CSEP 524 — Parallel Computation
University of Washington

Lecture 1: Motivation; Administratrivia; Introduction

Michael Ringenbug
Spring 2015

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015

’ What is parallelism?

* Parallelism: Using multiple resources to complete a
task

— E.g., the cashier to collect SS and the barista to make
coffee

— Or, multiple gardeners, or multiple instructors, or multiple
programmers, etc...

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

* Parallelism: Using multiple resources to complete a
task

— E.g., the cashier to collect SS and the barista to make
coffee

— Or, multiple gardeners, or multiple instructors, or multiple
programmers, etc...

* Key question: How do you divide the work?

— Each gardener working on a separate patch?

— Each worker handling a separate piece of the pipeline
(e.g., cashier and barista)?

* Parallelism: Using multiple resources to complete a
task

— E.g., the cashier to collect SS and the barista to make
coffee

— Or, multiple gardeners, or multiple instructors, or multiple
programmers, etc...

* Key question: How do you divide the work?
— Each gardener working on a separate patch?

— Each worker handling a separate piece of the pipeline
(e.g., cashier and barista)?

* Why would we do this?
— Complete work faster
— Complete task that is infeasible for single worker

9 What is parallel computing?

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

9 What is parallel computing?

* Parallel Computing: Using multiple compute resources
to complete a task

— Typically, processors and their memory
— May include accelerators: GPUs, FPGAs, etc...

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

9 What is parallel computing?

* Parallel Computing: Using multiple compute resources
to complete a task

— Typically, processors and their memory
— May include accelerators: GPUs, FPGAs, etc...

* Key question: How do you divide the work?

— Data parallelism: Divide the data across processors,
compute the same task on each (like the gardeners)

— Task parallelism: Execute separate tasks on each
processor (like the cashier and the barista) on the same or
different data

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

9 What is parallel computing?

* Parallel Computing: Using multiple compute resources
to complete a task

— Typically, processors and their memory
— May include accelerators: GPUs, FPGAs, etc...

* Key question: How do you divide the work?

— Data parallelism: Divide the data across processors,
compute the same task on each (like the gardeners)

— Task parallelism: Execute separate tasks on each
processor (like the cashier and the barista) on the same or
different data

* Why would we do this?
— Complete a computation faster
— Complete computation that is infeasible for one processor

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

Parallel Computations Vary
in Difficulty

Matrix Addition: Quite straightforward

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

Parallel Computations Vary
in Difficulty

Matrix Multiplication: Far more involved

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

10

9 Two Key Concerns

 Parallelism: “What should execute
simultaneously?”

— without parallelism, no speedup

* Locality: “Where should things execute?”
— Minimize time spent sending, waiting for data
— Necessary for top performance

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

11

Spring 2015

Why study parallel computing?

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

12

e The Traditional Answer(s) ¢

* |tis a fundamental departure from the
“normal” computer model, therefore it is
inherently cool/interesting

* Deep intellectual challenges for CS -- models,
programming languages, algorithms, HW, ...

 HPC/Supercomputing: The extra power from
parallel computers is very useful in science,
engineering, business, ...

THE SUPERCOMPUTER COMPANY

I &
ifi| B ?»l

ilway
echnical
esearch
stitute nx
[—
q
43 d e

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

14

o ST\

Currently #2 on théilia
4 o R

V%
v T
i
1
\y
2
— »
®»

urren

LY e |

~C-\

AR S)
S - 3 (8 ’

" -

il
Titan
compute nodes: 18,688

processors: 16-core AMD/node = 299,008 cores
GPUs: 18,688 NVIDIA Tesla K20s

memory: 32 + 6 GB/node = 710 TB total
peak speed: 20+ petaflops
floorspace: 4,352 square feet

For more information: http://www.olcf.ornl.gov/titan/
UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015

15

The New Answer(s)

Why does this matter to non-HPC/supercomputing
developers?

— The “multicore revolution” — everything is a parallel computer
now
* Desktops
* Laptops
* Even telephones!
— Big Data Analytics
* Large data sets that are too big to fit on a single machine

* And too large to compute efficiently with a single processor
— Many applications are time-sensitive

* Most popular frameworks for data analytics are parallel
— Hadoop MapReduce
— Spark
— Storm

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

16

Multicore Processors: How
did we get here?

