Chapel: Locales

(Controlling Locality and Affinity)

CRANY

THE SUPERCOMPUTER COMPANY

The Locale Type

Definition:
e Abstract unit of target architecture
e Supports reasoning about locality

e Capable of running tasks and storing variables
e j.e., has processors and memory

Properties:
* alocale’s tasks have ~uniform access to local vars
e Other locale’s vars are accessible, but at a price

In practice:
* Typically a compute node (multicore processor or SMP)

—HAPEL

0
E

"Hello World" in Chapel: a Multi-Locale Version

e Multi-locale Hello World

CRANY

THE SUPERCOMPUTER COMPANY

coforall loc in Locales do)
on loc do
writeln (“Hello, world! 7,
“from node ”, loc.id, Y of ”, numLocales);
=

CRANY

THE SUPERCOMPUTER COMPANY

Locales and Program Startup

e Specify # of locales when running Chapel programs

[o)

$ a.out ——numLocales=8] $ a.out —nl 8]

e Chapel provides built-in locale variables

config const numlLocales: int = ..;
const LocaleSpace = {0..numLocales-1};
const Locales: [LocaleSpace] locale = ..;

numLocales: 8

LocaleSpace:

* main() begins as a single task on locale #0 (rocales(0])

—HAPEL

0
E

Rearranging Locales

CRANY

THE SUPERCOMPUTER COMPANY

Create locale views with standard array operations:

var TaskALocs
var TaskBLocs

var Grid2D =

= Locales[0..1];
= Locales|[2..];

reshape (Locales, {1..2, 1.

.4%));

\

Locales:
nnWAuxs:l!lI

TaskBLocs:

_ EEnn
Grid2D:
s [] 0

CRANY

LO C a I e M et h O d S THE SUPERCOMPUTER COMPANY

proc locale.id: int { ... }]

Returns locale’s index in LocaleSpace

proc locale.name: string { ... }]

Returns name of locale, if available (like uname -a)

proc locale.numCores: int { ... }]

Returns number of processor cores available to locale

proc locale.physicalMemory(...) { ... }]

Returns physical memory available to user programs on locale

Example + reduce Locales.physicalMemory () ;

const totalPhysicalMemory =]

The On Statement

e Syntax

on-stmt:
on expr do stmt
on expr { stmts }

e Semantics
Executes stmt(s) on the locale that stores expr

e Example

writeln (“start executing on locale 07);

on Locales[1l] do
writeln (“‘now we’re on locale 1”7);
writeln (“back on locale 0 again”);

~

CRANY

THE SUPERCOMPUTER COMPANY

CRANY

THE SUPERCOMPUTER COMPANY

Locality and Parallelism are Orthogonal

® On-clauses do not introduce any parallelism
)

writeln (“start executing on locale 07);
on Locales[l] do

writeln (“‘now we’re on locale 17);
writeln (“back on locale 0 again”);

e But can be combined with constructs that do:

writeln (“start executing on locale 07); <\\
cobegin {
on Locales[l] do
writeln (“this task runs on locale 17);
on Locales[2] do
writeln (“while this one runs on locale 27);

}

writeln (“back on locale 0 again”);

e Orthogonal support for parallelism and locality is key

% o=

CRANY

THE SUPERCOMPUTER COMPANY

SPMD Programming in Chapel Revisited

e A language may support both global- and local-view
programming — in particular, Chapel does

proc main () {
coforall loc in Locales do
on loc do
MySPMDProgram (loc.1id, Locales.numElements) ;

proc MySPMDProgram (me, p) {

—HAPEL

0
|

CRANY

THE SUPERCOMPUTER COMPANY

Data-driven on-clauses

e On-clauses can also use a data-driven form...

cobegin { \\
on node.left do
search (node.left);
on A[i,]j] do
bigComputation (A) ;

}

...supporting affinity between tasks and their data

(Note that even the ‘on Locales[3]’ form can be considered
data-driven, since each locale stores its respective locale value)

—HAPEL

0
|

CRANY

THE SUPERCOMPUTER COMPANY

Placement of data

Q: How does data get onto other locales to begin with?

Al: Lexical scoping

var x: int; // x 1s stored on localeﬂa\
on Locales[1l] {
var y: int; // y 1s stored on locale 1
on Locales[2] {
var z: int; // z 1s stored on locale 2
ony { vy -=1;, } // executes on locale 1
}
}
X y 4

0
3

PEL

Placement of data

CRANY

THE SUPERCOMPUTER COMPANY

Q: How does data get onto other locales to begin with?

A2: Class instances

class C { var x, v,
var myC: C;

on Locales[1l] {
myC = new C(..);
on Locales[2] do
myC.next =
}
on myC do ..
on myC.next do ..

new C(..);

z: real; var next: C;}

~

// myC is stored on locale 0

// myC’s object lives on locale 1..
// and its next is on locale 2

// executes on locale 1
// executes on locale 2

myC

X y: z X y: z
next: N next:

Placement of data

CRANY

THE SUPERCOMPUTER COMPANY

Q: How does data get onto other locales to begin with?

