>

CSEP 524 — Parallel Computation
University of Washington

Lecture 7: Big Data Analytics

Michael Ringenburg
Spring 2015

e Projects |

* Project presentations start next week!

* Please submit slides via the course dropbox
the night before your presentation, so | can
load them all on to the same machine to
speed transitions

* For those presenting next week (5/21) — there
are only 3 of you, so | can be a bit more

flexible. Please submit your slides by 4pm on
5/21.

e Logistics

 Reminder: Next week’s class moved to Thursday,
5/21

* Today:
— First hour (6:30-7:30): Analytics Intro; Hadoop

— Second “hour” (7:35-8:20): Discuss analytics
performance

— Third hour (8:20-9:20): Brad presents rest of chapel
presentation

* Next Thursday: Analytics in Spark, 3
presentations

* Final two classes (5/26, 6/2): Presentations

e Big Data

* Asof 2012, 2.5 exabytes of data created every
day

e Storage capacity doubling every 40 months

* Massive amount of data now exist/are being
generated

 How can we understand/process/utilize this
amount of data?

* Does it open new possibilities? New
paradigms? New challenges?

e The 345 V’s of Big Data

* Challenges of big data typically lie in one (or
more) of the following V’s

— Volume: very large amount of data
— Velocity: data coming in very rapidly
— Variety: many different types of data

e Two additional V’'s are sometimes added:

— Veracity: Large variance in the quality of the data/
difficulty in determining quality

— Variability: Inconsistency in the data

e Big Data Examples

* Large Hadron Collider: 600 million particle
collisions per second

* Twitter: 500 million tweets per day

* Cybersecurity: Analyzing network/file/other log
data — potentially high velocity, high volume

* Banking: Credit card fraud detection

* Real estate: Windermere using 100 million GPS
trackers to estimate commute times for new
home buyers

e Big Data Examples

e Social Media: 50 billion Facebook photos per day

* Bioinformatics/medecine: Massive amounts of

genomic data to analyze; patient treatment
outcomes, etc

* Financial Trading: Analyzing stock/bond/option
transactions; determining compliance with
regulations; new trading algorithms

 Medicare fraud detection: analyzing medical
billing records

e Data Analytics

* Gleaning information from (typically “big”) data
sets

— Summarizing large data sets
— Finding patterns
— Looking for anomalies
— Developing new models/theories
e Data scientists: experts in data analytics.
Typically combine backgrounds in:
— Math/Statistics
— Computer Science
— Often domain-specific knowledge

Analytics: A New Application

of Parallel Computing?
Big Data Analytics Challenge

High volume of data Many nodes = large amount of memory to
store data (DRAM and disks)

High velocity of data — need to keep up Many processors/nodes/threads to

with rapid streams of new data handle incoming data. Can scale up as
velocity increases. Can dedicate some
nodes solely to handling incoming data
streams, leaving others for more complex

processing.
Extracting knowledge from large Large datasets tend to scale up well to
quantities of data large numbers of processes. Parallel

versions of many common machine
learning/statistical algorithms are well
studied

Others? Your thoughts?

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

e Graph Analytics

* Many datasets can be treated as graphs (source
vertex [attribute] — edge [attribute] — destination
vertex [attribute])

— Social networks: edges for followers, friends, likes,
retweets, etc

— Graph databases: subject-predicate-object
— Network connections

e Especially valuable for finding unknown
relationships

— Apply graph algorithms to data, find hidden
communities, connections, etc.

Graph Analytics

 One approach: query a
graph database

19
* This query searches for a o @‘90/;@
triangular relationship — S “Or
students who takes p: - dvisor
classes taught by their | |
advisor.

* Graph queries generally

search for “graph SELECT ?X, ?Y, ?Z WHERE
patterns” like this. In { ?X rdf:type ub:Student .

