CRANY

THE SUPERCOMPUTER COMPANY

Chapel: Task Parallelism

<12 @::;t

Salt Lake City, Utah

CRANY

THE SUPERCOMPUTER COMPANY

Task Creation: Begin

e Syntax

begin-stmt:
begin stmt

e Semantics
* Creates a task to execute stmt
e Original (“parent”) task continues without waiting

e Example

begin writeln (“hello world”);
writeln (“good bye”);

e Possible output
hello world] good bye]

good bye hello world

—HAPEL

0
|

Last week’s Pthreads addOne() example in Chapel

var result: int;

proc addone (arg: 1int) {
writeln (“task running addone(”, arg, “)”);

result = arg+l;

sync {
begin addone (3);
}

writeln (“result was ”, result);

—HAPEL

0
|

CRANY

THE SUPERCOMPUTER COMPANY

Block-Structured Task Creation: Cobegin

e Syntax

cobegin-stmt:]

cobegin { stmt-list }

e Semantics
e Creates a task for each statement in stmt-list
e Parent task waits for stmt-list tasks to complete

e Example

cobegin {
foo(l);
foo(2);
bar () ;
} // wait here for both foo()s and bar() to return

—HAPEL

0
|

CRANY

THE SUPERCOMPUTER COMPANY

Loop-Structured Task Invocation: Coforall

e Syntax

coforall—-loop:
coforall index-expr in iteratable-expr { stmt-1ist }

e Semantics
e Create a task for each iteration in iteratable-expr
e Parent task waits for all iteration tasks to complete

e Example

~

config const numTasks = here.numCores;

coforall tid in 0. .#numTasks do
writeln (“Hello, world! 7,
“from task 7, tid, “ of ”, numTasks);

—HAPEL

®
|

CRANY

THE SUPERCOMPUTER COMPANY

Comparison of Begin, Cobegin, and Coforall

begin:
e Use to create a dynamic task with an unstructured lifetime
* “fire and forget”

cobegin:
e Use to create a related set of heterogeneous tasks
e ...or a small, finite set of homogenous tasks
e The parent task depends on the completion of the tasks

coforall:
* Use to create a fixed or dynamic # of homogenous tasks
* The parent task depends on the completion of the tasks

Note: All these concepts can be composed arbitrarily

—HAPEL

0
E

CRANY

THE SUPERCOMPUTER COMPANY

Joining Sub-Tasks: Sync-Statements

e Syntax

sync—statement:
sync stmt

e Semantics
e Executes stmt
e Waits for all dynamically-scoped begins to complete

e Example

sync { \\ proc search (N: TreeNode) F\

for i in 1..numFoos { if (N != nil) {
begin foo (1) ; begin search (N.left);

} begin search (N.right);
bar () ; }

} }

sync { search(root); 1}

—HAPEL

@
E

CRANY

THE SUPERCOMPUTER COMPANY

Sync-Statements and Dynamic Scoping

Where the cobegin statement is static...

cobegin {
functionWithBegin () ;
functionWithoutBegin () ;
} // waits on these two tasks, but not any others

...the sync statement is dynamic.

sync {
begin functionWithBegin () ;
begin functionWithoutBegin() ;
} // waits on these tasks and any other descendents

PEL

0
3

Sync-Statements and Program Termination

Program termination is defined by an implicit sync on
the main() procedure:

sync main();]

—HAPEL

@
E

