CSEP 524: Parallel Computation
(week 9)

Brad Chamberlain
Tuesdays 6:30 —9:20
MGH 231




A Note on Final Presentations

* 5 minutes is not a lot of time
— you won'’t be able to say everything you’ve learned

— pick the most important messages carefully
— practice & edit a few times to dispel panic about timing
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Surveys

 We'll be doing them tonight
— at the end of class (?)
— how long do they tend to take?
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If we have to vote something off the island...

 We're going to flit around a bit tonight
* |f we have to cut a corner, which should be cut?

— some algorithms (I have many)
— Software Transactional Memory (STM / atomic sections)

— HPF/ZPL:

* Failed languages of the 90’s and their influence on Chapel
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Amdahl’s Law




Amdahl’s Law

Amdahl’s Law: The maximum speedup of a program is
limited by the time required by the sequential portions
of the code

— i.e., “if you can’t parallelize something, eventually it will
become the bottleneck.”

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain



Amdahl’s Law

Amdahl’s Law: The maximum speedup of a program is
limited by the time required by the sequential portions
of the code

— i.e., “if you can’t parallelize something, eventually it will
become the bottleneck.”

Maximum
speedup is
limited only
by resources

Idealized
(Linear)

Speedup: 1 CPU

100,000 But what if we can

10 CPUs CPUs only parallelize half

of our code?
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Amdahl’s Law

Amdahl’s Law: The maximum speedup of a program is
limited by the time required by the sequential portions

of the code

— i.e., “if you can’t parallelize something, eventually it will
become the bottleneck.”

Maximum speedup is

limited by sequential
code.

1 CPU

Imagine that 100,000

50% of our CPUs Even with infinite
original code 10 CPLIs CPUs, we could never
cannot be do better than 2x
parallelized... speedup.
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Counterpoint to Amdahl’s Law

Reasons not to despair:

* lots of things are parallelizable
— sometimes they just require a lot of cleverness

* the previous slide was a particularly bad case

— sequential ops don’t often account for bulk of running time
e particularly as problems scale to massive sizes

* Yet, it is useful to keep in mind
— to avoid undue frustration when hitting inherent limits
— to avoid applying more HW than will help
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Processor Technology Trends



Coarse Processor Taxonomy

Scalar processors:
— each instruction computes on singleton/scalar values
— this is what we traditionally think in terms of

Vector/SIMD processors:
— each instruction computes on a vector of values
— examples: Cray X1/X2, Nvidia GPUs, desktop CPUs

Multithreaded processors:
— support multiple threads in HW at a time; switch frequently
— examples: Cray MTA/XMT (Simon’s talk), Sun Niagara
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Coarse Processor Taxonomy

When available, these represent an additional, and
important, source of parallelism within a program

e often targeted automatically by the compiler
* typically can be aided via #pragmas or the like

ﬂlector/SIMD processors:

— each instruction computes on a vector of values
— examples: Cray X1/X2, Nvidia GPUs, desktop CPUs

Multithreaded processors:

\ — examples: Cray MTA/XMT (Simon’s talk), Sun Niagara

— support multiple threads in HW at a time; switch frequently

~

/
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(GP)GPUs: The Promise

e GPUs: Similar in many respects to traditional HPC
vector processors

— each instruction can fire off a ton of operations
— memory system highly optimized for such instructions

* |n addition, has economy of scale going for it
— many more videogame players than HPC users

* As aresult, GPUs have been repurposed
— “GPUs: they’re not just for graphics anymore.”