10,000,000

* Transistor density has /
continued following Moore’s 40 Dual-Core Itanium 2 gt
Law Intel CPU Trends :

. . sources: Intel, Wikipedia, K. Olukotun
— But, see the caveat in this 100,000 (i)

week’s second reading ...

* But clock speeds have mostly 1000
stopped increasing

— Physical limitations: heat, 1,000
power, leakage
* So what do we do with the 100
extra transistors? How do we
provide the performance 10

boosts we’re used to?

| Transistors (000)

@ Clock Speed (MHz)
A Power (W)

© Perf/Clock (ILP)

— Answer: Add parallelism H

0 \

Spring 2015 1970 1975 1980 1985 1990 1995 2000 2005 2010
Source: The Free Lunch is Over, Herb Sutter, http://www.gotw.ca/publications/concurrency-ddj.htm

Spring 2015

This Course

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

18

About me

e UW CSE PhD alum — graduated early last year

— Researched architectures and programming models for
Approximate Computing (reducing energy consumption by
relaxing accuracy/precision guarantees)

 Worked at Cray since 2006
— Part-time in 2012-13 while finishing PhD

— ~7 years working on an automatically parallelizing
compiler

* Take non-parallel C/C++ code, plus (optional) pragmas, convert to
a parallel program via automatic loop parallelization

— More recently: working on parallel Big Data Analytics
* Important new application of parallel computing
* Will have a lecture on this towards the end of the course

e What am | doing here? ;-) ¢ _

* Give something back to the department

* Enjoy teaching, meeting students
— First time teaching this format of class, so bear
with me.
* Parallel computing is a broad, fascinating,
ever-changing subject — always more to learn

— | hope to learn as much from you as you learn
from me!

e Overall Course Goals

Expose you to as much information about parallel
computing as possible within the (short) timeframe

— foundations

— best practices

— recent trends

Teach you principles of parallel programming

Give you the background needed to read the state-of-

the art research in the field

— Will gain practice through reading/reviewing research
papers in homeworks, discussing in class

— Final project will give you practice going in depth on a
specific topic

Class Sessions

 Don’t worry, | won’t lecture for three hours straight...
— You would fall asleep; | would lose my voice

* Class will generally start with a lecture (about 1.5 hours, with short break)
 Then a break

* Then a discussion of the readings

— Discussion session is for you to discuss/debate (politely) the papers and
related topics

— lam just here to moderate/keep things on track

— So, please be prepared: do the readings and the homework on time
— Otherwise discussions will not be valuable

— Discussion participation is part of your grade for the course

— Note: This is my first time with a distance course, but | will work to make sure
both classrooms are able to participate in discussions.

* Today’s discussion will be short, since the first readings aren’t due until
next week

— Introduce yourselves, why you are here, etc.

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

22

Your Work

* Assignments:

— Most weeks will include 1-2 articles/research papers to read
and review

— May also include a couple short written and/or programming
problems

Review format:

— 0.5 -1 pages (using a “reasonable” font size)
— Include:

* Summary of articles key points

* Do you agree/disagree? Why? €< Important

« 2-3 discussion questions related to the article(s)

Late policy: At most twice during the quarter, you may turn
in an assignment late (max 1 week). This is intended for
use with work/family emergencies — don’t abuse.

Your Work, cont.

End-of-term project:
— Learn about and report on some technology we didn’t cover
e Or go in significantly more depth on a topic we did cover

— Will include written report and oral presentation (last 2 days of class)
* Sign-ups available soon

* East-side students may come to Seattle campus to present (recommended,
but not required)

— May include programming component, but not required

— Grading will be based on both content and delivery

— More details available soon on course web

— Homeworks may include project “checkpoints”
Grading breakdown (tentative):

— Project: 100 points

— Homework: 60-80 points total (about 10 points each)

— Class/discussion participation: ~40 points

Nuts and Bolts

e TA: Amnon Horowitz, amnonh@cs

* Text: Lin & Snyder, Principles of Parallel Programming (2" edition)

— Meant as supplementary material to lecture — read at your leisure, but note
that homeworks may rely on it.

