>

CSEP 524 — Parallel Computation
University of Washington

Lecture 6: Parallel Language Survey

Michael Ringenburg
Spring 2015

9 Reminder

* The class on Tuesday, May 19 has been
rescheduled to Thursday, May 21.

— Same time (6:30pm), same place (CSE 305, MS
building 99)

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

Rest of Quarter

 Today

— More parallel languages

May 12

— Intro to Data Analytics Frameworks; Hadoop

— Brad Chamberlain finishes guest lecture: Data Parallelism
in Chapel

May 21 (moved from 5/19)

— Data Analytics in Spark
— First few presentations

May 26, June 2
— Rest of project presentations

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

e Plan for today

* Survey three parallel programming
environment, including two of the most
widely used

— MPI: Message Passing Interface
— OpenMP: Open Multi-Processing

— Coarray C++: Cray PGAS language (introduce ideas
of Coarray Fortran in C++)

Introduction to MPI

Rajeev Thakur
Argonne National Laboratory

(excerpted and condensed by Brad Chamberlain for CSEP524, Winter 2013)
(further edits by Michael Ringenburg for CSEP524, Spring 2015

The Message-Passing
Model

* A process 1s (traditionally) a program counter and address
space.

* Processes may have multiple threads (program counters and
associated stacks) sharing a single address space. MPI 1s for
communication among processes, which have separate address
spaces.

* Interprocess communication consists of
— synchronization

— movement of data from one process’ s address space to another’ s.

MPI

v

A

MPI

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

e What 1s MPI?

* A message-passing library specification
— extended message-passing model
— not a language or compiler specification
— not a specific implementation or product

* For parallel computers, clusters, and
heterogeneous networks

e Full-featured

* Designed to provide access to advanced parallel
hardware for
— end users
— library writers
— tool developers

a MPI Implementations

* MPI 1s available on all platforms — from laptops to
clusters to the largest supercomputers in the world

* Currently, two prominent open-source implementations
— MPICH2 from Argonne

e www.mcs.anl.gov/mpich?2

— Open MPI

* WWW.0PENn-mp1i.org

* Many vendor implementations (many derived from
MPICH?2)

— IBM, Cray, Intel, Microsoft, Myricom, SGI, HP, etc

* MVAPICH?2 from Ohio State Univ. for InfiniBand
— http://mvapich.cse.ohio-state.edu/

UW CSEP 524 (PMP Parallel Computation):

>pring 2015 Ringenburg

9 MPI Resources

e The Standard itself:

— At http:// www.mpi-forum.org
» All MPI official releases. Latest version 1s MPI 3.0
* Download pdf versions

* Online Resources

— http://www.mcs.anl.gov/mp1

e pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages

— Tutonals:
http://www.mcs.anl.gov/mpi/learning.html

— Google search will give you many more leads

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

e Reasons for Using MPI

* Standardization - MPI is the only message passing library which can be
considered a standard. It is supported on virtually all HPC platforms.
Practically, it has replaced all previous message passing libraries.

* Portability - There 1s no need to modify your source code when you port
your application to a different platform that supports (and 1s compliant with)
the MPI standard.

* Performance Opportunities - Vendor implementations should be able to
exploit native hardware features to optimize performance.

* Functionality — Rich set of features

* Availability - A variety of implementations are available, both vendor and
public domain.

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

Hello World (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) ({
int rank, size;
// Initialize MPI - many implementations strip
// mpirun related args, giving “clean” argc/argv
MPI Init(&argc, &argv);
// MPI_COMM WORLD: All process communicator
MPI Comm rank(MPI COMM WORLD, &rank);
MPI_Comm size(MPI_COMM WORLD, &size);
printf("I am %d of %d\n", rank, size);
// Clean up MPI (data structs, etc) - must be same
// thread as MPI Init
MPI Finalize();
return O;

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

10

e Some Basic Concepts

* Processes can be collected into groups.

