CSEP 524 — Parallel Computation
University of Washington

Lecture 2: Parallel Architectures and Models

Michael Ringenburg
Spring 2015

Today's Topic

« Parallel hardware architectures, past and present
— Parallel computers differ dramatically from each other
* No standard architecture/no single programming target!

— Parallelism introduces new costs
« Communication
 Resource contention

— ldeally, details of parallel computers should be no
greater concern to programmers than details of
sequential computers

* How do we solve this?

— Von Neumann model (partially) solved this for
sequential computing

— Can we come up with a similar, parallel model?

o Today's Plan

* Introduce instances of basic parallel
designs

— Multicore chips
— Symmetric Multiprocessors (SMPs)
— Clusters
— Multithreaded machines

* Formulate a model of computation
— Assess the model of computation

* Bonus (7). How do we model the memory?

o Today's Plan

* Introduce instances of basic parallel
designs

— Multicore chips
— Symmetric Multiprocessors (SMPs)

— Clusters One of the hardest
. . parts of parallel
— Multithreaded machines computing ...

* Formulate a model of compuMtation
— Assess the model of compdtation

* Bonus (7). How do we model the memory?

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

3

e Multi-core Chips

* Multi-core means more than one processor
per chip

— Consequence of Dennard Scaling failing to keep
pace with Moore’s Law scaling

* Main advantage: More ops per tick
* Main disadvantages: Programming, BW

« Early examples: IBM’ s PowerPC 2002, AMD
Dual Core Opteron 2005, Intel CoreDuo 2006

— We'll discuss AMD and Intel variations

e Intel CoreDuo (20006)

o 2 32-bit Cores

* Private 32K L1
cache per core

— Separate instruction
and data

« Shared 2 or4 MB L2

« MESI cache
coherence protocol

— See next slide

Memory

L2 Cache

L1-1 |L1-D | L1-l

L1-D

Processor | Processor

PO

P1

MESI Protocol

INVALID SHW
(On a miss, the old
line is firstinvalidated RMS—CD—> ‘w
and copied back
if M) RH

« Standard Protocol for
cache - coherent
shared memory
— Mechanism for
multiple caches to give
single memory image
— Complex, but cool ...

BUS TRANSACTIONS

RH = Read Hit (])= snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ®= Invalidate Transaction
WH = Write Hit
WM = Write Miss @: Read-with-Intent-to-Modify

SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or @: Cache Block Fill
Read-with-Intent-to-Modify

Thanks: Slater & Tibrewala of CMU .

MESI Protocol

* Modified-Exclusive-
Shared-Invalid
 Upon loading, a line is
marked Exclusive (E)
« Subsequent reads by
same core are OK
— State unchanged

INVALID

BUS TRANSACTIONS
RH = Read Hit (])= snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ®= Invalidate Transaction
WH = Write Hit
WM = Write Miss @: Read-with-Intent-to-Modify

SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or @: Cache Block Fill
Read-with-Intent-to-Modify

Thanks: Slater & Tibrewala of CMU .

MESI Protocol

e |f another core reads the
same line, mark it as
Shared (S)

— In both caches

INVALID

(On a miss, the old

lineis firstinvalidatedj— RMS

and copied back
if M)

INVALID

(On a miss, the old
lineis firstinvalidatedj— RMS

and copied back
i&ﬂ RH RH
BUS TRANSACTIONS
RH = Read Hit (])= snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ®= Invalidate Transaction
WH = Write Hit
WM = Write Miss @: Read-with-Intent-to-Modify
SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or @: Cache Block Fill

RH Read-with-Intent-to-Modify

Thanks: Slater & Tibrewala of CMU

MESI Protocol

* |If a core write the line,
mark it as Modified (M).

— Ifitis shared, mark it as Invalid (I)
In other caches.

INVALID

(\SHR

INVALID SHW
(On a miss, the old
line s firstinvalidated RMS—{D—»
and copied back
if M) RH

T BUS TRANSACTIONS

RH = Read Hit (])= snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ®= Invalidate Transaction
WH = Write Hit
WM = Write Miss @: Read-with-Intent-to-Modify
SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or @: Cache Block Fill

Read-with-Intent-to-Modify

Thanks: Slater & Tibrewala of CMU

MESI Protocol

« Access to an Invalid (I) results
In a cache miss.