e Office Hours:
— Difficult with a distance course, and with all of us having day jobs
— | will be in my office (CSE 278) before class, starting at roughly 5:30 Tuesdays
— Amnon office hours: TBD — let us know your thoughts
* Webpage:
http://www.cs.washington.edu/education/courses/csep524/15sp
— Discussion boards, slides (after class), homeworks, dropbox, project info, etc.
* Guest lecture on April 28: Brad Chamberlain
— Taught this course two years ago
— Technical lead for Cray’s Chapel parallel programming language

— | will be at a conference, but your attendance is still expected — there will be
homework related to the lecture

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

25

Introduction to Parallel Computing

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

26

e Rest of this Lecture

« Goal: To give a general idea of the challenges of
parallel computation
— Examine a few problems
— Think about how to make them parallel tasks

— Understand some of the challenges, e.g., locality and
caching

 Motivate future lectures!

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

27

e First, the dream ...

» Since 70s (llliac IV days) the dream has
been to automatically compile sequential
programs into parallel programs

— Decades of research by academy and industry
implies it's hopeless for general computations

— But didn’t your instructor work on exactly that?!?

 For individual loops, it is possible (sometimes with
semantic help from programmer)

« For complete applications/algorithms it has proved
extremely difficult to efficiently parallelize

« MTA/XMT programmers would come up with a parallel
algorithm, rely on out compiler to deliver fine-grained
loop parallelism within the algorithm

9 What' s the Problem?

 Compilers are good at /local optimizations
(including parallelization and vectorization)

— C/C++ aliasing makes this harder, but user pragmas/
type qualifiers can solve

 But, for most algorithms, a “best” sequential
solution and a “best” parallel solution are usually
fundamentally different.

— Different solution paradigms imply good parallelization
IS not a local optimization.

Therefore... the programmer must discover the || solution!

e Consider A Simple Task

* Adding sequence of numbers ao01,..,A[n-1]
« Standard way to express it

sum = 0;
for (i=0; i<n; i++) {
sum += A[i];

}

» Language semantics require we execute as:
— (w((sum+A[0])+A[1])+..)+A[n-1]

— That is, sequential
« Can we execute this in parallel?

9 Parallel Summation

* To sum a sequence in parallel
— add pairs of values producing 1st level results,

— sum pairs of 1st level results producing 2nd level
results,

— sum pairs of 2nd level results producing 3" level
results,

— etc.
* E.g., replace:
(CCCCCCA[O]+A[I])+A[2])+A[3])+A[4])+A[S])+A[6])+A[T7])
* With:

(C((A[O]+A[1]) + (A[2]+A[3])) + ((A[4]+A[5]) + (A[6]+A[7])))

9 Express the Two
Formulations

» Graphic representation makes difference
clear

68_-76 /6

e ¥,

16 14 2 8 6 4 16 10 16 14 2 8

— Same number of operations; different order
allows parallelism

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

32

9 Express the Two
Formulations

» Graphic representation makes difference

clear
68 76 JIF "I 76 1
/66/ : //N -
52 | 36 .7 Y 40
36 : _ v > /7
26 I 10/::1\2-6“.1' 30/:/:_S\1/§_
| |
0 A A A
6 4 16 10 16 14 2 8|6 _4,116 101,16 14,12

— Same number of operations; different order
allows parallelism

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015 33

9 Express the Two
Formulations

» Graphic representation makes difference

clear
6s_76 BIr~"TTTTT7C 76 |
66— /,N -

-
1\
|
\
|
|
\
N\
>
|
\
|
|

52~
36
26
&ﬂ\
6 4 16 10

I
16 14 2 s|[16 _4l116 101}16 14)12 81

- . - - - - - -

— In class exercise: sketch what happens when
#summands > cores/2

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015 34

e Our Goals In Parallel
Programming

» Goal: Scalable programs with performance
and portabllity

— Scalable: More processors can be “usefully”
added to solve the problem faster

— Portability: The solutions run well on all parallel
platforms

— Performance: Programs run as fast as those
produced by experienced parallel programmers
for the specific machine

* Not always possible to achieve both
performance and portability, due to
architectural differences, but a good goal.

e Scaling a Parallel Sum

» Exercise part 2: Compute performance of
your generalized parallel sum:

— Start with N =1024,and P =4
— Assume sending a small message takes 30 ticks

— And loading, adding and storing a result takes a
total of 3 ticks (cached array, unrolled loop).