* Each message 1s sent 1n a context, and must be
received in the same context.

* A group and context together form a
communicator.

* A process 1s 1dentified by its rank in the group
associated with a communicator.

* There 1s a default communicator whose group
contains all initial processes, called
MPI COMM WORLD.

* mpicc -0 hello hello.c

— (or mpi1f77 for Fortran 77, mpif90 for Fortran 90,
mpicxx for C++)

— mpicc etc are scripts provided by the MPI
implementation that call the local compiler (e.g., gcc)
with the right include paths and link with the right
libraries

* mpirun —np 8 hello (or: mpiexec —n 8 hello)
— Will run 8 processes with the hello executable

— Further control available to specity location of these
processes via a “hosts” file

a MPI Basic Send/Receive

 We need to fill in the details in

Process 0 Process 1

Send (data) ——|

\

Receive(data)

* Things that need specifying:
— How will “data” be described?
— How will processes be 1dentified?
— How will the receiver recognize/screen messages?
— What will it mean for these operations to complete?

UW CSEP 524 (PMP Parallel Computation):

>pring 2015 Ringenburg

13

a MPI Datatypes

* The data in a message to be sent or received 1s
described by a triple (address, count, datatype),
where

* An MPI datatype 1s recursively defined as:

— predefined, corresponding to a data type from the
arﬁu%e (€. fi MPI INT
MPI DOUBLE PRECISION)

— a contiguous array of MPI datatypes (e.g., a row of C
array)

— a strided block of datatypes (e.g., column of C array)

— an indexed array of blocks of datatypes (arbitrary
pieces of array)

— an arbitrary structure of datatypes (e.g., a struct)

e MPI Tags

* Messages are sent with an accompanying user-
defined integer fag, to assist the receiving
process 1n identifying the message.

* Messages can be screened at the recerving end
by specifying a specific tag, or not screened by
specitying MPI ANY TAG as the tagin a
receive.

9 MPI Basic (Blocking) Send

MPI SEND (start, count, datatype, dest, tag, comm)

The message buffer 1s descrlbed by (start,
count atatype).

The target process is specified by dest, which 1s
the rank of the target process in the communicator
specified by comm.

When this function returns, the data has been
delivered to the system and the buffer can be reused.
The message may not have been received by the
target process.

MPI Basic (Blocking)
Recelve

MPI RECV(start, count, datatype, source, tag, comm, status)

* Waits until a matching (on source and tag) message is
received from the system, and the buffer can be used.

* source is the rank in communicator specified by comm, or
MPI_ANY SOURCE.

* tag I1s a specific tag to match against or MPI _ANY TAG
* status contains further information

* receiving fewer than count occurrences of datatype is
OK, but receiving more is an error.

Send/Recv example:
Passing token around ring

int rank, size, tok;
MPI Comm rank (MPI COMM WORLD, &rank);
MPI Comm size (MPI_ COMM WORLD, &size);
if (rank '= 0) {

MPI Recv(&tok, 1, MPI INT, rank - 1, O,

B MPI_COMM WORLD, MPI_ STATUS IGNORE) ;

printf (P %d received %d from P %d\n”, rank, tok, rank-1);
} else {

tok = -1; // Proc 0 sets the token's wvalue

}
MPI_ Send(&tok, 1, MPI_INT, (rank+l)$%size, 0, MPI_COMM WORLD) ;

// Now process 0 can receive from the last process.
if (rank == 0) {
MPI Recv(&tok, 1, MPI INT, size - 1, O,
MPI_COMM WORLD, MPI_ STATUS IGNORE) ;
printf (P %d received %d from P %d\n”, rank, tok, size-1);

| | copyright © 2014 wet Tutoril |

Status Object

* The status object 1s used after completion of a receive to find the
actual length, source, and tag of a message

* Status object 1s MPI-defined type and provides information about:

— The source process for the message (status.source)
— The message tag (status.tag)

