A brief introduction to OpenMP

'.J
% e ; Alejandro Duran
AW -’ R, SKB B “. 14 J..Il
N -
| o H l'!i'.l;-g-lmcelonaﬁupercomputmg Center
L ia 'U"'i- .

ﬂ Introduction

e Writing OpenMP programs
© Data-sharing attributes
e Synchronization

e Worksharings

@ Task parallelism

®

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 2/47

Introduction

Outline

@ Introduction

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 3/47

What is OpenMP?

@ It's an API extension to the C, C++ and Fortran languages to write
parallel programs for shared memory machines

o Current version is 3.1 (June 2010)
@ Supported by most compiler vendors

@ Intel,IBM,PGl,Oracle,Cray,Fujitsu,HPR,GCC,...
o Natural fit for multicores as it was designed for SMPs
@ Maintained by the Architecture Review Board (ARB), a consortium
of industry and academia

http://www.openmp.org

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 4/47

Introduction

A bit of history

OpenMP 25
OpenMP 3.0
OpenMP 3.7

2010

P N N N R R el e el el el e e e e R R N R R . .
A U S L B U U U A
2005 2008

2002

1997 1998 1999 2000
5/47

10th October 2011

A brief introduction to OpenMP

Alex Duran (BSC)

Introduction

Target machines

s o o
!

Memory interconnect

|

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 6/47

Introduction

Shared memory

@ Memory is shared across
different processors
8" @ Communication and
synchronization happen
implicitely through shared
memory

©

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 7147

Introduction
Including...

Multicores/SMTs

() Chip

Core Core
o0 ' X}

L1 Caches L1 Caches

l L2 Cache *J

Off-chip
Cache

|

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 8/47

Introduction

More commonly

NUMA

-ﬁ' T e
Chip -jT
Memory interconnect

@ Access to memory addresses is not uniform

@ Memory migration and locality are very important

(o

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 9/47

Why OpenMP?

Mature standard and implementations
e Standardizes practice of the last 20 years

Good performance and scalability
Portable across architectures
Incremental parallelization

Maintains sequential version
(mostly) High level language
e Some people may say a medium level language :-)

@ Supports both task and data parallelism
@ Communication is implicit

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 10/47

Introduction

Why not OpenMP?

Communication is implicit
e beware false sharing
Flat memory model
e can lead to poor performance in NUMA machines

@ Incremental parallelization creates false sense of glory/failure
@ No support for accelerators

@ No error recovery capabilities
o
o

Difficult to compose
Pipelines are difficult

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 11/47

Writing OpenMP programs

Outline

e Writing OpenMP programs

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 12/47

Writing OpenMP programs

OpenMP at a glance

[OpenMP Runtime Library
[OS Threading Libraries]
CPU CPU CPU CPU CPU CPU SMP

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 13/47

Writing OpenMP programs
OpenMP directives syntax

In Fortran

Through a specially formatted comment:
sentinel construct [clauses]

where sentinel is one of:
@ ! SOMP or CSOMP or »SOMP in fixed format

@ ! SOMP in free format

In C/C++

Through a compiler directive:

#pragma omp construct [clauses]

@ OpenMP syntax is ignored if the compiler does not recognize
OpenMP)

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 14/47

Writing OpenMP programs

Hello world!

int id;
char xmessage = "Hello_world!";

#pragma omp parallel private(id)
{
id = omp_get_thread num();
printf("Thread %d_says: _%s\n", id, message);

}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 15/47

Writing OpenMP programs

Hello world!

int id;
char xmessage = "Hello_world!";

#pragma omp parallel private(id <—(Creates a parallel region of OMP_NUM THREADS
{
id = omp_get thread num() <—(AII threads execute the same codeJ

printf ("Thread _%d_says: _%s\n", s gT T

}
V.

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 15/47

Writing OpenMP programs

Hello world!

int id;
char xmessage = "Hello_world!";
#pragma omp parallel private(idq—{ id is private to each thread]
{ .

id = omp_get_thread num(); Each thread gets its id in the team)

printf ("Thread _%d_says: _%s\n", id, T
}

v

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 15/47

Writing OpenMP programs

Hello world!

int id;
char xmessage = "Hello_world!";

#pragma omp parallel private(id)
{
id = omp_get_thread num(); N
printf ("Thread_sd_says: %s\n", id, messageq;—[message is shared among all threads)

’]

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 15/47

Writing OpenMP programs

Execution model

Fork-join model

@ OpenMP uses a fork-join model

o The master thread spawns a team of threads that joins at the end of
the parallel region
e Threads in the same team can collaborate to do work