 What if we scale to P = 167
« How about P = 647
* Now, repeat with N = 1,048,576 (2"20)

e Scaling a Parallel Sum

» Exercise part 2: Compute performance of
your generalized parallel sum:

— Start with N =1024,and P =4
— Assume sending a small message takes 30 ticks

— And loading, adding and storing a result takes a
total of 3 ticks (cached array, unrolled loop).

 What if we scale to P = 167
« How about P = 647
* Now, repeat with N = 1,048,576 (2"20)

Key takeaway: Scalability depends on problem size

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

37

Spring 2015

e A Related Computation

« Consider computing the prefix sums of an array

for (i=1; i<n; 1i++) {

A[i] += A[1-1]; Ali] is the sum of the
' firsti + 1 elements

}

« Semantics ...

- A

0]
1]
2]

IS unchanged
=A[1] + A[0]
=A[2] + (A[1] + A[0])

- A[n-1-]" = A[n-1] + (A[n-2] + (... (A[1] + A[0]) ...)

Spring 2015

How can we compute this in parallel?

UW CSEP 524 (PMP Parallel Computation):

Ringenburg 38

Comparison of
Paradigms

* The sequential solution computes the prefixes ...
the parallel solution computes only the last value

68_-76 76

R
S

14 2 8 6 4 16 10 16 14 2 8

6

e Ordoes it?

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

39

Spring 2015

Comparison of
Paradigms

* The sequential solution computes the prefixes ...
the parallel solution computes only the last value

36

2K\

6 4 16 10

16 14 2 8

e Ordoes it?

UW CSEP 524 (PMP Parallel Computation):

Ringenburg 40

Spring 2015

Comparison of
Paradigms

* The sequential solution computes the
the parallel solution computes only the

elements in its left (first)
subtree. /\

5
36
26 10 26
10/\/\ /N /N
&4 16 10 16 14 2 gl|6 4 16 10 16 14 2 8

e Ordoes it?

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

41

Spring 2015

’ Parallel Prefix Algorithm

Compute sum going up ! Invariant: Parent data
l is sum of elements to
left of subtree

Figure prefixes going down

AN /L AN /LA /]

6 4 16 10 16 14 2 8

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

42

e Parallel Prefix Algorithm

Compute sum going up j Invariant: Parent data
Figure prefixes going down 70 's sum of elements to
gure p J90Ing 0 | 0+36 left of subtree
36 40
0+10 36 | 36+30
10 26 30 10
0+6 10+16 36+16 66+2
6 | 6+0 4+6 16| 16+10 10+26 |10 | | 16| 16+36 14+52 | 14 2 | 2+66 8+68 | 8
6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

Spring 2015

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

43

Fundamental Tool of
Parallel Programming

 Original research on parallel prefix
algorithm published by

Richard E. Ladner and Michael J. Fischer
Parallel Prefix Computation
Journal of the ACM 27(4):831-838, 1980

The Ladner-Fischer algorithm requires 2log n time,
twice as much as simple tournament global sum,
not linear time

Applies to a wide class of operations

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

44

Spring 2015

Parallel Compared to
Sequential Programming ©

» Has different costs, different advantages
* Requires different, unfamiliar algorithms
* Must use different abstractions

« More complex to understand a program’ s
behavior

 More difficult to control the interactions of
the program’s components

» Knowledge/tools/understanding more
primitive
— Although this is rapidly changing

Consider Another Simple
Problem

* This time, lets consider how it runs on a
real machine as well.

* First, the problem:
— Count the 3sin array[] of n values:

count = 0;
for (i=0; i<n; i++) {
if (array[i] == 3)

count += 1;

e Write A Parallel Program

* Need to know something about machine
... use multicore architecture

RAM
Memory
|
L2
How V\.IO-u|d you 5-level
solve it in parallel? — cache, L2
L1 L1 shared
Core || Core
0 1

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

47

9 Divide Into Separate
Parts

* |dea 1: assign each thread a chunk of the

array to count
length=16 t=4

array (2 |3 /0 (2|3 (3|1 (0|0 |1 (3 |2 (2 |3 |1 |0

- N N N /

Thread 0 Thread 1 Thread 2 Thread 3

int length per thread = length/t;
int start = id * length per thread;
for (i=start; i<start+length per thread; i++) {
if (array[i] == 3)
count += 1;

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

48

9 Divide Into Separate
Parts

 THIS GETS THE WRONG ANSWER!