* The number of elements received 1s given by:

int MPI_Get_count(MPI_Status *status, MPI Datatype datatype, int *count)

status return status of receive operation (Status)
datatype datatype of each receive buffer element (handle)
count number of received elements (integer)(OUT)

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

19

MPI 1s Simple

* Many parallel programs can be written using just these six functions, only two
of which are non-trivial:

— MPI INIT - initialize the MPI library (must be the
first routine called)

— MPI_COW_SIZE - get the size of a communicator
— MPI_COW RANK - get the rank of the calling process

in the communicator
— MPI SEND - send a message to another process

— MPI RECV - send a message to another process
— MPI FINALIZE - cilean up all MPI state (must be the

last MPI function called by a process)

* For performance, however, you need to use other MPI features

Introduction to Collective
Operations in MPI

* Collective operations are called by all processes
In a communicator.

 MPI BCAST distributes data from one process
(the root) to all others 1n a communicator.

 MPI_REDUCE combines data from all processes
in communicator and returns it to one process.

* In many numerical algorithms, SEND/RECEIVE
can be replaced by BCAST /REDUCE, improving
both simplicity and efficiency.

Collective Data Movement:\!

PO
Pl

P2
P3

Broadcast

PO
Pl

P2
P3

Scatter

AL [[]

cl [[]
Gather

ol [[]

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

22

Spring 2015

9 Collective Computation

PO
Pl

P2
P3

Reduce

PO
Pl

P2
P3

Scan

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

23

Spring 2015

MPI Max
MPI Min
MPI Prod
MPI Sum
MPI Land
MPI Lor
MPI Lxor
MPI Band
MPI Bor
MPI Bxor
MPI Maxloc
MPI Minloc
Can also create custom operations

MPI Built-in Reduce/Scan
Computation Operations

Maximum

Minimum

Product

Sum

Logical and

Logical or

Logical exclusive or
Binary and

Binary or

Binary exclusive or
Maximum and location
Minimum and location

Example of Collectives:
PI1n C (1/2)

#include "mpi.h"
#include <math.h>
int main(int argc, char *argv|[])
{
int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, width, sum, x, a;
MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, &numprocs) ;
MPI Comm rank (MPI_COMM WORLD, &myid) ;
while ('done) {
if (myid == 0) {
printf ("Enter the number of intervals: (0 quits) ");
scanf ("%d", &n) ;

input/output data
: ‘4 root process
MPI_Bcast , @ MPI_COMM WORLD) ;

if (n == 0) break;

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

25

Example of Collectives:
PI1n C (2/2)

// Estimate pieces of integral of 4/(1 + x*2) from 0 to 1

width = 1.0 / (double) n;
sum = 0.0;

input location
for (1 = myid + 1; i <= n; i += numprocs) {

X = width * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

output data

operation
}

mypi = width * sum;
// sum pieces

MPI Reduce (, MP I_D @,

MPI_COMM WORLD) ;
if (myid == 0)
printf ("pi is approximately %.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT))

/ root process

}
MPI Finalize();

return 0;

}

i UW CSEP 524 (PMP Parallel C tation):
Spring 2015 (P Parallel Computa on) -
Ringenburg

e Blocking Communication (j

B [n Blocking communication.
— MPI_SEND does not complete until buffer is empty (available for reuse).
— MPI_RECYV does not complete until buffer is full (available for use)
B A process sending data will be blocked until data in the send buffer is
emptied
B A process receiving data will be blocked until the receive buffer is filled

B Completion of communication generally depends on the message size and
the system buffer size

B Blocking communication is simple to use but can be prone to deadlocks

If (my_proc.eq.0) Then
Call mpi_send(...)
Call mpi_recv(...)
May deadlock - Else
Call mpi_send(...) € UNLESS you reverse send/recv
Call mpi_recv(....)
Endif

Non-Blocking
Communication

Non-blocking (asynchronous) operations return (immediately) ‘ ‘request
handles” that can be waited on and queried