: : ?Y rdf:type ub:Faculty .
relationship databases, i rdf,tge b onree

queries like this require °X ub:advisor 2Y .
expensive joins of ?Y ub:teacherOf 2z .
multiple tables. ?X ub:takesCourse ?Z}

9 Graph Analytics

e Other approach: apply
graph algorithms

— Betweenness centrality
— Community Detection
— BadRank

— Triangle Counting

— Connected Components
— Shortest path

— Clustering

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

11

Graph Example: Twitter
Analysis

* Discover twitter communities of
users with similar interests

— Find influencers (most s 3 Y A
retweeted), rebroadcasters R e o
(most retweets), connectors AN AT
between communities ' e @) “T N

/ vy~ s RN oy anfogstur

* Construct graph of users who SRy ™"0, /5. e).
interact (e.g., mentions) ; “’“.ﬂ-*ﬁ«.ﬂ» @

e Run community detection e e
algorithm U I NG .

* Label communities based on most ' “’f@ ®
common topics (#hashtags) « /

¥ JAverasriScocisfisigel SHOLL1 I ['.J'-?"

* Roles based on retweet and S E T
retweeted count, membership in S 7 |\ T
multiple communities - .

Spring 2015 UW CSEP 524 (PMP Parallel Computation): 12

Ringenburg

9 And Professional Sports!

A Major League Baseball team is using a Cray graph analytics appliance

(=2) (] @ mmibcom
MLB Now

MBI A Yt TR TR B MRS Wl S0 0 POE ORI O T | S 7 et .

.—--— Lt e s - —

ViLLB

VP of Cray Inc. Barry Bolding on Langosch dis
baseball technology Catdinals on

= W M TR

is. x‘~ Q

r”‘ :Olli.. -

Pederson, Harper lead baseball in Dodgers catg
three true outcomes joins MLB Nd

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

13

e Analytics: Hardware
Environments
* Typical HPC framework assumes:
— Loosely connected cluster (e.g., 1 Gigabit Ethernet)

— Cheap/unreliable hardware

— Often, many “spindles” per node (local harddrives) —
i.e., high bandwidth to local storage, but also high
latency. Seeing more SSD-based solutions, however,
in higher-end market.

 Frameworks optimized, configured, designed for
this environment.

Analytics vs. Traditional
Parallel Programming

Traditional Parallel Programming/HPC New Analytics Frameworks

Lower level: C, C++, Fortran Higher level: Java, Python, Scala, etc
APIs or pragmas to manage parallelism Parallelism automatically managed by the
framework

Difficult for less-experienced programmers Less experienced programmers can achieve
to achieve performance/scalability reasonable performance/scalability

Very experienced programmers can Experience helps, but peak performance
achieve very high performance scalability still tends to be significantly worse than
hand-coded HPC algorithms

Architectural optimization up to user Optimized for typical analytics HW

Your thoughts... Your thoughts...

UW CSEP 524 (PMP Parallel Computation):

Ringenburg =

Spring 2015

Analytics vs. Traditional

Parallel Programming

* High level: Analytics frameworks (Hadoop, Spark, Flink)
tend to be much easier to write correct and scalable code,

but currently best performance is limited by:

— Framework overheads

— Language overheads (e.g., garbage collection: overhead +
stragglers...)

— “One-size-fits-all” (making framework work across many types
of platform and/or for many kinds of job)

— Very coarse-grained synchronization

* But these frameworks are improving quickly (e.g., Spark
Tungston project)
— Low hanging fruit?
— Great deal of interest in research and industry

e Analytics: Time To Solution

Many analytics applications care more about time-to-
initial-results vs. fastest possible performance

For this case, frameworks that handle a lot of the low-
level details are ideal

Other cases demand the capabilities of HPC-oriented
solutions

Examples:

— Weather forecasting: want to maximize performance/
enable running highest resolution model given forecast
time constraints

— Social network analysis to inform product marketing: Want
something that we can run overnight as soon as possible

Hadoop Framework

* HDFS: distributed file system,

uses replication for fault Other YARN
tolerance . MapReduce compatible
* YARN: assigns cluster resources applications

(e.g., memory, cores) to jobs,
schedules execution

 MapReduce: Application
framework — maps and reduces,
based on Jeff Dean/Google
paper we read.

e (Can run other frameworks on
top of Yarn (e.g., Spark over
Yarn, Giraph graph processing)

YARN Job Scheduler and Resource
Manager

HDFS (Hadoop Distributed File

System)

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

18

Spring 2015

Hadoop HDFS

THE CAST

HADOOP
DISTRIBUTED
FILE
SYSTEM
(HDFS)

People sit in front of me
and ask me to read/write data

A

CLIENT

NAMENODE

There is only ONE of me..

