Chapel: Domain Maps

(Layouts and Distributions)

CRANY

THE SUPERCOMPUTER COMPANY

"Hello World" in Chapel: a Domain-Map Version

e Multi-locale Data Parallel Hello World

config const numIters = 100000; \\
const WorkSpace = {1l..numlters} dmapped Block(..);

forall 1 in WorkSpace do
writeln (“Hello, world! 7,

144

“from iteration ”, i, Y of ”, numlters,

W\ 144

on locale ”, here.id, ™ of ”, numLocales);

@8) (==

CRANY

THE SUPERCOMPUTER COMPANY

Review: Data Parallelism

e Domains are first-class index sets
Specify the size and shape of arrays
Support iteration, array operations, etc.

InnerD

i "‘\\‘ = cmae
\’.4’!\ @AEIL

CRANY

THE SUPERCOMPUTER COMPANY

Data Parallelism: Implementation Qs

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?

= A 273 : z%
e P EEEE] EBE

What data structure is used to store sparse arrays? (COO, CSR, ...?)

nenn
N

Q2: How are data parallel operators implemented?
How many tasks?
How is the iteration space divided be:cwgen_ the tasks?

Vphdiball] .7

\,Q’QA @‘A\EIL

Data Parallelism: Implementation Qs

Q3: How are arrays distributed between locales?
e Completely local to one locale? Or distributed?

e |f distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

Q4: What architectural features will be used?

e Can/Will the computation be executed using CPUs? GPUs? both?
* What memory type(s) is the array stored in? CPU? GPU? texture? ...?

Al: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions

0
|

—HAPEL

CRANY”

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain maps are “recipes” (written in Chapel) that
instruct the compiler how to map the global view of a
computation...

(LTI I T T I +
o TTTTTTITTI I I Il

A =B + alpha * C;

...to the target locales” memory and processors:

+

ol TTTTTTTTT]

Locale 0

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain Maps: “recipes for implementing parallel/
distributed arrays and domains”

They define data storage:
e Mapping of domain indices and array elements to locales
e Layout of arrays and index sets in each locale’s memory

...as well as operations:
* random access, iteration, slicing, reindexing, rank change,

* the Chapel compiler generates calls to these methods to
implement the user’s array operations

—HAPEL

0
E

STREAM Triad: Chapel (multicore)

const ProblemSpace = {1..m};

var A, B, C: /[ProblemSpace] real;

CRANY”

THE SUPERCOMPUTER COMPANY

No domain map specified => use default layout
e current locale owns all indices and values
e computation will execute using local processors only

AN
STREAM Triad: Chapel (multinode, blocked)

|
| | |
< N A e
| | |
const ProblemSpace = {1..m}
dmapped Block (boundingBox={1..m});
I I I
NN EEEEEENEEEEEEEEEE.

I I I

var A, B, C: [ProblemSpace] real;
1 : |
EEEENEEEEENEEEEEEEN

+ 1l

A =B + alpha * C;

—HAPEL

o
|

COMPANY

PERCOMPUTER

STREAM Triad: Chapel (multinode, cyclic)

Cluasssnsssusianussnnansssensesennnnnsnnnnesles

}

dmapped Cyclic (startIdx=1);

.1

const ProblemSpace = {1.

[ProblemSpace] real;

C:

B,

var A,

ER e alpha * C;

A =

CCRANY

THE SUPERCOMPUTER COMP,

Domain Maps: Layouts and Distributions

Domain Maps fall into two major categories:

layouts: target a single locale
e (that is, a desktop machine or multicore node)

e examples: row- and column-major order, tilings,
compressed sparse row

distributions: target multiple locales
e (that is, a distributed memory cluster or supercomputer)
e examples: Block, Cyclic, Block-Cyclic, Recursive Bisection,