— MPI_ISEND(start, count, datatype, dest, tag, comm, request)
— MPI_IRECV(start, count, datatype, src, tag, comm, request)
— MPI_WAIT(request, status)

Non-blocking operations allow overlapping computation and communication.
B One can also test without waiting using MPI_TEST
— MPIL_TEST(request, flag, status)

B Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/IMPI_Wait

B Combinations of blocking and non-blocking sends/receives can be used to
synchronize execution instead of barriers (MPI_Barrier)

A brief introduction to OpenMP

i Alejandro Duran
E AR O AR L4 LL
TN v s

-
G F T Q-Mrcelonaﬁupercomputing Center

Vi e

Introduction

What is OpenMP?

@ It's an API extension to the C, C++ and Fortran languages to write
parallel programs for sharea‘memory machines

@ Current version is 3.1 (June 2010)
@ Supported by most compiler vendors

@ Intel,IBM,PGl,Oracle,Cray,Fujitsu,HP,GCC,...
e Natural fit for multicores as it was designed for SMPs

@ Maintained by the Architecture Review Board (ARB), a consortium
of industry and academia

http://www.openmp.org

.

®

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 4 /47

Introduction

Target machines

o o o

Memory interconnect

s

@

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 6/47

Introduction

Shared memory

@ Memory is shared across
different processors

@ Communication and
synchronization happen
implicitely through shared
memory

@

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 7147

Introduction
Including...

Multicores/SMTs

f . . \ Chip

L1 Caches L1 Caches

L L2 Cache J

l

Off-chip
Cache

l

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 8/47

Introduction

More commonly

NUMA

N
4

Memory interconnect

@ Access to memory addresses is not uniform

@ Memory migration and locality are very important

(&

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 9/47

Writing OpenMP programs

OpenMP at a glance

OpenMP components

[Constructs j

Environment
[OpenMP Exec]<[OpenlMP API IJ/{ Variables J
OpenMP Runtime Library -]

[OS Threading Libraries]

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 13 /47

Writing OpenMP programs

OpenMP directives syntax

In Fortran
Through a specially formatted comment:

sentinel construct [clauses]

where sentinel is one of:
@ ! SOMP Or CSOMP or »SOMP In fixed format
@ ! SOMP in free format

In C/C++
Through a compiler directive:

| A

#pragma omp construct [clauses]

@ OpenMP syntax is ignored if the compiler does not recognize
OpenMP

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 14/ 47

Writing OpenMP programs

Hello world!

int id;
char xmessage = "Hello _world!";

#pragma omp parallel private(id)
{

id = omp_get_thread num();
printf ("Thread_%d,_says:_%s\n", id, message);

}

A brief introduction to OpenMP 10th October 2011 15/ 47

Alex Duran (BSC)

Writing OpenMP programs

Hello world!

int id;
char xmessage = "Hello _world!";

#pragma omp parallel private(id <—(Crea’[eS a parallel region of OMP_NUM THREADS
{
id = omp_get_thread_num) <—[AII threads execute the same code)

printf ("Thread_%d_says: , TITeSSaygce T

}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 15/ 47

Writing OpenMP programs

Hello world!

int id;
char xmessage = "Hello_world!";

#pragma omp parallel private(idi_[id IS private to each thread)
{ (Each thread gets its id in the teamj
\l

id = omp_get_thread num() ;¢
printf ("Thread_%d_says:_%s\n", id,“rooowgors

}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 15/ 47

Writing OpenMP programs

Hello world!

int id;
char xmessage = "Hello_world!";

#pragma omp parallel private(id)

{
id = omp_get_thread num(); .
" q—,—[message is shared among all threads

printf ("Thread_%d_says:_%s\n", id, message

}

A brief introduction to OpenMP 10th October 2011 15/ 47

Alex Duran (BSC)