..and T coordinate
everything around here

We store data..
..there are MANY of us
sometimes even thousands!

moicd
DATANODES iw

WRITING DATA IN HDFS CLUSTER

REQUEST FROM USER

BLOCK AND REPLICATION

Let's start with writing some data..

Mr. Client, please write
200 MB data for me

It'll be my pleasure.
But--

Ah yes.. please:
a) divide the data

in 128MB blocks
b) copy each block
in three places

--are you not
forgetting
something?

L
e |

A good client always knows
these two things:

BLOCKSIZE: large file is divided
in blocks (usually 64 or 128 MB)

REPLICATION FACTOR:
each block is stored in
multiple locations (usually 3)

&N

DIVIDE FILE INTO BLOCKS

ASK NAMENODE

NAMENODE ASSIGNS DATANODES

XXXXXXXXXXX XXXXXXXXXXX
XXXXXXXXXXX XXXXXXXXXXX
XXXXXXXXXXX < fadidatatat
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXX

First-- I divide the
big file into blocks

Lets work on
the first block
first

et Mr. Namenode: please help
— me write a 128MB block

Replication 3.. Hmm..
need to find 3 datanodes
for this client

How do I do that?)
Will tell you some other time

/

1

I

\

\
N -

with replication of 3

\\\\\\\

UW CSEP 524 (PMP Parallel Computation):

Ringenburg

19

Spring 2015

Hadoop HDFS

Here you go buddy..
Addresses of three datanodes.
T have also sorted them
in increasing distance from you

CLIENT STARTS WRITING D

first datanode only

_’ Datanode 1, Datanode 2, Datanode 3‘

I send my data (and the list) to

I store the data
in hard drive, and--

ATA

WHILE I am recieving
data, I forward the same
data to the next datanode

© Maneesh Varshney. mvarshney@gmail.com

I'll do the same

what previous guy did T am the last

in chain..

TA..DA.. REPLICATION PIPELINE

INFORM NAMENODE WHEN DONE

Once all data (for
this block) is
written to hard disk
send DONE to namenode

Block successfully stored

and replicated in HDFS

When I am done with a block,
I repeat the same steps
with remaining blocks

WHEN ALL BLOCKS ARE WRITTEN..

All blocks written,
please close file

information in pe

Case closed !l
NOW I store all meta

rsistent
storage (hard w

RECAP

T divided the file in blocks--

--for each block,
I provided address
of datanodes--

--we stored data via
Replication Pipeline

UW CSEP 524 (PMP Parallel Computation):

Ringenburg

20

Hadoop HDFS

READING DATA IN HDFS CLUSTER

REQUEST FROM USER

CONTACT NAMENODE FIRST..

Weriting file in HDFS -- check.
What about reading them?
Let's ask the client aqain..

Mr. Client, please read
this file for me..

Please give me info
on this file

M|
—

I reply (a) list of all blocks
for this file, (b) list of
datanodes for each block
(sorted by distance from client)

Block 1: at DN x1, y1, z1
Block 2: at DN x2, y2, z2
Block 3: at DN x3, y3, z3

..and so on...

Now I know how many
blocks to download, and
the datanodes where each
block is stored

So I download each block,
in turn, like so --

Ic

DOWNLOAD DATA

Download data from the nearest
datanode (the first in list)

NDATA for block n

Umm.. Question --
What happens when
the datanode is dead,
or does not have the data,
or the data is corrupted ...

Actually, HDFS can very elegantly
handle these faults and more
as we will see next --

e Cartoon ©Maneesh Varshney
* More (detecting/responding to failures, etc) at:
https://docs.google.com/open?id=0B-

zZW6KHOtbTAMmMRKZWJjYZEtYjI3NiOONTFiLWEOOGItYTUSOGMxYjcON2M1

Spring 2015

UW CSEP 524 (PMP Parallel Computation):

Ringenburg

21

e HDFS — More Details

e Replication
— Default is 3 ways: 15t on local rack (or random rack if client
not part of cluster), 2"? on different rack than 15, 379 on

same rack as 2"9. Balance between reducing inter-rack
traffic, providing tolerance to rack failures

* Detecting failures
— Node failures: DataNode heartbeats
— Network failures: ACKs
— Data corruption: Checksums on transmissions
* Write failures: skip node in replication pipeline
(underreplication detected, corrected later)
* Read failures: read other replica

Hadoop Yarn

 Resource Manager: Global
engine responsible for
arbitrating job resource
requests, determining when

jobs run .