/@ D

Nested Parallel Reglon

rrrrrrrrrrrr | T

Parallel Region Parallel Region

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 16/47

Writing OpenMP programs

Memory model

@ OpenMP defines a weak relaxed memory model

@ Threads can see different values for the same variable
e Memory consistency is only guaranteed at specific points

@ syncronization constructs, parallelism creation points, . ..
o Luckily, the default points are usually enough

@ Variables can have shared or private visibility for each thread

©

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 17147

Data-sharing attributes

Outline

e Data-sharing attributes

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 18/47

Data-sharing attributes

Data environment

When creating a new parallel region (and in other cases) a new data
environment needs to be constructed for the threads. This is defined
by means of clauses in the construct:

@ shared

@ private

@ firstprivate

@ default

) threadprivate
o

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 19/47

Data-sharing attributes
Data-sharing attributes

When a variable is marked as shared all threads see the same
variable

@ Not necessarily the same value

@ Usually need some kind of synchronization to update them
correctly

When a variable is marked as private, the variable inside the
construct is a new variable of the same type with an undefined value.

@ Can be accessed without any kind of synchronization

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 20/ 47

Data-sharing attributes
Data-sharing attributes

Firstprivate
When a variable is marked as £irstprivate, the variable inside the
construct is a new variable of the same type but it is initialized to the
original variable value.
@ In a parallel construct this means all threads have a different
variable with the same initial value
@ Can be accessed without any kind of synchronization

®

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 21/47

Data-sharing attributes

Data-sharing attributes

int x=1,y=1,z=1;
#pragma omp parallel shared(X) private(y) firstprivate(z) \
num_threads(2)

{
X++; Y++; Z++;
printf ("sd\n",x);
printf("sd\n",y);
printf("sd\n",z);
}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 22/47

Data-sharing attributes

Data-sharing attributes

int x=1,y=1,z=1;

#pragma omp parallel shared(x) prlvate(y
num_threads (<—(The parallel region will have only two threads)
{

X++; Y++; Z++;
printf ("sd\n",x);
printf("sd\n",y);
printf("sd\n",z);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 22/47

Data-sharing attributes

Data-sharing attributes

int x=1,y=1,z=1;

#pragma omp parallel shared(X) private(y) firstprivate(z) \
num_threads(2)

{

X++; Y++; Z++; -

printf ("2d\n",x); <—[Pr|nts 2 or 3. Unsafe update!)
)
52)5

printf ("sd\n"
printf ("sd\n"

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 22/47

Data-sharing attributes

Data-sharing attributes

int x=1,y=1,z=1;

#pragma omp parallel shared(X) private(y) firstprivate(z) \
num_threads(2)

{

X++; Y++; Z++

printf("%d\n":x); N
printf ("sd\n",y); <—[Pr|nts any numberj
52)5

printf ("sd\n"

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 22/47

Data-sharing attributes

Data-sharing attributes

int x=1,y=1,z=1;
#pragma omp parallel shared(X) private(y) firstprivate(z) \
num_threads(2)

{
X++; Y++; Z++;
printf ("sd\n",x);
printf("sd\n",y);
printf("sd\n",z);
}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 22/47

Data-sharing attributes
Threadprivate storage

The threadprivate construct

@ How to parallelize:
o Global variables
o Static variables
o Class-static members
@ Use threadprivate storage
o Allows to create a per-thread copy of “global” variables.

®

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 23/47

Data-sharing attributes

Threaprivate storage

charx foo ()

{ X
static char buffer [BUF_SIZE]; Creates one static
#pragma omp threadprivate (buffer) copy of buffer per

thread

return buffer;

}

@

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 24/ 47

Data-sharing attributes

Threaprivate storage

charx foo ()

{
static char buffer [BUF_SIZE]; Now foo can be called by
#pragma omp threadprivate (buffer) multiple threads at the same
time

return buffer;

}

&

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 24/ 47

Data-sharing attributes

Threaprivate storage

charx foo ()

{
static char bhuffeL[B!JF_SIZ(lil for) Simpler than redefining the
threadprivate (buffer q
pragma onp P interface. More costly

return buffer;

}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 24/ 47

ronization

Outline

e Synchronization

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 25/47

Synchronization

Why synchronization?

