CSEP 524 — Parallel Computation
University of Washington

Lecture 3: Understanding Performance; Intro to
Algorithms

Michael Ringenburg
Spring 2015

Projects!

 The course project information has been posted on the
web page
— Option 1: Read, explore, try out a topic we did not cover

— Option 2: Program an algorithm(s)/framework(s)/
language(s) we did not study.

e Scope: About 3 homeworks (or so).
— ~2-4 papers for a reading project

* Deliverables:
— Written report

— Oral Presentation (last two class sessions, maybe a couple
early?)

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

e Project Timeline

* Next Tuesday (4/21): Select topic, locate
resources (e.g., papers, tutorials, software),
indicate presentation date preference

 May 1: Finalize topic
 May 26, June 2: Presentations in class

* June 5, midnight: Written reports due by
midnight

— Can turn in earlier, e.g., day of presentation

Recall last week:Coherence

9 vs Consistency

* Cache coherence: Ensuring all caches have an
identical view of memory

* Sequential consistency:

— All memory ops within a thread complete in program
order

— Across tasks, memory ops are interleaved in a
consistent total order (everyone sees same
interleaving)

* Question: Does coherence guarantee sequential
consistency? Why or why not?

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

e Coherence vs Consistency

* Question: Does coherence guarantee
sequential consistency? Why or why not?

* Answer: No...

— Cache consistency removes one source of
inconsistency (different views of memeory), but
others remain, e.g.,

— Compiler reordering
— Processor reordering
— Network reordering

UW CSEP 524 (PMP Parallel Computation):

>pring 2015 Ringenburg

e Today’s topics

e Partl: Performance

— Quickly go through chapter 3 of your text
— Encourage you to read it in more depth

e Part Il: Start talking about parallel abstractions
and algorithms (chapters 4-5 of you book)

— Will spend more time on this next week

e Part lll: Discussion!
— Parallel Models, MCMs

* Latency —time before a computation results
is available

— Also called transmit time, execution time, or just
time
* Throughput -- amount of work completed in
a given amount of time
— Measured in “work’ /sec, where “work” can be

bytes, instructions, jobs, etc.; also called
bandwidth in communication

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

e Latency

* Often the goal of parallelism — get my job
done faster!

* There is upper limit on reducing latency
— Speed of light, esp. for bit transmissions
— In networks, switching time (node latency)
— (Clock rate) x (issue width), for instructions

— Diminishing returns (overhead) for problem
Instances

— Hitting these rare in practice ...

Throughput

* Another common goal — get as many jobs done as
possible (or process as much data...)

* Often easier to achieve than latency by adding HW
— More wires = more bits/second
— Separate processors run separate jobs

— Pipelining is a powerful technique to increase serial
operation throughput:

. time

5
rd

>

g* F | o |Ex|vA|ws

2 F | 0D |Ex | vA|wB
7] IF | D |Ex [mA]|wB
l F |0 |Ex | vA|wB

IF ID | EX | MA | WB
IF D [EX | MA | WB

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

e Does Parallelism =
Performance?
* Many assume using P processors will give P speedup
(e.g., 4x processors => V4 the time)

7\

— This is called “perfect”, “ideal”, or “linear” speedup
— Generally an upper bound/absolute best case

* Veryrare in practice
— Overheads
— Necessity of changing algorithm

* With a fixed problem size, speedup often farther from
linear the larger P gets
— Keep adding overheads, but less gain from dividing work
— E.qg., 2->4 processors, vs 128->256 procs

Amdahl’s Law

Serial Serial

e |f a fraction S of a computation is inherently
sequential, then the maximum performance
improvement is bounded by

T=sequential time
T,=parallel time

To2SxTs+(1-S)xTg /P P =no. processors

* In other words, you can never do better than (S x
T5), no matter how large Pis

UW CSEP 524 (PMP Parallel Computation):

Ringenburg 1o

Spring 2015

Amdahl’s Law

Serial ' Serial

e |f a fraction S of a computation is inherently
sequential, then the maximum performance
improvement is bounded by

T=sequential time
T,=parallel time

To2SxTs+(1-S)xTg /P P =no. processors

* In other words, you can never do better than (S x
T5), no matter how large Pis

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

11

Spring 2015

e However ...