(OINV‘ALtLD Id =h
* Also detected by Modified (M) ey - O— %—

core, causing it to write back
and switch to Shared (S)

(\SHR

INVALID SHW
(On a miss, the old
line s firstinvalidated HMS—@—»
and copied back
if M) / RH

@
I
w

BUS TRANSACTIONS
RH = Read Hit (])= snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ®= Invalidate Transaction
WH = Write Hit
WM = Write Miss @: Read-with-Intent-to-Modify
SHR = Snoop Hit on a Read
- SHW = Snoop Hit on a Write or @: Cache Block Fill

Read-with-Intent-to-Modify

Thanks: Slater & Tibrewala of CMU

Thread 1

for (int 1 = 0; i < n; i++) {
condition = foo() ;
if (condition) {
counter[0] ++;
}
}

Thread 2

for (int i = 0; i < n; i++) {
condition = foo() ;
if (condition) {
counter[l]++;
}
}

(Assume counter[0] and
counter[1] are on the same
cache line)

Spring 2015

Example

Core 1 state

Core 2 state

Initial I

Core 1 Load

Core 2 Load

Core 1 Store

Core 2 Store

(cont.)

(cont.)

Core 2 Eviction

Core 2 Load

Core 2 Store

Core 2 Load

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

11

Thread 1

for (int 1 = 0; i < n; i++) {
condition = foo() ;
if (condition) {
counter[0] ++;
}
}

Thread 2

for (int i = 0; i < n; i++) {
condition = foo() ;
if (condition) {
counter[l]++;
}
}

(Assume counter[0] and
counter[1] are on the same
cache line)

Spring 2015

Example

Core 1 state

Core 2 state

Initial I I
Core 1 Load Load, E I
Core 2 Load S Load, S
Core 1 Store M I
Core 2 Store Writeback, S |
(cont.) S Load, S
(cont.) | M
Core 2 Eviction I Writeback, |
Core 2 Load | E
Core 2 Store | M
Core 2 Load | M

UW CSEP 524 (PMP Parallel Computation):

Ringenburg

12

e AMD Dual Core Opteron ‘05

« 2 64-bit Opterons
* 64K private L1s Memory

1 MB private L2s

— Key difference between System Request Interface
these early architectures

* SRl handles Ca-Che L2 Cache L2 Cache
coherence, main memory
transfers

« MOESI cc-protocol L1-l |{L1-D | L1l |L1-D

— O =0wned. Like shared,
but with exclusive
modification rights, and
responsible for supplying
value to other caches

— Allows multiple caches to
share a “dirty” value

Processor | Processor
PO P1

Comparing Core Duo/

Dual Core
Memory Memory
System Request Interface
L2 Cache L2 Cache | L2 Cache
L1-1 [L1-D | L1-1 L1-D L1-1 |L1-D | L1-I [L1-D
Processor | Processor Processor | Processor
PO P1 PO P1

« Advantages and disadvantages of each?

* Which would work better if we had multiple
chips connected to a shared memory?

14

Spring 2015 (These diagrams elide some important pieces, like buses)

Comparing Core Duo/

Dual Core
Memory Memory
System Request Interface
L2 Cache L2 Cache | L2 Cache
L1-1 [L1-D | L1-1 L1-D L1-1 |L1-D | L1-I [L1-D
Processor | Processor Processor | Processor
PO P1 PO P1

 AMD Dual Core: Larger private memory,
coherence managed at the “back” enables easier
sharing with others, ‘O’ state reduces write backs

Spring 2015

15

(These diagrams elide some important pieces, like buses)

Comparing Core Duo/

Dual Core
Memory Memory
System Request Interface
L2 Cache L2 Cache | L2 Cache
L1-1 [L1-D | L1-1 L1-D L1-1 |L1-D | L1-I [L1-D
Processor | Processor Processor | Processor
PO P1 PO P1

* Intel Core Duo: coherence managed closer to
cores allows faster communication between
cores, full L2 available to single-threaded code

16

Spring 2015 (These diagrams elide some important pieces, like buses)

