```
typedef int tally;
tally ltally[P]
```

```
tally init() {
  return 0;
}
```


Example: Last Occurrence


```
//S = # of possible symbols
typedef int[S] tally;
tally ltally[P]
```

```
tally init() {
   t = new tally;
   for(int i=0; i<S; i++)
      t[i] = -1;
   return t;
}</pre>
```


T:	10	11
LT:	2	5

T:	10	11
LT:	2	5
PT:	-1	-1

T:	2	5
LT:	2	-1

T:	10	11
LT:	2	5
PT:	-1	-1

T:	10	11
LT:	8	7
PT:	2	5

T:	2	-1			Т
		0	0	0	

10

11

7

T:	10	11
LT:	2	5
PT:	-1	-1

PT:	2	-1		
T:	-1	5		
		1	1	1

PT:	2	5		
Т:	8	7		
		0	1	

		PT:	2	5
PT:	8	7		
T:	10	11		
		1	0	1

LT:

0

-1

-1

PT:

T:

10

LT:

11

7

5

T:	10	11
_T:	2	5
PT:	-1	-1

T:	2	5	
LT:	2	-1	
PT:	-1	-1	

1	PT:	2	5	

2	5	PT:	8	7
8	7	T:	10	11

0	0	0
-1	0	1

1	1	1
-1	3	4

0	1	0
2	5	6

1	0	1	
7	8	9	

-1

PT:

T:

What's the idea?

- Many computations can be reformulated as reduces or scans
- You can then apply these techniques + Schwartz's algorithm as a recipe for solving them in parallel
- Some high-level parallel languages have builtin support for this concept – e.g., Chapel
 - Still valuable to understand how it could be done

Discussion Session

- What did you think of the paper, and the MapReduce paradigm?
 - Flexibility? Can you implement everything you'd want to?
 - Ease of use?
 - Robustness?
- We've reached the midpoint of the class, and will be switching gears, to cover languages and more "applied" topics.
 - Anything specifically you want to see covered (no promises, but I'm open to suggestions)
 - Any thoughts about what we've learned, and the papers you've read?