« Amdahl’ s Law assumes a fixed problem
instance: Fixed n, fixed input, perfect speedup

— The algorithm can change to become more ||

— Problem instances grow implying proportion of work
that is sequential may be smaller %

— Can sometimes find parallelism in sequential portion
* Amdahlis a fact; it’s not a show-stopper

* Next, let's consider what makes us not hit
Amdahl’s law limits ... and what we can do ...

e Performance Loss:
Overhead
* Implementing parallelism has costs not
present in serial codes

— Communication costs: locks, cache flushes,
coherency, message passing protocols, etc.

— Thread/process startup and teardown

— Lost optimizations — depending on consistency

model, some compiler optimizations may be
disabled/modified

— Many of these costs increase as # processors
INcreases

A “trick” to reduce
commuhnication overhead

* (an often trade off extra computation for
reduced communication overhead.

* Works when recomputing is cheaper than
communicating

* Canyou think of a case where we still might
want to avoid this?

Example: Need a random number on each thread:

(a) Generate one copy, have all threads
reference it, or ...

(b) Each thread generates its own random
number from common seed. Removes
communication and gets parallelism, but by

increasing instruction load.

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015

14

Performance Loss:
Contention

* Contention —one processor’s actions interfere with
another processor

— Lock contention: One processor’s lock stops other processors
from referencing; they must wait

— Bus contention: Bus wires are in use by one processor’s
memory reference

— Network contention: Wires are in use by one packet, blocking
other packets (“traffic jams"” in the network — very real issue)

— Bank contention: Multiple processors try to access different
locations on one memory chip simultaneously

* Very time-dependent - can vary greatly between runs.

Performance Loss: Load

Imbalance

* Load imbalance: work not evenly assigned to the
processors

— Can cause processor underutilizations
— Assignment of work, not data, is the key

— Static assignments, being rigid, are more prone to
imbalance

— But dynamic assignment adds overhead — must be
sure granularity of work large enough to amortize

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

16

Performance Loss: Load

Imbalance

* Load imbalance: work not evenly assigned to the
processors

— Can cause processor underutilizations
— Assignment of work, not data, is the key

— Static assignments, being rigid, are more prone to
imbalance

— But dynamic assignment adds overhead — must be
sure granularity of work large enough to amortize

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

17

Performance Loss: Load

Imbalance

* Load imbalance: work not evenly assigned to the
processors

— Can cause processor underutilizations
— Assignment of work, not data, is the key

— Static assignments, being rigid, are more prone to
imbalance

— But dynamic assignment adds overhead — must be
sure granularity of work large enough to amortize

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

18

Performance Loss: Load

Imbalance

* Load imbalance: work not evenly assigned to the
processors

— Can cause processor underutilizations
— Assignment of work, not data, is the key

— Static assignments, being rigid, are more prone to
imbalance

— But dynamic assignment adds overhead — must be
sure granularity of work large enough to amortize

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

19

e Reducing performance loss

* How do we mitigate these factors?

* Best performance: processors executing
continuously on local data without interacting

with other processors
— Less overhead & less contention

* What gets in the way of this? Dependencies...

— A dependence is an ordering relationship between
two computations
» Dependences are usually induced by read/write

* Dependences either prevent parallelization, or induce
need for communication or synchronization between

threads

e Dependence types

* Dependences are orderings that must be
maintained to guarantee correctness

— Flow-dependence: read after write True

— Anti-dependence: write after read False
— Output-dependence: write after write False

* True dependences arise from semantics of
program (they are “real”)

* False dependences arise from memory reuse

* Canyou find true and false dependencies in this
example?

W N -

Spring 2015

. sum = a + 1;
. first term =
. sum = b + 1;
. second term = sum * scaleZ;

sum * scalel;

UW CSEP 524 (PMP Parallel Computation):

Ringenburg 22

* Canyou find true and false dependencies in this
example?

fi;iE:%EEE,zfsum * scalel;
— b + 1;

. S
. second term ='sum * scaleZ;

W N -

* Flow-dependence read after write; must be
preserved for correctness

* Anti-dependence write after read, output
dependence write after write; can be eliminated
with additional memory ...

UW CSEP 524 (PMP Parallel Computation):

Ringenburg 23

Spring 2015

9 Removing Anti-dependence

* Change variable names

1. sum = a + 1;

2. first term = sum * scalel;

3.sum = b + 1;

4. second term = sum * scaleZ;

1. first sum = a + 1;

2. first term = first sum * scalel;
3. second sum = b + 1;

4. second term = second sum * scaleZ;

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

24

e Measuring Performance

* How do we measure performance?