— GP = General-Purpose
— (in some circles “accelerators” is the more generic/PC term)



GPGPU: In Pictures

il ' |
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Abstract CPU + GPU Compute Node
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GPUs: Limitations

e Tend to have limitations of one form or another:

— historically:
* only supported 32-bit floating point
* not as robust as CPUs (“dropping a pixel for a frame no big deal”)
e programmed by expressing computations via graphics operations

— more recently:

* main memory not directly accessible: must copy in and out
* inability to support function calls and/or recursion
e esoteric programming models: CUDA, OpenCL

* Over time, things have been improving
— higher-level programming models: OpenACC, OpenMP

— yet, arguably there will always be differences/limitations
(otherwise, it would simply be a CPU)



GPU Programming Models

 We'll be hearing about the major GPU programming

models in the coming weeks

— both nights have someone presenting on:
* CUDA
* OpenCL
* OpenACC
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NUMA Multicore Nodes

NUMA Multicore Compute Nodes: Multicore chips in
which not all memory has uniform access cost

— think “ccNUMA architecture on a board”

— supports shared memory programming models...
* still can access all memory via loads/stores
* still a single OS image per node

...but to maximize performance, attention to locality required
* as in distributed memory, run tasks on cores close to their data
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Emerging Compute Nodes: General Characteristics

* Increasing numbers of cores
* Increased hierarchy and/or sensitivity to locality
— CPU vs. GPU
— NUMA multicore
* Potentially heterogeneous processor/memory types

— CPUs vs. GPUs
— CPU memory vs. GPU memories of various flavors

* Increasingly resemble supercomputers-on-a-chip

= Next-gen programmers will have a lot more to think about
at the node level than in the past
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HPC Concerns for the coming generation

System scale is reaching some intimidating limits

— power budget

— resilience to (increasingly likely) failures

* Machine model is changing for first time in decades
— can no longer treat as flat set of homogenous resources

e Diversity in node architectures

— very different solutions coming from Intel, AMD, Nvidia, ...
— machine model doesn’t gloss over differences as in past

* Traditional programming models breaking down
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HPC Programming Models & Emerging Node Types

e MPI continues to make sense for inter-node

* but less and less so for intra-node
— too heavyweight / process-oriented for emerging nodes

Q: So what do we do?
Al: Hybrid programming models?

— e.g., MPI + OpenMP + OpenACC/CUDA/OpenCL?
* (or maybe simply MPI + OpenMP once it catches up)

A2: A good time for something new?
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Chapel: Well-Positioned for Next-Generation

* Multiple styles of parallelism
— data- vs. task- (may and must), including nested
— contrast with task- or process-only

* Distinct concepts for parallelism vs. locality
— tasks vs. locales

— contast with:
» conflation of parallelism and locality (SPMD: MPI, UPC, CAF, ...)
* no real support for locality (OpenMP, Pthreads, ...)

Yet additional work remains...
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CRANY

THE SUPERCOMPUTER COMPANY

Locales Today

Concept:

e Today, Chapel supports a 1D array of locales
e users can reshape/slice to suit their computation’s needs

locale locale locale locale

e Apart from locale queries, no further visibility into locale
* no mechanism to refer to specific NUMA domains, processors, memories, ...
e assumption: compiler, runtime, OS, HW can handle intra-locale concerns

* Today’s locales support horizontal, but not vertical locality

—HAPEL

®
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THE SUPERCOMPUTER COMPANY

Current Work: Hierarchical Locales

Concept:

Support locales within locales to describe architectural
sub-structures within a node

sub-locale A sub-locale A sub-locale A sub-locale A
C|{IC||ID||E C|{IC||ID||E C|{IC||ID||E C|{IC||ID||E
sub-locale B sub-locale B sub-locale B sub-locale B
locale locale locale locale

As with traditional locales, on-clauses and domain maps
can be used to map tasks and variables to a sub-locale’s
memory and processors
Goal: Define locale structure as Chapel code
e permits implementation policies to be specified in-language
e introduces a new Chapel role: architectural modeler
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Evaluating Programming Models



Our Shared Memory Characterizations

- C+Pthreads |Chapel OpenMP

degree of less voodoo more voodoo moderate-to-more

voodoo voodoo

level of more HW-oriented more problem- in the middle

abstraction oriented

verbosity more verbose less verbose in between

control of more control due to less control (today) same as C+Pthreads

memory C

(alighnment/

padding)

HW less abstracted from more abstracted... more abstracted...

independenc HW

e

portability quite good potentially more as portable as C,
portable Fortran, C++
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Our Shared Memory Characterizations