—HAPEL

0
|

CRANY

THE SUPERCOMPUTER COMPANY

Declaring a Distributed Domain

* Domain types and literals may be domain mapped

In practice, this tends to be a great place to rely on type
inference to avoid repetition:

const Dom = {1..m, 1..n} dmapped myDMap(m);]

e Domain maps can also be declared independently of

a domain value (not covered here)
Useful for declaring several domains using the same map

. = P

CRANY

THE SUPERCOMPUTER COMPANY

Some Standard Distributions: Block and Cyclic

var Dom = {1..4, 1..8} dmapped Block (boundingBox={1..4, 1..8}); 1

8

. 0 L1 L2 13
distributed to
L5 L6 L7

var Dom = {1..4, 1..8} dmapped Cyclic(startIdx=(1,1));]

1 8

; Al Lo (L1 2 L3
istributed to
4 . L5 (L6 L7

—HAPEL

®
|

The Block class constructor

proc Block (boundingBox: domain,
targetLocales:
dataParTasksPerLocale =
dataParIgnoreRunningTasks
dataParMinGranularity =

[] locale

Locales,

L 4

-)

L 4

distributed to

Lo L1 L2 L3

. L5 ‘L6 L7

CRANY

THE SUPERCOMPUTER COMPANY

The Cyclic class constructor

CRANY

THE SUPERCOMPUTER COMPANY

proc Cyclic(startIdx,
targetLocales:

dataParTasksPerLocale
dataParIgnoreRunningTasks
dataParMinGranularity

~N

locale Locales,

[]

L 4

-)

L 4

o 10 L1 12 13
distributed to

. L5 ‘L6 L7

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps and forall loops

e Having applied a domain map to a domain/array...

~\

const Dom = {1..m, 1..n} dmapped Block(..);
var A, B: [Dom] real;

..forall loops over that domain and array will be
distributed according to the domain map

* i.e., data parallel expressions like: | forall ij in Dom do

forall a in A do ..;
B = sin (A) ;

Ll
Y4

e result in code like:

coforall loc in <Dom’s domainMap>.targetlLocales do
on loc do
forall 17 in <local portion of Dom, A, B>, .. do

L]
e J

—HAPEL

®
|

CRANY

THE SUPERCOMPUTER COMPANY

All Domain Types Support Domain Maps

——I———I———-

L
O
| R —
O
O

[TTT1] [T
LI NI T T T TR Tl

sparse

“steve”

aa :J_e.e”_”_ =
sung
“david”

= A Jacab” _ .
“albert”
“brad”

associative

unstructured

\,de @f“E'“

CRANY

THE SUPERCOMPUTER COMPANY

Chapel’s Domain Map Philosophy

1. Chapel provides a library of standard domain maps
* to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
* to cope with shortcomings in the standard library

Domain Maps)
é. Data Parallelism

Base Language

Locality Control

3. Chapel’s standard domain maps are written using the same
end-user framework
* to avoid a performance cliff between “built-in” and user-defined cases

—HAPEL

o
|

For More Information on Domain Maps

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework, Chamberlain, Deitz, Iten,
Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel,
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:
e Technical notes detailing domain map interface for programmers:
SCHPL_HOME/doc/technotes/README.dsi
e Current domain maps:
SCHPL_HOME/modules/dists/*.chpl
layouts/*.chpl
internal/Default*.chpl

—HAPEL

@
E

Domain Maps: Status

e All Chapel arrays implemented using domain maps
e Full-featured Block, Cyclic, Replicated distributions
e COO and CSR Sparse layouts supported
e Quadratic probing Associative layout supported

e Prototype Block-Cyclic and 2D Dimensional distribution
available

* Memory currently leaked for distributed arrays

—HAPEL

0
|

CRANY

THE SUPERCOMPUTER COMPANY

Future Directions

e Advanced uses of domain maps:
e GPU programming
* Dynamic load balancing
e Resilient computation
* in situ interoperability
e QOut-of-core computations

e Improved syntax for declared domain maps

—HAPEL

0
E