Symmetric
Multiprocessors (SMPs)

Memory Memory Memory Memory

< =

Cache Control Cache Control Cache Control Cache Control
L2 Cache L2 Cache L2 Cache L2 Cache
L1-I (L1-D L1-I [L1-D L1-I |L1-D L1-I (L1-D
Processor Processor Processor Processor
PO P1 P2 P3

« All processors attached to a single large shared memory

— (Individual DIMMs may be physically located near different
pProcessors)

« Consistent memory view via common connection to memory
that “snoops” on other processors’ accesses

Sun Fire E25K

18 Sun Fire E25K system
. expander boards

o o] w
s
i vy
G E ¥

e

] o= .
Diagram shown:
: Sun Fire B2 &K
PCI e] pci | | systerm

= ! PCl1

\ 18 x 18 address and response crosshars

 Up to 18 four-processor boards, connected by crossbar switch (all
boards directly connected to each other)

— Snoopy bus on each board

— Global directory (tracks views of memory) for inter-board coherence

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

18

e Cross-Bar Switch

BO —®

* Maintaining coherence ‘_
requires low latency a—
connections between every S—"
pair of processors B1 o

A crossbar is a network N
directly connecting each A
processor (or board) to every
other processor (or board)

« Crossbars grow as n? (where -
n = # of connections), :
making them impractical for B3 ’
large n T4

B2 °

Sun Fire E25K: The
Limit?
« X-bar gives low latency for snoops allowing
for shared memory

* 18 x 18 X-bar is basically the limit

» Raising the number of processors per board
will, on average, increase congestion

* Huge amount of complex engineering
required to make 72 processor SMP feasible

* S0, how could we make a larger machine?

Sun Fire E25K: The
Limit?
« X-bar gives low latency for snoops allowing
for shared memory

* 18 x 18 X-bar is basically the limit

» Raising the number of processors per board
will, on average, increase congestion

* Huge amount of complex engineering
required to make 72 processor SMP feasible

* S0, how could we make a larger machine?
— Dispense with shared memory...

Clusters

Po P, P, P, P, Ps Pe
| | | | | | | |
Mem|| [Mem|| |[Mem|| IMem|| |Mem|| |Mem|| [Mem|| |Mem
NIC NIC NIC NICI NICI NIC NIC NIC
Network

« Commodity servers, connected via a network (“interconnect”).
— Each server typically has it's own disk(s) and memory

— Servers are often blades inside of a single rack, rather than
separate boxes

« Often programmed using messa
frameworks like Hadoop or Spar

Ee passing (e.g., MPI), or

Clusters

Po P, P, P, P, Ps Pe
| | | | | | | |
Mem|| [Mem|| |[Mem|| IMem|| |Mem|| |Mem|| [Mem|| |Mem
NIC NIC NIC NICI NICI NIC NICI NIC
Network

Common cluster interconnects:
— Ethernet: Cheap, but higher latencies, less bandwidth (new

standards coming, though).

— Infiniband: Lower latency, RDMA support, open standard

— Custom/proprietary (e.g., Cray Aries: high global bandwidth, low
diameter topology — scales to huge systems)

9 Clusters/Supercomputers

Po P, P, P, P, Ps Pe
| | | | | | | |
Mem|| [Mem|| |[Mem|| IMem|| |Mem|| |Mem|| [Mem|| |Mem
NICI NIC NICI NICI NICI NICI NIC NIC
Network

Boundary between clusters and supercomputers is blurring... many
supercomputers are essentially clusters that have/are:

— Well provisioned nodes/blades (e.g., large memory, multiple sockets,
high core count)

— Tightly connected (high bandwidth, low latency, low diameter network)
— Built to scale to very large node counts (see previous)

— Often custom software (e.g., stripped down OS, custom compiler/PE,
system management)

Multithreaded machines:
Cray MTA/XMT

registers

program
counter

* Threadstorm processor — 128 threads/processor, each with own register

bank (including PC)
— Every clock cycle execute an instruction from a different (unblocked) thread

— At most one instruction in pipeline (21 stages) from any thread at any time

* Thus, a thread will execute an instruction every 21-128 cycles. Why do
this? Hides memory latency (provided there is sufficient parallelism).

i UW CSEP 524 (PMP Parallel C tation):
Spring 2015 (P Parallel Computa on) .
Ringenburg

Cray MTA/XMT

<

registers

LT

program
L oot

* Threadstorm processor — 128 threads/processor, each with own register
bank (including PC)
— Every clock cycle execute an instruction from a different (unblocked) thread
— At most one instruction in pipeline (21 stages) from any thread at any time

* Thus, a thread will execute an instruction every 21-128 cycles. Why do
this? Hides memory latency (provided there is sufficient parallelism).