— Any ideas why?
length=16 t=4
array (2 (3 (0 (2 (3 (3 (1 (O (O |1 (3 |2 (2 |3 |1 |0

- N N N /

Thread 0 Thread 1 Thread 2 Thread 3

int length per thread = length/t;
int start = id * length per thread;
for (i=start; i<start+length per thread; i++) {
if (array[i] == 3)
count += 1;

UW CSEP 524 (PMP Parallel Computation):

>pring 2015 Ringenburg

49

9 Divide Into Separate
Parts

 THIS GETS THE WRONG ANSWER!

— Any ideas why?
length=16 t=4
array (2 (3 (0 (2 (3 (3 (1 (O (O |1 (3 |2 (2 |3 |1 |0

- N N N /

Thread 0 Thread 1 Thread 2 Thread 3

int length per thread = length/t;
int start = id * length per thread;
for (i=start; i<start+length per thread; i++) {
if (array[i] == 3)
count += 1;

UW CSEP 524 (PMP Parallel Computation):

>pring 2015 Ringenburg

50

9 Race conditions

* Two processes interfere on memory writes

Thread 1 Thread 2
count < 0
load
load
Increment
Increment
store
count = 1
store v
count < 1

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015 51

e Protect Memory
References

« 2nd attempt: Protect memory references
with a mutex (mutual exclusion) lock:

mutex m;
for (i=start; i<start+length per thread; i++) {
if (array[i] == 3) {

mutex lock acquire(m);
count += 1;
mutex lock release(m);

}

}

— Only one thread may hold the lock m at any given
time. Others must wait until it is released.

9 Correct Program!

* But look what happens to performance...

Performance
]
serial parallel

— Performs worse than the serial version of the
code!

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

53

Closer Look: Motion of
count, m

* Problem 1: Threads waste time waiting on lock

* Problem 2: Contention on lock and data causes constant
cache misses and invalidations!

 Problem 3: Lock operations expensive — must ensure
visible to all threads

RAM
Memory mutex m;
for (i=start; i<start+length per thread; i++){
I if (array[i] == 3) {
L2 mutex lock(m);
count += 1;
—_— mutex unlock(m);
L1 L1 }
}
PO P1

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015 54

Accumulate Into Private
Counter

« 3" attempt: each processor adds into its
own memory; combine at the end (single
ock acquire/release per thread)

for (i=start; i<start+length per thread; i++) {
if (array[i] == 3) {
private count[t] += 1;
}
}

mutex lock(m);
count += private count[t];
mutex unlock(m);

Keeping Up, But Not
Gaining
« Sequential and 1 processor match, but it’ s
a loss with 2 processors

Performance
0.91 0.91 1.15
[]]

t=1 t=2
serial Try 3

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

56

’ False Sharing

« (ot rid of time waiting on lock, and most of the
expensive lock operations

« But, private variable = private cache-line

RAM
Memory

private count[0] L2 private count[O0]

private count[1] private count[1]
 e——
L1 L1
/) Po || P1 (\

Thread modifying Thread modifying

private count[0] _ private count[1]

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

57

Spring 2015

e Force Into Different Lines

« 4th attempt: padding the private variables
forces them into separate cache lines and
removes false sharing

// Assume 64 byte cache lines
struct padded int {

int32 wvalue;

char padding[60];
} private count[MaxThreads];

UW CSEP 524 (PMP Parallel Computation):
Ringenburg

Spring 2015

58

9 Success!!

Performance
0.91 0.91
0.51
] —
t=1 t=2
serial

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

59

e Count 3s Summary

» Recapping:
— Started with obvious “break into blocks™ program

— Needed to protect the count variable
* Prevent race conditions — repeated theme

— Got the right answer, but the program was slower
... lock and data contention

— Privatized memory and 1-process was fast
enough, 2- processes slow ... false sharing

— Separated private variables to own cache line
— Success! 2 cores were almost twice as fast as 1

e Recall the Matrix
Multiplication
* Matrix multiplication of (square n x n)

matrices A and B producing n X n result
C where Crs — ElsKSn Ark* ks

C A B

m, m N
B o= %4 %2+ + %"
Hy B U

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

61

e Extreme Matrix
Multiplication

* The multiplications are independent (do in
any order) and the adds can be done in a

tree

.1 .2 .3 .n
O(n) processors for each * * * *
result element implies (11 (o O3 On
O(n3) total for n x n
matrix
Time: O(log n) + +

In-class question: How
would you generalize this
to work when P < n3? u

]
+

UW CSEP 524 (PMP Parallel Computation): 62

Spring 2015 Ringenburg

e In the real world...