Mechanisms

Threads need to synchronize to impose some ordering in the
sequence of actions of the threads. OpenMP provides different
synchronization mechanisms:

@ barrier
@ critical
@ atomic

@ taskwait

@ low-level locks

©

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 26 /47

Synchronization

Barrier

#pragma omp parallel
{

foo ();

#pragma omp bamer(—[Syncronizes all threads of the teamj
bar ();
}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 27/ 47

Synchronization

Barrier

#pragma omp parallel
{

#ora f;‘; 03 bares Forces all foo occurrences too
om] a e
P gbar();p = happen before all bar occurrences

}

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 27/ 47

Synchronization

Critical co

Example

int x=1;
#pragma omp parallel num threads(2)
{
#pragma omp critical
X++;

}
printf("sd\n",x);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 28 /47

Synchronization

Critical construct

Example

int x=1;
#pragma omp parallel num threads(2)

{
#pragma omp cri -
Only one thread at a time here)

X++;

printf("sd\n",x);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 28 /47

Synchronization

Critical construct

Example

int x=1;
#pragma omp parallel num threads(2)

#pragma omp cri -
Only one thread at a time here)

X++;

}
printf("%d\n",x)«—w

@

10th October 2011 28/47

Alex Duran (BSC) A brief introduction to OpenMP

Synchronization

Example

int x=1;
#pragma omp parallel num threads(2)
{
#pragma omp atomic
X++;

}
printf("sd\n",x);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 29 /47

Synchronization

Atomic construct

Example

int x=1;
#pragma omp parallel num threads(2)

{
#pragma omp ato N
! ;HOnly one thread at a time updates x here)

X++

printf("sd\n",x);

@

10th October 2011 29/47

Alex Duran (BSC) A brief introduction to OpenMP

Synchronization

Atomic construct

Example

int x=1;
#pragma omp parallel num threads(2)

{
omp atomic Specially supported by hardware primitives
SR &2 o <—(p Yy supp y p J

}
printf("sd\n",x);

@

10th October 2011 29/47

Alex Duran (BSC) A brief introduction to OpenMP

Synchronization

Example

int x=1;
#pragma omp parallel num threads(2)
{
#pragma omp atomic
X++;

}
printf("sd\n",x);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 29 /47

Synchronization

OpenMP provides lock primitives for low-level synchronization
omp_init_lock Initialize the lock
omp_set_lock Acquires the lock
omp_unset_lock Releases the lock
omp_test_lock Tries to acquire the lock (won’t block)
omp_destroy_lock Frees lock resources

®

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 30/47

Worksharings

Outline

e Worksharings

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 31/47

Worksharings

Worksharings

Worksharing constructs divide the execution of a code region among
the threads of a team

@ Threads cooperate to do some work

@ Better way to split work than using thread-ids
In OpenMP, there are four worksharing constructs:

@ loop worksharing

@ single

@ section

@ workshare

Restriction: worksharings cannot be nested

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 32/47

Worksharings

The for construct

void foo (int xm, int N, int M)
{
int i;
#pragma omp parallel
#pragma omp for private(j)
for (i =0; i <N; i++)
for (j =0; j <M; j++)
millj]

]
0;

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33/47

Worksharings

The for construct

void foo (int xm, int N, int M)
{

int i;

#pragma omp parallel

#pragma omp foréprivatal] New created threads cooperate to exe-
for (i =0; i <N; i++) . .
for (= 0; j <M j++) cute all the iterations of the loop

m[illj] = 0;

&

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33/47

Worksharings

The for construct

void foo (int xm, int N, int M)
{

int i;

#pragma omp parallel

#pragma omp for private(]j)
for (i = 0; i <N; i++)<—[Loop iterations must be mdependent)
for (j =0; j <M; j++

]
m[illj] = 0;

@

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33/47

Worksharings

The for construct

void foo (int xm, int N, int M)
{

int i;

#pragma omp parallel

#pragma omp for, =

for (‘<—e—'—{_ — The i variable is automatically privatized
DIE)
I] =

for

T T 7

i
m 0;

@

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33/47

Worksharings

The for construct

void foo (int xm, int N, int M)
{

int i;

#pragma omp parallel

#pragma omp for private(j)

for (i =0; i < ; . . a 0
for (14_—e~,—,'£tMust be explicitly pnvahzedj
) miilljl = 0;

@

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 33/47

Worksharings

The reduction clause

int vector_sum (int n, int v[n])

int i, sum = 0;
#pragma omp parallel for

Common pattern. All

for (i = 0; i <n; i+
sum += v[i]; threads accumulate to a
return sum; shared variable

}

&

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 34 /47

Worksharings

The reduction clause

int vector_sum (int n, int v[n])

int i, sum = 0;
#pragma omp parallel for reduction(+:sum)

for (i 0; <n
s e 1] <—[Eff|0|ently solved with the reduction cIausej
return sum;

&

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 34 /47

Worksharings

The reduction clause

int vector_sum (int n, int v[n])

int i, sum = 0;
#pragma

Private copy initialized here to the identity vaIueJ
for (, g

> Shared variable updated here with the partial values of each thread)
return St

}

©

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 34 /47

Worksharings

The schedule clause

The schedule clause determines which iterations are executed by
each thread.