- C+Pthreads |Chapel OpenMP

libraries lots of existing library  very little currently* can call sequential C
support * = extern support for C
opportunities  more opportunities less so fragility w.r.t. mistyped
for error due to C and details of pragma prefixes (use —
sync primitives Wall); ability to break
seq case (reduce/SPMD)
notation library language pragmas
maturity very mature much less so mature, but evolving
“classic” the set of classic pretty significant lower-level (locks), and
concepts concepts departure higher (critical sections,
(mutex, barriers, reductions,
condvar, ... data parallelism)
completeness confidence that it’s unclear reasonably complete
complete (no must parallelism)
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Our Shared Memory Feature Comparison

_ C+Pthreads Chapel OpenMP

data parallelism no

may tasks yes? (no implicit support) yes yes
must tasks yes yes not well
barriers no no (not yet) yes
reductions no built-in + user-defined built-in
scans no built-in + user-defined no?
locks yes sync vars yes (library)
incremental SO-SO S0-so —to- yes yes
parallelism

scalability to no yes no

dist. mem/

locality
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Distributed Memory Characterizations

WPl Chapel CAF/UPC

readability medium-to-low (but good medium
may vary with
approach & SW Eng)

explicitness in your face syntactically invisible  square brackets /
of comm. (but semantics/ invisible (similar to
mechanisms to reason Chapel)
about it)
control over  lots none-ish (compiler none-ish
comm. should optimize array
granularity slice assignments)
distrib. data  manually global-view (though syntactically
structures fragmented you could fragment) fragmented / global
debuggability not so good not so good 27?7
ease of use pretty hard pretty easy middle
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Shared Memory Programming Models

e.g., OpenMP, pthreads
+ support dynamic, fine-grain parallelism

+ considered simpler, more like traditional programming
* “if you want to access something, simply name it”

— no support for expressing locality/affinity; limits scalability
— bugs can be subtle, difficult to track down (race conditions)
— tend to require complex memory consistency models

3
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Message Passing Programming Models

e.g., MPI

+ a more constrained model; can only access local data

+ runs on most large-scale parallel platforms
* and for many of them, can achieve near-optimal performance

+ is relatively easy to implement

+ can serve as a strong foundation for higher-level models

+ users have been able to get real wor
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Message Passing Programming Models

e.g., MPI
— communication must be used to get copies of remote data
— tends to reveal too much about how to transfer data, not simply what

— only supports “cooperating executable”-level parallelism
— couples data transfer and synchronization

— has frustrating classes of bugs of its own
— e.g., mismatches between sends/recvs, buffer overflows, etc.
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Hybrid Programming Models

e.g., MPI+OpenMP/Pthreads/CUDA, UPC+OpenMP, ...
+ supports a division of labor: each handles what it does best

+ permits overheads to be amortized across processor cores, as
compared to using MPI alone

— requires multiple notations to express a single logical parallel
algorithm, each with its own distinct semantics

@ @ @ @ @ @ @ @
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Traditional PGAS Models
e.g., Co-Array Fortran (CAF), Unified Parallel C (UPC)

+ support a shared namespace, like shared-memory

+ support a strong sense of ownership and locality
* each variable is stored in a particular memory segment

* tasks can access any visible variable, local or remote
* local variables are cheaper to access than remote ones

+ implicit communication eases user burden; permits
compiler to use best mechanisms available

—
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Traditional PGAS Models
e.g., Co-Array Fortran (CAF), Unified Parallel C (UPC)

— restricted to SPMD programming and execution models
— data structures not as flexible/rich as one might like
— retain many of the downsides of shared-memory

* error cases, memory consistency models
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Next-Generation PGAS Models

e.g., Chapel (possibly X10, Fortress)
+ breaks out of SPMD mold via global multithreading
+ richer set of distributed data structures
— retains many of the downsides of shared-memory
* error cases, memory consistency models
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Categorizing Based on Features/Capabilities