Writing OpenMP programs

Execution model

Fork-join model

@ OpenMP uses a fork-join model

e The master thread spawns a team of threads that joins at the end of
the parallel region
@ Threads in the same team can collaborate to do work

Master Thread f

Parallel Region Parallel Region

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 16/ 47

Writing OpenMP programs

Memory model

@ OpenMP defines a weak relaxed memory model

@ Threads can see different values for the same variable
@ Memory consistency is only guaranteed at specific points

@ syncronization constructs, parallelism creation points, ...
@ Luckily, the default points are usually enough

@ Variables can have shared or private visibility for each thread

@

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 17 /47

Data-sharing attributes

Data environment

When creating a new parallel region (and in other cases) a new data
environment needs to be constructed for the threads. This is defined
by means of clauses in the construct:

shared

private

firstprivate

default

threadprivat e<—[Not a clause !]

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 19/ 47

Data-sharing attributes

Data-sharing attributes

Shared

When a variable is marked as shared all threads see the same
variable

@ Not necessarily the same value

@ Usually need some kind of synchronization to update them
correctly

Private

When a variable is marked as private, the variable inside the
construct is a new variable of the same type with an undefined value.

@ Can be accessed without any kind of synchronization

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 20/ 47

Data-sharing attributes

Data-sharing attributes

Firstprivate

When a variable is marked as £firstprivate, the variable inside the
construct is a new variable of the same type but it is initialized to the

original variable value.
@ In a parallel construct this means all threads have a different
variable with the same initial value

@ Can be accessed without any kind of synchronization

®

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 21 /47

Data-sharing attributes

Data-sharing attributes

int x=1,y=1,z=1;

#pragma omp parallel shared(X) private(y) firstprivate(z) \
num_threads(2)
{

X++; Y++; Z++;

printf("sd\n",x);
printf("sd\n",y);
printf("sd\n",z);

Alex Duran (BSC)

A brief introduction to OpenMP 10th October 2011 22 [47

Data-sharing attributes

Data-sharing attributes

int x=1,y=1,z=1;

#pragma omp parallel shared(X) pri
num threads

{

v<—|ate The paraIIeI reglon will have only two threadsj

X++; Y++; Z++;

printf("sd\n",x);
printf("sd\n",y);
printf("sd\n",z);

Alex Duran (BSC)

A brief introduction to OpenMP 10th October 2011 22 [47

Data-sharing attributes

Data-sharing attributes

int x=1,y=1,z=1;

#pragma omp parallel shared(X) private(y) firstprivate(z) \
num_threads(2)
{

X++; Y++; Z++;

printf ("sd\n", x <—[Pr|nt320r3 Unsafe update']
printf("sd\n",

printf ("sd\n", z

Alex Duran (BSC)

A brief introduction to OpenMP 10th October 2011 22 [47

Data-sharing attributes

Data-sharing attributes

int x=1,y=1,z=1;

#pragma omp parallel shared(X) private(y) firstprivate(z) \
num_threads(2)
{

X++; Y++; Z++;
printf("sd\n",x);

printf("sd\n",y); (—[PI’IHTS any numberj
printf("sd\n",z);

Alex Duran (BSC)

A brief introduction to OpenMP 10th October 2011 22 [47

Data-sharing attributes

Data-sharing attributes

int x=1,y=1,z=1;

#pragma omp parallel shared(X) private(y) firstprivate(z) \
num_threads(2)
{

X4+, Y++; Z++;
printf("sd\n",x);
printf("sd\n",y);

: printf("sd\n",z);

Alex Duran (BSC)

A brief introduction to OpenMP 10th October 2011 22 [47

Synchronization

Why synchronization?