@ Importart to choose for performance reasons only
There are several possible options as schedule:
(*] STATIC<—(Good locality, low overhead, load imbalance]
STATIC, chunke—

DYNAMIC|[, chunk] <—(Bad locality, higher overhead, load balancej

o
o
@ GUIDED[, chunk] —
o
o

AUTO
RUNTIME

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 35/47

Worksharings

The single construct

int main (int argc, char xsxargv)

{
#pragma omp parallel

{
#pragma omp single
{

printf ("Hello_world!\n");

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 36 /47

Worksharings

The single construct

int main (int argc, char xsxargv)
{

#pragma omp parallel

{

#pragma omp single
{

printf ("Hello_world!\n"); Ui program OUtpUti JUSt
one “Hello world

&

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 36 /47

Task parallelism

Outline

e Task parallelism

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 37/47

Task parallelism

Task parallelism in OpenMP

Task parallelism model

Team Task pool

@ Parallelism is extracted from “several” pieces of code
@ Allows to parallelize very unstructured parallelism
e Unbounded loops, recursive functions, ...

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 38/47

Task parallelism

What is a task in OpenMP ?

@ Tasks are work units whose execution may be deferred
e they can also be executed immediately
@ Tasks are composed of:

@ code to execute
@ a data environment

@ |Initialized at creation time
e internal control variables (ICVs)

@ Threads of the team cooperate to execute them

©

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 39/47

Task parallelism

When are task created?

@ Parallel regions create tasks
e One implicit task is created and assigned to each thread
@ So all task-concepts have sense inside the parallel region
@ Each thread that encounters a task construct

e Packages the code and data
o Creates a new explicit task

®

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 40/ 47

Task parallelism

List traversal

void traverse_list (List |)

Element e;
for (e = |—first; e ; e = e—>next)

#pragma omp task -
process(e);<—(e IS firstprivate)

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 41 /47

Task parallelism

void traverse_list (List |)
{
Element e;
for (e = I>first; e ; e = e—>next)
#pragma omp task
process(e);

#pragma omp taskwait <—[Suspends current task until all children are completedj

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 42/ 47

Task parallelism

Taskwait

void traverse_list (List |)
{
Element e;
for (e = I>first; e ; e = e—>next)
#pragma omp task
process(e);

) <—{#pragma All tasks guaranteed to be completed herej

&

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 42/ 47

Task parallelism

void traverse_list (List |)
{
Element e;
for (e = I>first; e ; e = e—>next)
#pragma omp task
process(e);

Now we need some threads
#pragma omp taskwait to execute the tasks

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 42/ 47

Task parallelism

List traversal
Completing the picture

List |

#pragma omp parallel
traverse_list(1);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 43 /47

Task parallelism

List traversal
Completing the picture

List |

#pragma omp parallel

traverse_list (|);<—[This will generate multiple traversals)

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 43 /47

Task parallelism

List traversal
Completing the picture

List |

WP @ EReiliel We need a way to have a single
traverse_list(1); 5
thread execute traverse_list

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 43 /47

Task parallelism

List traversal
Completing the picture

List |

#pragma omp parallel
#pragma omp single
traverse_list(l);

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 44/ 47

Task parallelism

List traversal
Completing the picture

List |

#pragma omp parallel
#pragma omp single
traverse_list(l); One thread creates the tasks of the traversal)

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 44/ 47

Task parallelism

List traversal
Completing the picture

List |

#pragma omp parallel
#pragma omp single

traverse_list (|);(—[AII threads cooperate to execute themJ

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 44/ 47

Task parallelism

Another example

Search problem

void search (int n, int j, bool xstate)
{

int i,res;

if (n==1j)

/+ good solution, count it =/
mysolutions ++;

return;
}
/% try each possible solution s/
for (i = 0; i < n; i++)
#pragma omp task
{
bool xnew_state = alloca(sizeof(bool)xn);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)){
search(n, j+1,new_state);
}
}

#pragma omp taskwait

v
Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 45/ 47

Task parallelism
Summary

OpenMP...

@ allows to incrementally parallelize applications for SMP
@ has good support for data and task parallelism

@ requires you to pay attention to locality
@ has many other features beyond this short presentation
e http://www.openmp.org

®

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 46 / 47

Task parallelism

Thanks for your attention!

Alex Duran (BSC) A brief introduction to OpenMP 10th October 2011 47/ 47

	Introduction
	Writing OpenMP programs
	Data-sharing attributes
	Synchronization
	Worksharings
	Task parallelism