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

26

Cray MTA/XMT

<

registers

LT

program
L oot

* Threadstorm processor — 128 threads/processor, each with own register
bank (including PC)

— Every clock cycle execute an instruction from a different (unblocked) thread
— At most one instruction in pipeline (21 stages) from any thread at any time

* Thus, a thread will execute an instruction every 21-128 cycles. Why do
this? Hides memory latency (provided there is sufficient parallelism).

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

27

Cray MTA/XMT

<

registers

LT

program
L oot

* Threadstorm processor — 128 threads/processor, each with own register
bank (including PC)
— Every clock cycle execute an instruction from a different (unblocked) thread
— At most one instruction in pipeline (21 stages) from any thread at any time

* Thus, a thread will execute an instruction every 21-128 cycles. Why do
this? Hides memory latency (provided there is sufficient parallelism).

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

28

Cray MTA/XMT

<

registers

LT

program
L oot

* Threadstorm processor — 128 threads/processor, each with own register
bank (including PC)
— Every clock cycle execute an instruction from a different (unblocked) thread
— At most one instruction in pipeline (21 stages) from any thread at any time

* Thus, a thread will execute an instruction every 21-128 cycles. Why do
this? Hides memory latency (provided there is sufficient parallelism).

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

29

<

Cray MTA/XMT

registers

LT

program
L oot

* Requires high degree of parallelism to keep pipelines full

— Fast context switches and built-in synchronization primitives allows
very fine-grained parallelism (individual loop iterations)

— Parallelizing compiler

— Hashed global memory makes memory “appear” uniform — simplifies
efficient parallelization

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

30

e Co-Processor

Architectures

* A powerful parallel design is to add coprocessors/
accelerators to standard design

— Graphics Processing Units — massively parallel
floating point computations

— Cell Processor - multiple vector units
— Attached FPGA chip(s) - compile to a circuit

« Have all proven difficult to program — manage
when to move data back and forth.

* New trend being discussed “on-chip” FPGAs and
other accelerators

— Related to Dark Silicon trend — a way to use those
extra transistors/board area

— Depending on implementation, may eliminate or
reduce cost of data transfers.

The Parallel
Programming Problem

Huge variety of architectures
— We just sampled a few — barely scraped the surface...

How can we understand what is important, and
abstract away the rest?

Is there any hope for “universal parallel
programs”?

Or (perhaps more realistically), programs that work
“reasonably well” on “most parallel architectures™?

— Can potentially be further tuned/refined for specific
machines/architectures

— Similar to sequential programming?

Some Options for Solving
the PPP

* Leave the problem to the compiler ...

— Discussed this last week — compilers can help with

localized parallelization, not fundamental algorithm
rewrites

« Adopt an abstract parallel language that can target to
any platform

« Wil programmers be willing to learn new language?
« What is the right level of abstraction?

« Cray’s Chapel (guest lecture in 3 weeks) is a good
example

— Also X10 from IBM, Fortress from Sun (cancelled in 2012)

More Options for Solving
the PPP

Agree on a set of parallel primitives (spawn process, lock location,
etc.) and create libraries that work w/ sequential code

— To work with multiple languages, limit base language assumptions

— Libraries use a specific interface (function call) limiting possible
syntactic abstractions (e.g., new types of loops)

— Achieving consistent semantics is difficult

— Examples: MPI, Pthreads
Create an abstract machine model that accurately describes
common capabilities and let the language facilities catch up ...

— Not a full solution until languages are available

— The solution works in sequential world (von Neumann model)

— Requires discovering (and predicting) what the common capabilities are

— Solution needs to be (continually) validated against actual experience

— We’'ll be discussing one such model next ...