 Executiontime ... what's time?
— "Wall clock” time
— Processor execution time
— System time

* Paging and caching can affect time
— Cold start vs warm start

* Conflicts with other users/system components
* Measure kernel or whole program

e FLOPS

* Floating Point Operations Per Second is a
common measurement for scientific programs.
But not great ...

— Even scientific computations use many integers

— Results can often be influenced by small, low-level
tweaks having little generality: e.q., fused mult-add

— Translates poorly across machines because it is
hardware dependent

— Limited application ... but it won’t go away!
* (Top 5oo list, e.g., ...)

9 Speedup and Efficiency

* Another common measure: Speedup is the
factor of improvement for P processors: T¢/T;

Efficiency =
Speedup/P

48

Performance

7z
7
7
e
7’
e
4
'
. /

Programl

Speedup

Program?2

0 64
Processors

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

27

9 Issues with Speedup,
Efficiency

* Speedup is best applied when hardware is

constant, or for family within a generation

— Need to have computation, communication in
same ratio

— Issues: very sensitive to the T, value

* T.should be time of best sequential program on one
processor of the parallel machine

* But sometimes studies cite relative speedup (one
processor of parallel program)

* What is the importance of this distinction?

UW CSEP 524 (PMP Parallel Computation):

>pring 2015 Ringenburg

28

e Scaled v. Fixed Speedup

* As P increases, the amount of work per processor
diminishes, often below the amount needed to
amortize costs

* Speedup curves bend down

* Scaled speedup keeps
the work per processor
constant, allowing other I -
effects to be seen

* Both are important

48

Performance

Speedup

Programl —

Program?2 —

What If Problem Doesn’t
Fit?

 Cases arise when data doesn’t fitin one
processor’'s memory

* Best solution is relative speed-up

— Measure T:r=smallest possible

— Measure T, compute T_/T, as having P/x
potential improvement

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

30

9 Superlinear Speed up

* Interestingly, we occasionally see “better than
perfect” speedup. Why?

— One possibility: additional cache ...

e Can make execution time < T/P because data (&
instruction) references are faster.

* Extra cache may mitigate parallelism costs
* Otherideas?

Spring 2015 UW CSEP 524 (PMP Parallel Computation):

Ringenburg

31

Break

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015 32

e Peril-L ...

A pseudo-language used by your text to assist
in discussing algorithms and languages

Play on words — doesn’t really put us in peril ...
* Goals:

— Be a minimal notation to describe parallelism

— Be universal, unbiased towards languages or
machines

— Allow reasoning about performance (using the CTA)

* We will quickly go through this, and try to use,
to stay consistent with text

Base Language is C

e Peril-L uses C as its notation for scalar
computation

* Advantages
— Well known and familiar
— Capable of standard operations & bit twiddling

* Disadvantages
— Low level
— No goodies like OO

— Modern parallel languages generally are based on
higher-level languages

Spring 2015 UW CSEP 524 (PMP Parallel Computation):
Ringenburg

34

9 Threads

* The basic form of parallelism is a thread

* Threads are specified by

forall
<int var> in (<index range spec>) {<body> }

* Semantics: spawn k threads running body

forall thID in (1..12) {
printf ("Hello, World, from thread %i\n", thID);

}

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015 35

9 Thread Model is
Asynchronous
* Threads execute at their own rate —
interleaving not known or predictable

* To cause threads to synchronize, we have

barrier; '

* Threads arriving at barriers suspend execution
until all threads inits forall arrive

e Referencetothe forall indexidentifiesthe
thread:

forall thID in (1..12) {
printf ("Hello, World, from thread %i\n", thID);

}

Spring 2015

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

36

e Memory Model

* Two kinds of memory: local and global
— All variables declared in a thread are local
— Any variable w/ underlined _name is global
* Arrays work as usual
— Local variables use local indexing
— Global variables use global indexing
* Memory is based on CTA, so performance:
— Local memory references are unit time
— Global memory references take A time

e Memory Read Write
Semantics

* Local Memory behaves like the von Neummann
model

* Global memory

— Reads are concurrent, so multiple processors can
read a memory location at the same time