Mechanisms

Threads need to synchronize to impose some ordering in the
sequence of actions of the threads. OpenMP provides different
synchronization mechanisms:

@ barrier

@ critical

@ atomic

@ taskwait

@ low-level locks

@

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 26 /47

Synchronization

Barrier

#pragma omp parallel

{

sora f;f; ()3 o Forces all foo occurrences too
om; arrier
P gbar () ;p happen before all bar occurrences

}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 27 | 47

Synchronization

Critical construct

int x=1;
#pragma omp parallel num_ threads(2)

{

#pragma omp critical
X++;

}

printf("sd\n",x);

Alex Duran (BSC) A Dbrief introduction to OpenMP 10th October 2011 28 /47

Synchronization

Critical construct

int x=1;
#pragma omp parallel num_ threads(2)

{

#pragma omp crit/— ;
x++;<—[OnIy one thread at a time herej

}
printf("sd\n",x);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 28 /47

Synchronization

Critical construct

int x=1;
#pragma omp parallel num_ threads(2)

{
#pragma omp crit/— ;
x++;<—[OnIy one thread at a time herej

}
printf ("sd\n" ’X);<_LM

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 28 /47

Synchronization

Atomic construct

int x=1;
#pragma omp parallel num_ threads(2)

{ : oy
#pragma omp atomic(—[Spema”y supported by hardware pr|m|t|vesj

X++;
}

printf("sd\n",x);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 29 /47

Synchronization

Atomic construct

int x=1;
#pragma omp parallel num_ threads(2)
{
#pragma omp atomic
X++;

}
printf("sd\n",x);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 29 /47

Worksharings

Worksharings

Worksharing constructs divide the execution of a code region among
the threads of a team

@ Threads cooperate to do some work

@ Better way to split work than using thread-ids
In OpenMP, there are four worksharing constructs:

@ loop worksharing

@ single

@ section

@ workshare

Restriction: worksharings cannot be nested

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 32/47

Worksharings

The for construct

void foo (int xm, int N, int M)
{

int i;

#pragma omp parallel

#pragma omp for private(j)

for (i = 0; i < N; i++)

for (j = 0; j <M; j++)

miiJ[j] = 0;

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33/47

The for construct

Worksharings

void foo (int «m, int N, int M)

{ .
int i;
#pragma omp parallel

#pragma omp forépe=ivatel])

for (i = 0; i < N; i++)
for (j =0; j <M; j++)
mli][j] = O;

(New created threads cooperate to exe-
Lcute all the iterations of the loop

Alex Duran (BSC)

A brief introduction to OpenMP 10th October 2011

e

33/ 47

Worksharings

The for construct

void foo (int xm, int N, int M)

{

int i;

#pragma omp parallel

#pragma omp for private(]
)

) : : :
for (i = 0; i <N; i++ <—[Loop iterations must be mdependentj
for (j = 0;] <M; j++)
mii][j] = 0;

Alex Duran (BSC)

A brief introduction to OpenMP 10th October 2011 33 /47

Worksharings

The for construct

void foo (int xm, int N, int M)
{
int i;
#pragma omp parallel
#pragma omp
(

for

for <—e,—'—[The I varlable is automatically prlvatlzedj
for j = 0; —

mii][j] =

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33/47

Worksharings

The for construct

void foo (int xm, int N, int M)

{
int i;
#fpragma omp parallel
#pragma omp for private(

for <
for <—<Ia—:tMust be epr|C|tIy prlvatlzedj
rn[I][J 1 = 0;

10th October 2011 33/47

A Dbrief introduction to OpenMP

Alex Duran (BSC)

Worksharings

The reduction clause

Example

int vector_sum (int n, int v[n])

{
int i, sum = 0;
#pragma omp parallel for

Common pattern. All
threads accumulate to a
shared variable

for (i = 0; i <n; i+
sum += Vv[i];

return sum;

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 34 /47

Worksharings

The reduction clause

Example

int vector_sum (int n, int v[n])

{
int i, sum = O;
#pragma omp parallel for reduction(+:Sum)

for (i = 0; i

< N; i+ = .
sum += V[i];<—'[Eff|0|ently solved with the reduction clausej

return sum;