Summary of Options for
PPP

» Leave the problem to the compiler ...

» Adopt an abstract language that can target to
any platform ...

* Agree on a set of parallel primitives (spawn
process, lock location, etc.) and create
libraries that work w/ sequential code ...

* Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up ...

* What are your thoughts??

Why is Sequential
Programming Successful?

When we write programs in C they are ...

— Efficient -- programs run fast, especially if we use performance as
a goal

« E.g., traverse arrays in row major order to improve caching
— Economical -- use resources well
 E.g., represent data by packing memory

— Portable — Efficient programs usually run reasonably well on any
computer with C compiler

— Easy to write -- we know many ‘good’ techniques
» reference data, don’t copy

These qualities all derive from von Neumann model

UW CSEP 524 (PMP Parallel Computation): 36

Spring 2015 Ringenburg

Von Neumann (RAM)
Model

« Call the ‘standard’ model of a random access machine
(RAM) the von Neumann model

» A processor executing one basic operation at a time (3-
address code)

» PC pointing to the next instruction of program in memory

« “Flat”, randomly accessed memory requires 1 time unit
(not clock cycle)

 Memory is composed of fixed-size addressable units
* One instruction executes at a time, and is completed before
the next instruction executes

 The model is not literally true, e.g., memory is hierarchical
but made to “look flat”, doesn’t account for hardware and
compiler optimizations

C directly implements this model in a HLL

37

Why Use Model That’ s Not
Literally True?

* Simple is better, and many things--registers,
floating point format--don" t matter at all

* Avoid embedding assumptions where things

could change ...

— Flat memory, thoufqh originally true, is no longer right,
but we don’ t retrofit the model; we don’ t want people
programming to a specific cache architecture, because
it will likely change

* Yes, exploit spatial locality
* No, avoid blocking to fit in cache line, or tricking cache into
prefetch, etc.

— Compilers can add specific architectural optimizations
(e.g., cache line size).
« Portability via simple recompilation

38

e Von Neumann Summary

« The von Neumann model “explains” the costs of C
because C expresses the facilities of the von
Neumann machines in programming terms

« Knowing the relationship between C and the von
Neumann machine is essential for writing fast
programs

 Because so much code written to this model, HW
vendors attempt to stay reasonably close

« These ideas are “in our bones” ... it's how we think

What is the parallel version of von Neumann?

39

e Recall Parallel Random Access
Machine (PRAM) Model

PRAM has any number of processors
— Any memory can be referenced in “unit time”
— Memory read/write collisions must be resolved

40

e PRAM Often Proposed As A
Candidate

 PRAM (Parallel RAM) ignores memory
organization, collisions, latency, conflicts, etc.

 Ignoring these are claimed to have benefits ...
— Portable everywhere since it is very general
— It is a simple programming model ignoring only
insignificant details — e.g., “only off by log P”

— Ignoring memory difficulties is OK because hardware can
“fake” a shared memory

— Good for getting started: Begin with PRAM then refine
the program to a practical solution if needed

» But locality very important to performance in
most parallel architectures...

41

CTA Model

* Your text presents
Candidate Type
Architecture ' model: e 5

— P compute processors - i
— 1 management

prOCGSSOF Node 1 Node 2 Node 3 Node 4] ... Node P

Tt P 4|\ AT A1 AN A [-1

network) Interconnection Network

— 1 unit local memory
latency

— A >> 1 global memory
latency

 Node == processor +
memory + NIC

What CTA Doesn’ t
Describe

 CTA has no global memory ... but memory
can be globally addressed

* Mechanism for referencing global memory
not specified: shared addressing, message
passing, one-sided communication, ...

 |nterconnection network not specified
— Does assume network, not bus (1 message at a
time).