— Writes must be exclusive, so only one processor can
write a location at a time; the possibility of multiple
processors writing to a location is not checked and if
it happens the result is unpredictable

Example: Count 3s

 Shared memory programs are expressible
* The first (erroneous) Count 3s program is

int *array, length, count, t;
. 1nitialize globals here ...
forall thID in (0..t-1) {
int i, length per=length/t;

int start=thID*length per;
for (1=start; i<start+length per; 1i++) {
1f (arrayl[i] == 3)

count++; // Concurrent writes - RACE

}

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

39

Spring 2015

9 Getting Global Writes
Serialized

* To ensure exclusivity, Peril-L has

exclusive { <body> } I

* Athread can execute <body> only if no other
thread is doing so; if some thread is
executing, then it must wait for access

— Sequencing through exclusive may not be
fair, e.g., no FIFO guarantee

— Defining semantics, not implementation

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

40

9 Example: Fixed Count 3s

* Fix by adding exclusive — but slow

int *array, length, count, t;
initalize globals here
forall thID in (0..t-1) {
int i, length per=length/t;

int start=thID*length per;
for (i=start; i<start+length per; 1i++) {
1f (arrayl[i] == 3)

exclusive { count++; }

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

41

9 Example: Best Count 3s

* Speed up with private counters

int *array, length, count, t;
forall thID in (0..t-1) {
int i, priv count=0; len per th=length/t;
int start=thID * len per th;
for (i1=start; i<start+len per th; 1i++) {
1f (arrayl[i] == 3)
priv_count++;

}

exclusive {count += priv count; |}

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

42

e Full/Empty Memory

* Lightweight synchronization in Peril-L

* Memory usually works like information:
— Reading is repeatable w/o “emptying” location
— Writing is repeatable w/o “filling up” location

* Matter works differently

— Taking something from location leaves vacuum
— Placing something requires the location be empty

* Full/Empty: Applies matteridea to memory ...
F/E variables help serializing

* Alocation can be read only if it s filled
* Alocation can be written only it’ s empty

Location contents

Variable Read

Variable Write

Empty

Stall

Fill with value

Full

Empty of value

Stall

* Scheduling stalled threads may not be fair

* Side note: MTA/XMT has these available on every

word (programming convention used $ not’)

Spring 2015

UW CSEP 524 (PMP Parallel Computation):

Ringenburg

Reduce and Scan

* Aggregate operations use APL syntax

— Reduce: Combine elements using some associative
operation:

* <op>[<operand> for <op>in {+, *, &&, ||, max, min}; as in

+/priv_sum

— Scan: Compute prefixes as well as final result (prefix sum)
* <op>\<operand> for <op> in {+, *, &&, ||, max, min}; asin
+\my count

* Portability: use reduce/scan rather than implementing

exclusive {count += priv count; } “WRONG”
count = +/priv count;

* Synchronization implied

Spring 2015 UW CSEP 524 (PMP Parallel Computation): 45
Ringenburg

9 Reduce/Scan and Memory

* When reduce/scan target local memory

priv count= +/priv count;

— The local is assigned the global sum

— This is an implied broadcast (communicate common
value to all threads)

priv _count= +\priv count; '

— The local is assigned the prefix sum to that point
— No implied broadcast
* Assigning R/S value to a local forces a barrier,

but assigning R/S to a global does not (threads
continue executing once they’ve contributed)

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

46

9 localize and mySize

* Recall this is the CTA model, so memory is
globally addressable, but local to a specific
process.

* Thus, can ask for the local section of a global
array:

int localA[] = localize(globalAl[]):;

* Size of local portion of global:

int size = mySize(globalA[], 0/*dimension*/);

Spring 2015 UW CSEP 524 (PMP Parallel Computation): 47
Ringenburg

e Using Peril-L

* The point of a pseudocode is to allow detailed
discussion of subtle programming points
without being buried by the extraneous detail

* Toillustrate, consider some parallel
computations ...

— Tree accumulate
— Alphabetize (string sort)

Tree Accumulate Using Full/
Empty (F/E)

Idea: Let values percolate up
based on availability in full/lempty
(F/E) memory

16 16

0 1 2 3 4 5 6 7 8 9 a b C d e f

index (in hex)

UW CSEP 524 (PMP Parallel Computation):

Ringenburg 49

Spring 2015

Naive F/E Tree
Accumulation

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {

3 int valZaccum = ..; locally computed val

4 int stride = 1;

) nodeval' [index] = valZaccum; Assign initially to tree node

6 while (stride < P) { Begin logic for tree

7 if (index % (2*stride) == 0) { Aml parent at next level?