A3: On-declarations (not yet implemented)

on
on

on
on

Locales|[1]
Locales|[2]

x do ..
y do ..

var x:
var y:

real;
real;

// x 1s stored
// y 1s stored

// executes on
// executes on

on locale I\
on locale 2

locale 1
locale 2

Placement of data

Q: How does data get onto other locales to begin with?

A4: Distributed domains and arrays (next slide deck)

CRANY

THE SUPERCOMPUTER COMPANY

Querying a Variable's Locale

e Syntax

locale—-query—-expr:
expr . locale

e Semantics
* Returns the locale on which expr is stored

e Example
var i: int; h
on Locales[1] {
var j: int;
writeln((i.locale.id, j.locale.id)); // outputs (0,1)
}

—HAPEL

@
E

Here

e Built-in locale variable

const here: locale;]

e Semantics
Refers to the locale on which the task is executing

e Example

writeln (here.id) ; // outputs 5\

on lLocales|[1l] do

writeln (here.id); // outputs 1

on myC do
if (here == Locales[0])

then ..

CRANY

THE SUPERCOMPUTER COMPANY

CRANY

THE SUPERCOMPUTER COMPANY

Communication Implications

e Without optimizations, Chapel’s global address space
implies implicit communication

var x: int; <\\

on Locales[1l] { // on-clause implies an active message
var y: 1int;
y = X; // implies a remote get of x
on x do
Vv = X; // implies a remote put to y

—HAPEL

@
E

CRANY

THE SUPERCOMPUTER COMPANY

Optimized Communication

e The compiler can optimize communication subject to
Chapel’s memory consistency model

var xX: int; ‘\

on Locales[1l] { // on-clause implies an active message
var y: 1int;
y = X; // 1in practice, read-only values like x
} // are bundled with the active message

—HAPEL

@
E

Local statement

e Syntax

local-stmt:
local { stmt };

e Semantics

CRANY

THE SUPERCOMPUTER COMPANY

* Asserts to the compiler that all operations are local

e Example
on Locales[1] {) on Locales[1] {
var myC: C = ...; var myC: C = ..;

myC.x += 1; // is myC.x local?

}

local { //
myC.x +=
}
}

assert it 1is
1;

\

e Note: Our current hope is to deprecate this feature, replacing it with data-centric concepts

Status: Locales

* Most everything works correctly
o exception: the on-declaration syntactic form

®
e The compiler is currently lacking several important
communication optimizations

* Impact: scalability tends to be limited for programs
with structured communication

—HAPEL

0
|

CRANY

THE SUPERCOMPUTER COMPANY

Future Directions

e Hierarchical Locales (currently being developed)
e Support ability to expose hierarchy, heterogeneity within
locales

e Particularly important in next-generation nodes
e CPU+GPU hybrids
e tiled processors
® Mmanycore processors

—HAPEL

0
E

CRANY

THE SUPERCOMPUTER COMPANY

Prototypical Next-Gen Processor Technologies

Dragonfly Interconnect (optical fiber)

2 UART, 2 USB DDR3 Controller
JTAG, I’C, SPI

High-Radix Router Module (RM
— — ' — - 4

PCle 2.0 - 4 Lanes

Flexible 1/O DDR3 Controller

CRANY”

THE SUPERCOMPUTER COMPANY

General Characteristics of These Architectures

2 UART, 2 U8 DOR3 Controller
ITAG, FC, SP1

; 10 GbE
. r XAU
36 Cores
s PCle 2.0 - 8 Lanes ;
;, gﬂ 10 GbE
PCle 2.0 - 4 Lanes Wi
: . :
t

Flexible /O DDR3 Controller

* Increased hierarchy and/or sensitivity to locality
* Potentially heterogeneous processor/memory types

= Next-gen programmers will have a lot more to
think about at the node level than in the past

@lu..

CRANY

THE SUPERCOMPUTER COMPANY

Locales Today

Concept:

Today, Chapel supports a 1D array of locales
e users can reshape/slice to suit their computation’s needs

locale locale locale locale

Apart from queries, no further visibility into locale structure
* no mechanism to refer to specific NUMA domains, processors, memories, ...
e assumption: compiler, runtime, OS, HW can handle intra-locale concerns

—HAPEL

0
E

Current Work: Hierarchical Locales

Concept:

Support locales within locales to describe architectural
sub-structures within a node

sub-locale A sub-locale A sub-locale A sub-locale A
C|{IC||ID||E C|{IC||ID||E C|{IC||ID||E C|{IC||ID||E
sub-locale B sub-locale B sub-locale B sub-locale B
locale locale locale locale

As with traditional locales, on-clauses and domain maps
can be used to map tasks and variables to a sub-locale’s
memory and processors

Locale structure is defined as Chapel code

e permits implementation policies to be specified in-language
e introduces a new Chapel role: architectural modeler