* A Is not specified beyond A>>1 -- cannot be
because every machine is different

e Communication
Mechanisms
» Shared addressing

— One consistent memory image — any node
can load/store anywhere

— Must protect locations from races

— Some consider most convenient, but many
challenges (performance/correctness)

— CTA implies that best practice is to keep as
much of the problem private; use sharing only
to communicate — this style often encourages
the opposite

e Communication
Mechanisms
 Message Passing

— No global memory image; primitives are send ()
and recv ()

— Common in clusters and supercomputers

— User writes in sequential language with message
passing library:
* Message Passing Interface (MPl) most common
— Many people dislike, but it has been the dominant
paradigm in HPC for a long time
« The model forces you to think locally

* Lots of high-performing legacy code => not likely to go
away any time soon

e Communication
Mechanisms
 One Sided Communication

— One global address space; primitives are get ()
(fetch from remote) and put () (write to remote)

— Many high-performing interconnects support RDMA:
Remote Direct Memory Access (one-sided
communication without involving other processor)

* E.g., Infiniband, Cray Aries

« Often very efficient — no remote involvement = low overhead
— Consistency is the programmer’ s responsibility
— Explicitly distinguishes local and remote

— Either via library, or language-level support (Coarray
Fortran and C++, UPC)

039 Apply CTA to Count 3s

 How does CTA guide us for Count 3s
problem??

— Assume small degree d (i.e., multiple
communications to/from a node may cause
congestion)

* What is the running time?

One solution

* Each processor computes 3’s in its local chunk
 Combine via reduction tree — log P steps
 Cost N/P+ A log P

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

48

Parallel Machine Model
Summary

« Parallel hardware is a critical component of improving
performance ... but there’ s a Catch-22

— To have portable programs, we must abstract away from
the hardware

— To write performant programs requires that we respect the
hardware realities

 PRAM: Interesting theoretical model, but misses
important details of most machines

« CTA: an abstract machine with just enough detail to
support critical programming decisions

— Highlights the importance of locality
* |In homework you’'ll read about LogP model

9 Let’s Revisit Memory

Memory Consistency Model: Rules that define
how distinct tasks may view concurrent updates
to memory

e Strict Consistency

* All reads/writes to memory appear to happen at
the same time on every thread/process/node

— Intuitively, exactly what you would like

— By definition, different tasks couldn’t have
simultaneous contradictory notions of memory

— Requires some notion of globally consistent time to
make any sense

— And requires locking every non-private access

— Not realistic, and really don’t have any need for this
level strictness

— What do we really want?

What do we really want?
(adopted from The Java
MCM: Manson, Pugh, Adve)

Initially, x==0, y == 0

Task 1 Task 2

regl=x || reg2=y
y=1 X =2

Consider this example — what possible outcomes would you intuitively expect?

What do we really want?
(adopted from The Java
MCM: Manson, Pugh, Adve)

Initially, x==0, y == 0

Task 1 Task 2

regl =x
reg2 =y
y=1

X=2

regl=0,reg2=0

What do we really want?
(adopted from The Java
MCM: Manson, Pugh, Adve)

Initially, x==0, y == 0

Task 1 Task 2

reg2 =y
regl = x
X=2

y=1

regl=0,reg2=0

What do we really want?
(adopted from The Java
MCM: Manson, Pugh, Adve)

Initially, x==0, y == 0

Task 1 Task 2

regl =x
y=1
reg2 =y
X =2

regl=0,reg2=1

What do we really want?
(adopted from The Java
MCM: Manson, Pugh, Adve)

Initially, x==0, y == 0

Task 1 Task 2

reg2 =y
X=2
regl =x
y=1

regl=2,reg2 =0

What do we really want?
(adopted from The Java
MCM: Manson, Pugh, Adve)

Initially, x==0, y == 0

Task 1 Task 2

reg2 =y
X=2
regl =x
y=1

regl=2,reg2 =0

Really just want something that enforces one of these “intuitive outcomes”

A Slightly Weaker Model:
Sequential Consistency

 Two parts to the definition:
— All memory ops within a thread complete in program

order
— Across tasks, memory ops are interleaved in a consistent
total order (everyone sees same interleaving)

* |Intuitively: “An interleaving of the tasks’ memory
operations if they were instantaneous”

* Not as “strict” as strict, but still provides outcomes
we’d “intuitively expect”

* Unfortunately, still untenable in general

— guaranteeing a consistent, total order on memory ops
again implies too much overhead

Reality ...
(adapted from The Java
MCM: Manson, Pugh, Adve)

Initially, x==0, y == 0

Task 1 Task 2
regl=x| reg2=y
y=1 X=2

What aboutregl =2, reg2 =1 "?