8 nodeval'[index]=nodeval'[index]+nodeval'[index+stride];
9 stride = 2*stride;

10 }

11 else {

12 break; Exit, if not now a parent

13 }

14

15 }

UW CSEP 524 (PMP Parallel Computation):

Ringenburg 20

Spring 2015

Naive F/E Tree
Accumulation

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {
3 int valZaccum = ..; locally computed val
4 int stride = 1;
) nodeval' [index] = valZaccum; Assign initially to tree node
6 while (stride < P) { Begin logic for tree
7 if (index % (2*stride) == 0) { Aml parent at next level?
8 nodeval' [index]=nodeval' [index]+nodeval' [index+stride];
9 stride = 2*stride; 8 9 index
10 } :
11 else | 0 1 % 2*stride
12 break; Exit, if not now a parent nodeval’
13 } time
14)
15}
Spring 2015 UW CSEP 524 (PMP Parallel Computation): 51

Ringenburg

Round 1 of Tree Accum ...

0 1 2 3 4 5 6 7 8 9 a b C d e f
index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
index % (2 * stride)

LACCACIL]

nodeval[index]

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

52

9 Round 1 of Tree Accum ...

0 1 2 3 4 5 6 7 8 9 a b C d e f
index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
index % (2 * stride)

nodeval[index]

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

53

But What If Some Threads
Slow?

0 1 2 3 4 5 6 7 8 9 a b C d e f
index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
index % (2 * stride)

2.0 g 0

nodeval[index]

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

54

Introduce Barrier to
Synchronize Levels

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {

3 int valZ2accum = ..; locally computed val

4 int stride = 1;

5 nodeval' [index] = vallZaccum; Assign initially to tree node

6 while (stride < P) { Begin logic for tree

7 if (index % (2*stride) == 0) {

8 nodeval'[index]=nodeval' [index]+nodeval'|[index+stride];
9 stride = 2*stride;

10 }

11 else {

12 break; Exit, if not now a parent

13 }

14 barrier;

15 }

16 }

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

55

Barrier Stops Until Stable
State

0 1 2 3 4 5 6 7 8 9 a b C d e f
index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
index % (2 * stride)

nodeval[index]

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

56

e The Problem With Barriers

* In many places barriers are essential to the
logic of a computation, but ...

* They add overhead, and force processors to
idle while slowpoke catches up ...

* Avoid them when possible

— Often not fundamental to computation, but
rather to the way we’ve implemented it

— For example, notice that in tree accumulate, we
only need a value when from a processor when it
is completely done executing ...

Better: accumulate locally,
fill when done

1 int nodeval'[P]; Global full/empty vars to save right child val
2 forall (index in (0..P-1)) {

3 int valZaccum=..;

4 int stride = 1;

5 while (stride < P) { Begin logic for tree

6 1f (index % (2*stride) == 0) {

7 valZ2accum=valZ2accum+nodeval' [1ndex+stride];

8 stride = 2*stride;

9 }

10 else {

11 nodeval' [index]=val2accum; Assign val to F/E memory
12 break; Exit, if not now a parent
13}

14)

15 }

UW CSEP 524 (PMP Parallel Computation):

Ringenburg o8

Spring 2015

9 How does this work?

0 1 2 3 4 5 6 7 8 9 a b C d e f
index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
index % (2 * stride)

nodeval[index]

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

59

How does this work?

0 1 2 3 4 5 6 7 8 9 a b C d e f
index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
index % (2 * stride)

n| . ([[
o/l - e/

nodeval[index]

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

60

time

0 1 2 3 4 5 6

How does this work?

7 8 9 a b C d e f

index (in hex)

0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1

index % (2 * stride)

nodeval[index]

Spring 2015

UW CSEP 524 (PMP Parallel Computation):

Ringenburg o1

How does this work?

0 1 2 3 4 5 6 7 8 9 a b C d e f
index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
index % (2 * stride)

QLI L e

nodeval[index]

time

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

62

How does this work?