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 34 /47

Worksharings

The reduction clause

int vector_sum (int n, int v[n])

{

int i, sum = 0;

#pragma =

S CPrivate copy initialized here to the identity value]
for (= — S

- Shared variable updated here with the partial values of each thread]
return Sbw—

}

@

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 34 /47

Worksharings

The single construct

int main (int argc, char xxargv)

{

#pragma omp parallel

{
#fpragma omp single

{ - :
S (i, el) This pro%ram outputsi just
} one “Hello world

}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 36 /47

Task parallelism

Task parallelism in OpenMP

Task parallelism model

Team Ta.Sk pOOl

@ Parallelism is extracted from “several” pieces of code

@ Allows to parallelize very unstructured parallelism
e Unbounded loops, recursive functions, ...

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011

38/47

Task parallelism

What is a task in OpenMP ?

@ Tasks are work units whose execution may be deferred
e they can also be executed immediately
@ Tasks are composed of:

@ code to execute
@ a data environment

@ Initialized at creation time
@ internal control variables (ICVs)

@ Threads of the team cooperate to execute them

©

Alex Duran (BSC) A Dbrief introduction to OpenMP 10th October 2011 39/47

Task parallelism

When are task created?

@ Parallel regions create tasks
@ One implicit task is created and assigned to each thread
@ So all task-concepts have sense inside the parallel region
@ Each thread that encounters a task construct

e Packages the code and data
e Creates a new explicit task

®

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 40/ 47

Task parallelism

List traversal

Example

void traverse_list (List |)

{

Element e;
for (e = |—>first; e ; e = e—>next)

#pragma omp task -
process (e) ;<—[e IS firstprivatej

Alex Duran (BSC) A Dbrief introduction to OpenMP 10th October 2011 41/ 47

Task parallelism

Taskwalit

Example

void traverse_list (List |)
{
Element e;
for (e = |—>first; e ; e = e—>next)
#fpragma omp task
process(e);

#pragma omp taskwait <—[Suspends current task until all children are completed]

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 42/ 47

Task parallelism

Taskwalit

Example

void traverse_list (List |)

{

Element e;
for (e = |—>first; e ; e = e—>next)
#pragma omp task
HEEED(E)S Now we need some threads
#pragma omp taskwait to execute the tasks

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 42/ 47

List traversal
Completing the picture

Example

List |

#fpragma omp parallel
traverse_list(1);

Task parallelism

Alex Duran (BSC)

A Dbrief introduction to OpenMP

10th October 2011

43 / 47

Task parallelism

List traversal
Completing the picture

Example

List |

#fpragma omp parallel

traverse_list (|);<—[This will generate multiple traversalsj

Alex Duran (BSC) A Dbrief introduction to OpenMP 10th October 2011 43/ 47

Task parallelism

List traversal
Completing the picture

List |

#prngjeﬁI; pla_:ﬁﬁl We need a way to have a single
| . g
N thread execute traverse_list

e

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 43/ 47

Task parallelism

List traversal
Completing the picture

List |

#pragma omp parallel
#pragma omp single
traverse_list(1);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 44 | 47

Task parallelism

List traversal
Completing the picture

List |

#pragma omp parallel
#fpragma omp single

traverse_list (|);<—[One thread creates the tasks of the traversalj

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 44 | 47

Task parallelism

List traversal
Completing the picture

List |

#fpragma omp parallel
#pragma omp single

traverse_list (|);<—[AII threads cooperate to execute themj

Alex Duran (BSC) A Dbrief introduction to OpenMP 10th October 2011 44 / 47

Coarray C++

Troy Johnson (Cray)
Presented by David Henty (EPCC)

EEEEEEEEEEEEEEEEEEEEEEE

HPC Application Trends

® C++ has become an important HPC language

® HPC apps combine base language(s) with parallel model(s)
= Language: Fortran, C, C++
= Model: MPI, PGAS, OpenMP, OpenACC