Sadly, yes — this can occur within most languages/architectures

gThe Real World ... (not MTV)

Initially, x==0, y ==

Task 1 Task 2
regl=x| reg2=y
y=1 X=2

What aboutregl =2, reg2 =17

The “blame the compiler” explanation:
* Traditionally, a compiler looks at a single task at a time

(Practically speaking, it can’t consider all possible potentially concurrent tasks)
 To acompiler looking at code in isolation, nothing prevents reordering as follows:

Code Snippet 1 Code Snippet 2
y = 1 X=2
regl =x reg2 =y

(at which point, obvious execution interleavings can yield the regl = 2, reg2 = 1 result).

gThe Real World ... (not MTV)

Initially, x==0, y ==

Task 1
regl = x
y=1

Task 2
reg2 =y
X=2

The “blame the hardware” explanation:
* Processors don’t really execute one instruction, pause for completion, execute next.

Instructions interleaved in pipeline, non-dependent instructions can proceed while

awaiting memory references, etc.

What aboutregl =2, reg2 =17

* Consider shared x and y, living on different nodes:

y

Task 1
regl =x
y=1

network

Task 2
reg2 =y
X=2

gThe Real World ... (not MTV)

Initially, x==0, y ==

Task 1
regl = x
y=1

Task 2
reg2 =y
X=2

What about regl =2, reg2 =17

The “blame the hardware” explanation:

* Processors don’t really execute one instruction, pause for completion, execute next.
Instructions interleaved in pipeline, non-dependent instructions can proceed while
awaiting memory references, etc.

* Consider shared x and y, living on different nodes:

y X

fire off load of x

Task 1

mp regl = X

y=1

Task 2
s reg2 =y

fire off load of y X =2

gThe Real World ... (not MTV)

Initially, x==0, y ==

Task 1 Task 2
regl=x| reg2=y
y=1 X=2

What about regl =2, reg2 =17

The “blame the hardware” explanation:
* Processors don’t really execute one instruction, pause for completion, execute next.

Instructions interleaved in pipeline, non-dependent instructions can proceed while
awaiting memory references, etc.
* Consider shared x and y, living on different nodes:

y X
load of x continues
Task 1 Task 2
regl =x reg2 =y
y=1 load of y continues X =2

gThe Real World ... (not MTV)

Initially, x==0, y ==

Task 1
regl = x
y=1

Task 2
reg2 =y
X=2

The “blame the hardware” explanation:
* Processors don’t really execute one instruction, pause for completion, execute next.

Instructions interleaved in pipeline, non-dependent instructions can proceed while

awaiting memory references, etc.

What about regl =2, reg2 =17

* Consider shared x and y, living on different nodes:

y

Task 1
regl =x
y=1

load of x arrives

load of y arrives

Task 2
reg2 =y
X=2

gThe Real World ... (not MTV)

Initially, x==0, y ==

Task 1
regl = x
y=1

Task 2
reg2 =y
X=2

The “blame the hardware” explanation:
* Processors don’t really execute one instruction, pause for completion, execute next.

Instructions interleaved in pipeline, non-dependent instructions can proceed while

awaiting memory references, etc.

What about regl =2, reg2 =17

* Consider shared x and y, living on different nodes:

y

Task 1
regl =x
y=1

load of y got 1

load of x got 2

Task 2
reg2 =y
X=2

Relaxed/Weak Consistency
Models

In practice, we generally have to deal with
weaker consistency models

Effort has gone into defining required Memory
Consistency Models in language standards

One common approach is “sequential
consistency, provided you follow certain rules”

— The rules mean the compiler and hardware can still
optimize without fear of violating MCM

— Java does this
— C++11 introduced this

Discussion

 Some possible questions:

— Are we really approaching the end of the multicore
revolution?

— What comes next? How can we continue to increase
processor performance?

* Or do we care? Should we concentrate on something else?
Is the processor always or even often the bottleneck in your
codes?
— If we can’t have all transistors on at once, how should
we use them? Should this change the tradeoffs in
designing hardware?