0 1 2 3 4 5 6 7 8 9 a b C d e f
index (in hex)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
index % (2 * stride)

time

| B

nodeval[index]

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

63

e Critique of Tree Accumulate &

* Both the synchronous and asynchronous
accumulates are available to us, but we
usually prefer the asynch solution

* Notice that the asynch solution uses data
availability as its form of synchronization

— This is the cool thing about full/empty bits ...
synchronization is inherently tied to data
readiness

— Most effective uses of f/e take advantage of this

Thinking About Parallel
Algorithms

* Computations need to be reconceptualized to
be effective parallel computations
* Three possible ways to formulate parallelism

— Fixed |[ism —assume constant # C cores, get best
performance

— Unlimited parallelism —assume unlimited cores,
maximize amount of parallelism

— Scalable parallelism —increase parallelism as
problem size, core count increases

* Consider the three as an exercise in
— Learning Peril-L
— Thinking in parallel and discussing choices

9 The Problem: Alphabetize

* Assume a linear sequence of records to be
alphabetized

* Asimple form of sorting

* Solutions
— Unlimited: Odd/Even
— Fixed: Local Alphabetize
— Scalable: Batcher’s Sort

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

66

Unlimited Parallelism (Odd/
Even Sort, part 1)

1 bool continue = true;

2 rec L[n]; The data is global

3 while (continue) do {

4 forall (1 in (1:n-2:2)) { Stride by 2

S5 rec temp;

6 if (strcmp(L[i].x,L[i+1].x)>0){ Iso/even pair misordered?
7 temp = L[1]; Yes, fix

8 L[i] = L[i+1];

9

L[1i+1] = temp;

—
_LO
—
—

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

67

Unlimited Parallelism (Odd/
Even Sort, part Il)

12 forall (i1 in (0:n-2:2)) { Stride by 2
13 rec temp;

14 Dbool done = true; Set up for termination test

15 1if (stremp(L[i].x,L[i+1].x)>0){ Ise/odd pair misordered?
16 temp = L[i]; Yes, interchange

17 Ll1] = L[1i+1];

18 L{i+1l] = temp;

19 done = false; Not done yet

20 }

21 continue= ! (&&/ done); Were any changes made?

22 }

23 }

UW CSEP 524 (PMP Parallel Computation):

Ringenburg o8

Spring 2015

Reflection on Unlimited
Parallelism

* |ssolution correct?
— Are writes exclusive?

* Are we maximizing parallelism?

* What's the effect of process spawning
overhead?

* What is the effect of communication
overhead?

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

69

e Fixed Algorithm

* Let one thread/process handle each letter of
the 26 letter latin alphabet

* Logic

— Processes scan records counting how many
records start w/their letter handle

— Allocate storage for those records, grab & sort
— Scan to find how many records ahead precede

* Essentially parallel bucket sort

9 Cartoon of Fixed Solution £#

* Move locally

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015 71

Fixed Part 1

1 rec L[n]; The data is global

2 forall (index in (O 5)) { A thread for each letter

3 int myAllo = my81ze (L, 0); Number of local items

4 rec LocL[] = localize(L[]); Makedatalocally ref-able

5 1int counts[26] = 0; Count # of each letter

6 int i, j, startPt, mylLet;

/7 for (i=0; i<myAllo; i++) { Count number w/each letter
8 counts[letRank (charAt (LocL[i].x,0))]++

9 }

10 counts[index] = +/ counts[index]; Figure # of each letter
11 myLet = counts[index]; Number of records of my letter

12 rec Temp[myLet]; Alloc local mem for records

Spring 2015

UW CSEP 524 (PMP Parallel Computation):

Ringenburg /2

Fixed Part 2

13 j = 0; Index for local array

14 for (1=0; i<n; 1++) { Grab records for local alphabetize
15 if (index==letRank (charAt (L[1].x,0)))

16 Temp [Jj++]= L[i]; Save record locally

17)

18 alphabetizeInPlace (Temp[]); Alphabetize within this letter

19 startPt=+\myLet; Scan counts # records ahead

of these; scan synchs, so
OK to overwrite L, post-sort

20 Jj=startPt-myLet; Find my start index in global
21 for (1=0; i<count; i++){ Return records to global mem
22 L[j++]=Temp[i];
23 }
24
Spring 2015 UW CSEP 524 (PMP Parallel Computation): 73

Ringenburg

e Reflection on Fixed | |ism

* |ssolution correct ... are writes exclusive?