* Containers: Job processes run = e’ - - -
inside containers — essentially o~ . a =
the resources allocated to the ' |
job on each node

 Node Manager: Per-machine,
launches application

H I
containers, ensures they don't Job Submiscion
exceed resource allocations Node Status

.) Nodestaus
° Appllcatlon master: Runs in esource Reques
first container, requests
resources for rest of job,

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

MapReduce Status ———»

LConaned)

Spring 2015 23

e Hadoop MapReduce

* We saw this concept in the Jeff Dean paper
earlier (and in our discussion of algorithms that
can be formulated as reductions)

 Mappers (implement Mapper interface) process
(ideally local) key-value pairs, convert (“map”)
them to new key-value pairs.

e Data shuffled and sorted, so that all pairs with
same key land on same node

* One reducer process per key (implements
Reducer interface) processes/summarizes all
data with the same key

e MapReduce Word Count

public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable (1)
private Text word = new Text();

public void map (LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException ({
String line = wvalue.toString() ;
StringTokenizer tokenizer = new StringTokenizer (line);
while (tokenizer.hasMoreTokens()) {
word. set (tokenizer.nextToken ()) ;
output.collect (word, one);

}

e MapReduce Word Count

public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce (Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException ({
int sum = 0;
while (wvalues.hasNext()) {
sum += values.next () .get();

}
output.collect (key, new IntWritable(sum)) ;

}

e Combiners

* Optional class — performs local reductions

— Mappers collect key-value pairs in lists: one per
key

— Combiner method applied to each list prior to
sending to reducer

— When combiner buffer full, flushed by sending to
reducer

— Reduces communication

— Word Count example — combiner adds counts:
 (the, 1), (the, 1), (and,1), (the,1) -> (the,3), (and,1)

MapReduce: More Complex /em
Algorithms?

* More complex algorithms often require
multiple passes of MapReduce

— Each pass generates key-value pairs

— Next pass uses key-value pairs from previous pass
as input

 Some of you are discussing examples in your
projects (e.g., KMeans)

* New frameworks like Spark are more flexible/
don’t require such contortions

e Hadoop Performance Issues

* Conventional wisdom: gated on 10 bandwidth,
network interconnect bandwidth

— Shuffle: Writing mapper output to disk, sending
over network, reading reducer input form disk

— Complex algorithms often require multiple phases
of map-reduce — HDFS 1/O between each

— Rule of thumb: “spindle-per-core” (or per 2 cores
for compute intensive jobs)

* Intermediate data lost — often have to
regenerate during next map-reduce

e Other Frameworks: Spark & ’

* Tries to address two of key performance issues of
Hadoop:

— Allows “persisting” intermediate data

— Can pipeline as many operations in a single job, keeps
in memory except when shuffle necessary (or spill if
runs out of memory)

* Nice performance gains

* Also, programming flexibility — not constrained to
MapReduce paradigm

 Focus of next lecture

Other Frameworks: Graph
based

* Giraph —iterative graph processing framework
— Bulk Synchronous Parallel Model: A series of supersteps consisting of
local compute-communicate-barrier synchronization
— Based on Google Pregel
 GraphlLab — machine learning via updates to data graph. User

defines

— Local vertex updates
— Data Consistency Model determining amount of parallel computation
overlap (May neighbors update simulataneously? Neighbors of

neighbors?)
— Sync mechanism for aggregating data across graph (e.g., average

values)
— Scheduling primitives defining order of computation

 SPARQL query engines: Urika-GD, AllegroGraph, Fuseki, ...
* GraphX: Graph Analytics in Spark

Discussion

Common (mis??)conceptions about data analytics
performance:

— Optimize Network

— Optimize 10

— Stragglers are tricky/important

Ousterhout et al NSDI15 paper claims these aren’t accurate
— Computation is now the real bottleneck

Do you agree? Why or why not?

Were the workloads representative enough? (Does this
matter?)

What should we focus on to improve performance/scaling?
Hard stop @ 8:20 to give Brad an hour.