* Good properties
— Extremely parallel
— Very fast — log n is a good bound

« Bad properties

— Ignores memory structure and reference
collisions

— Ignores data motion and communication costs

— Work imbalance between processors — half
only participate in first round.

e Where is the data?

Reference collisions and communication costs are
important to final resuilt.

 Need a model for this! One simple possibility is the
PRAM (parallel RAM) model:

Po | P, | Pl [Ps | Pa | [Ps | [Ps | [P,

Memory

PRAM: Parallel Random
Access Machine

+ Use as many execution units (cores, threads, etc.)
as you like
 All units access a single shared memory
— Any processor can reference any memory location in unit
time
 How do we resolve memory collisions?
— Read Collisions -- simultaneous reads to location are OK

— Write Collisions -- simultaneous writes to location need a
rule. Typical options:
 Allowed, but must all write the same value
 Allowed, but value from highest indexed processor wins

* Allowed, but a random value wins
 Prohibited

PRAM: Parallel Random
Access Machine

+ Use as many execution units (cores, threads, etc.)
as you like
 All units access a single shared memory
— Any processor can reference any memory location in unit
time
* How do we
— Read Collisions

2solve memory collisions?

a¥-Ya aade to lacation gre OK
— Write Collisions -- simu

rule. Typical options: S this realistic?? ceda

 Allowed, but must all write the same value
 Allowed, but value from highest indexed processor wins

* Allowed, but a random value wins
 Prohibited

Spring 2015 UW CSEP 524 (PMP Parallel Computation): 66
Ringenburg

e PRAM likes our algorithm

 Allows any # of execution units: O(n3) OK

* A and B matrices are read simultaneously,
but that’ s OK
— Read in “unit time”

« Cis written simultaneously, but no location is
written by more than 1 processor
— Write in “unit time”

PRAM model implies O(/log n) algorithm is
good ... but in real world, we suspect not

UW CSEP 524 (PMP Parallel Computation):

>pring 2015 Ringenburg

67

Where else could data
reside?

» Cluster-like model: data split between
local memories of separate processors

Point-to-point Network

» Each processor could hold blocks of A
and B, and compute block of C

» Getting rows and columns to processors

Po P, Po P, Po P
Py || |Ps P2 [P Py || |Ps
C A B

— Allocate matrices in blocks o~
— Ship only portion being used storage

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

69

» Getting rows and columns to processors

Po ||| P4 Po |P4 Po || | P4
P2 || Ps — P2 Ps \PP:2||[P:
LN \
C
— Allocate matrices in blocks \?emp
— Ship only portion being used s\dgage

— Can we reuse shipped data?

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

70

» Getting rows and columns to processors

P, |1]P, P, P, | P [P,

P, | [[Ps l‘:\\ P, [P, P, | ||Ps

C s o B
— Allocate matrices in blocks~

\

— Ship only portion being used S
— Can we reuse shipped data? Yes!

Temp

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

71

9 Blocking Improves
Locality

* Reuse of rows, columns => caching effect

» Large blocks => big chunks of needed
rows/columns |ocal

UW CSEP 524 (PMP Parallel Computation):

Spring 2015 Ringenburg

72

e What we learned

* Many factors matter when choosing/
designing a parallel algorithm

— A processor’ s connection to memory
— Number of processors available
— Locality: always important in computing

 But locality is often at odds with high levels of
parallelism

» Using caching is complicated by multiple threads —
don’t want data “bouncing” between caches

* Need a better understanding of parallel
architectures and models of parallelism!

— Coming up next week!

e Discussion

* Today will be short (we can go home early!),
since you haven’t read any papers yet.

e Briefly introduce yourself:
— Name
— Where you work
— What you do
— Why you are interested in this course

— Any other interesting facts about yourself/
relevant background you bring/jokes/etc.