* Is “moving the data twice” efficient?
— Compare to odd/even ...

— (Note that same applications may not require the
second data movement —e.g., each node can just
write directly to distributed filesystem.)

* What happensif P> 26? Or P >>> 267
— Is it a good idea to assume this won't happen?

9 Scalable Parallelism, cont ¢

* How would we do a scalable alphabetization?

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

75

9 Scalable Parallelism, cont

* How would we do a scalable alphabetization?
— Option 1: Finer bucket granularity — match P

Can also use knowledge
- of data distribution to
size buckets. E.g., fewer
words that start with Z.

— Option 2: Local sort, merge with other nodes

* Both are implemented in practice, both have
advantages and disadvantages...

i UW CSEP 524 (PMP Parallel C tation):
Spring 2015 (VIP Parallel Computa on) »
Ringenburg

Bucket Sort

Simple generalization of fixed approach

— Replace letRank routine with generalized calcBucket, and pass it first C
characters (however many needed to compute bucket)
Works well with known minimum, maximum, and data distribution
— Especially easy to get good bucketing with uniform random
distribution
Some of the fastest very large parallel sorts ever recorded use this
method (e.g., world record setting Spark sort)

Disadvantage — if you don’t know the data distribution/guess
wrong, you can get very bad load imbalance (one or a few cores
doing most of the work).

— Sometimes solve this with “sampling” to estimate distribution

Requires knowing the absolute max and min (can just use
INT64_MAX and INT64_MIN, but likely to lead to poorly distributed
buckets).

Parallel Merge (sorting
network based)

Global array distributed among
processors (CTA) %
Each processor locally sorts its piece of
array (must be equal-sized — see later)
Perform a series of merges according to % %}J
some sorting network
— Network specifies a partner for each
processor at each step
— Each proc sends its local array to its partner w H
— Each proc does O(n/p) sorted merge of its
array with partners array. One proc keeps

low half, other keeps high half.
— Can reduce communication by sending data T ——
as needed, but in most real networks, one 6,7,8

big message is better than many small
messages.

UW CSEP 524 (PMP Parallel Computation):

Ringenburg /8

Spring 2015

Networks

* Best real networks guarantee global

sort after O(log? P) steps.

— Batcher’s odd-even mergesort -

— Bitonic sort (textbook)

— Best asymptotic/theoretical time:

O(log P) steps

I
I
. ‘ I
* AKS sorting network I T l l I
I

— But awful in practice — HUGE
constants hidden by big-O notation

 Some instead optimize for “local communication”, i.e., most merges
are with “nearby” processors.

— Benefit depends on interconnect characteristics, but it is easy to swap
out sorting network

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

79

Important Point

e Sorting networks originally designed for single element nodes
and compare-exchanges, not merging lists

* It can be proven that sorting networks will also work with a

list at each node, and merging and splitting as we described,
but the proof requires that all lists have the same length.

— (See Knuth, vol. lll, section 5.3, exercise 38)

 Therefore, we must ensure that each partition has an equal
number of elements

— (And that this invariant is maintained at each stage)

* Easy way to ensure: pad nodes with "dummy" values at start
— Can also rebalence if necessary to reduce number of dummies

— Need some way to mark dummies so that they can be removed later

9 Peril-L pseudocode...

* Homework: Write Peril-L for Batcher Odd-
Even Mergesort

— Can assume you start with even distribution (all
nodes have same # of elements)

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

81

e Which is better?

* Depends on circumstances
* Bucket-based sorting minimizes communication (CTA
likes, real world too)

— But bad if can’t determine data distribution — can end up
effectively serializing code.

e Parallel merge algorithms more generally applicable
(don’t depend on data distribution)
— Higher communication costs

— But, log(P) large messages per processor is not bad,
especially on a good interconnect (highest bandwidth for
large messages).

 Bottom line: I'd try hard to do bucketing—1 or 2
rounds of communication is nice

e Discussion

 Compare and constract: CTA vs LogP

— The LogP paper claims they cover more of the
important parameters (e.g., latency, bandwidth)

— These are real aspects of networks

— Do you agree that modeling them is necessary for
coming up with efficient algorithms? Or is the
simplicity of CTA (local vs. global) better? Does CTA
capture enough of what’s important?

— Note, there is no right answer (people disagree)

* Memory Consistency
— What surprised you, if anything?