® PGAS models have performance and productivity benefits over
traditional MPI

= Examples: UPC, Fortran coarrays, SHMEM
® Language-based PGAS models permit static type checking
® Problem: No language-based PGAS option for C++

= Mixing UPC and C++ requires non-portable type-punning / 'l
tricks that circumvent type checking

EEEEEEEEEEEEEEEEEEEEEEE

Making C++ a PGAS Language

® Desirable to bring Fortran coarray or UPC model to C++
= Something entirely new is less familiar to programmers
® C++is evolving more via its template library than by its syntax
= More templates added by C++11, fewer syntax changes
= Trend expected to continue with later standard revisions
® Either coarray or UPC features could be added with templates
= Adding a coarray template is easier
® Coarrays were preferred because
= Can borrow ideas from an ISO language standard: Fortran

= Coarrays force programmer to consider locality more,
which can permit greater performance

EEEEEEEEEEEEEEEEEEEEEEE

Coarray C++ “Hello World”

» CC —o hello hello.cpp

#include <iostream> > aprun —n4 /hello
: Hello from image 0 of 4
#include <coarray cpp.h> Hello from image 1 of 4

Hello from image 2 of 4
Hello from image 3 of 4

USil’lg namespace coarray cppy

int main(int argc, char* argv|[])
{
std::cout << “Hello from image “
<< this image () << % of ™

,,,,,,,,,,

<< num images () << std::endl;

return 0;
}

EEEEEEEEEEEEEEEEEEEEEEE 83

Type System

® General coarray template and specializations

= template <typename T> class coarray;
= template <typename T, size_t S> class coarray<T[S]>;
= template <typename T> class coarray<T[|>;
® Examples
= coarray<int>i; // scalar coarray — one i on each image
= coarray<int[10][20]> x; // statically-sized array per image 2
= coarray<int[][20]> y(n); // dynamically-sized array per image
® Local access: x[1][2] = 0; // write to this_image()’s memory
® Remote access: x(5)[1][2] = 0; // write to image 5’s memory

EEEEEEEEEEEEEEEEEEEEEEE

Copointers

® Coreferences have an address() member function that returns
a copointer

® Does not change its target image when incremented
® Acts as an iterator if used with standard algorithms
® Example:

#include <algorithm>

coarray<int[100]> x;

coptr<int> begin = x(2)[0].address();

coptr<int> end = x(2)[100].address();

std::fill(begin, end, 42);

EEEEEEEEEEEEEEEEEEEEEEE

Coarrays of pointers

® A coarray allocates the same amount of memory on each
image

= Can be wasteful
® Solution is a coarray of pointer type
® Example
coarray<int™> p;
p = new int[this_image() * 10];
// initialize data here
sync_all(); // ensure all images have allocated and initialized
inty = p(3)[4]; // accesses p[4] on image 3

EEEEEEEEEEEEEEEEEEEEEEE

Image Synchronization and Atomics

® sync_all is one form of image synchronization
® coevents and comutexes are other forms
® coatomics are modeled after C++11 atomics
® Example
coarray< coatomic<long> > x(0L); // initialize to O
size_tn=num_images();
for (size_ ti=0;i<n;++i){
X(i) += this_image(); // atomic add
}
sync_all();
assert(x==(n*(n-1)/2));

EEEEEEEEEEEEEEEEEEEEEEE

Conclusion

® Cray introduced Coarray C++ to combine the so far separate
industry trends of using C++ and PGAS for HPC applications

® Extending C++ via templates did not require compiler
modifications

= Non-Cray compilers can be used to compile Coarray C++
programs on Cray systems

= |mplementation by other HPC vendors is possible

® Extension via templates integrates closely with type system to
enable static type checking

EEEEEEEEEEEEEEEEEEEEEEE

9 Discussion

 We've seen lots of languages the last couple
weeks, between lectures and readings.

* What are your thoughts/impressions?

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

89