_______wei | Chapel

data no (SPMD only) vyes (forall, yes (upc_forall) no (SPMD only)
parallelism whole-array ops)

may tasks  no yes no no
must tasks  no yes no no
SPMD yes optionally yes yes
barriers yes no (not yet) yes yes
reductions  yes yes yes (library) yes
scans yes yes ? ?
locks no sync vars ves (library) yes
incr. par. no $0-s0 —to- yes no no
incr. dist. no yes no no
dist. mem. vyes yes yes yes
comm. visible?  yes no no yes
data-race-free? yeg no no no
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Categorizing Based on Features/Capabilities

_______wei | Chapel

data no (SPMD only) vyes (forall, yes (upc_forall) no (SPMD only)
parallelism whole-array ops)

may tasks  no yes no no
must tasks  no yes no no
SPMD yes optionally yes yes
barriers yes no (not yet) yes yes
reductions  yes yes yes (library) yes
scans yes yes ? ?
locks no sync vars ves (library) yes
incr. par. no $0-s0 —to- yes no no
incr. dist. no yes no no
dist. mem. vyes yes yes yes
comm. visible?  yes no no yes
data-race-free? yeg no no no
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Global-View vs. SPMD
(Chapel vs. MP1/UPC/CAF)

Incremental Distribution and Convenience...

— “Let me change this shared-memory program to distributed-"
 analogous to incremental parallelism in OpenMP/Chapel

— compare: “Let’s write out this array” in Chapel vs. MPI
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CRANY

Jacobi Iteration in Chapel

config const n = 6,
epsilon = 1.0e-5;

const Bigh = {0..n+1, O..n+1},
D = BigD[l..n, 1..n],
LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[(1,3) in D] Temp[i,Jj] = (A[i-1,3] + A[1+1,7]]

+ A[i/j_l] + A[l/j+l]) / 4;
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];
} while (delta > epsilon);

writeln (A) ;

T upes



CRANY

Jacobi Iteration in Chapel

config const n = 6,
epsilon = 1.0e-5;

const Bigh = {0..n+1, 0..n+l} dmapped RBRlock(..),
D = BigD[1..n, 1..n], \
LastRow = D.exterior(1l,0);

var A, Temp : [BigD] real;

With this change, same code runs in a distributed manner

Domain distribution maps indices to /ocales
=> decomposition of arrays & default mapping of iterations to locales
Subdomains inherit parent domain’s distribution

BigD D LastRow A Temp




CRANY

Jacobi Iteration in Chapel

config const n = 6,
epsilon = 1.0e-5;

const Bigh = {0..n+1, 0..n+l1l} dmapped Block(..),
D = BigD[l..n, 1..n],
LastRow = D.exterior(1l,0);

var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[(1,3) in D] Temp[i,Jj] = (A[i-1,3] + A[1+1,7]]

+ A[i/j_l] + A[l/j+l]) / 4;
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];
} while (delta > epsilon);

writeln (A) ;

T upes



Global-View vs. SPMD
(Chapel vs. MPI/CAF)

Incremental Distribution and Convenience...

— “Let me change this shared-memory program to distributed-"
 analogous to incremental parallelism in OpenMP/Chapel

— compare: “Let’s write out this array” in Chapel vs. MPI

... VS. Incremental Performance Tuning and Data Races

— Smith-Waterman: “Why is my performance bad? ... Oh, all
accesses to my sequences go to locale 0”

— “Oops, did | access that before you were ready for me to?”
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Recap: Why did we use Chapel?

A: “Because Brad made us”
— Well, yes, but...

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain
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Recap: Why did we use Chapel?

* Because it’s the one language that naturally supports
all the concepts we wanted to study
— data vs. task (may + must) vs. wavefront vs. nested vs. SPIMD
— shared memory vs. PGAS vs. message passing
— desktop vs. cluster vs. large-scale
— synchronization, deadlock, livelock
— memory consistency model, data races
— reductions, scans, stencils, ...

— embarrassingly parallel, searches, histogram, bounded
buffer, collective and global-view reductions, full scans,
atomic operations, 9-point stencil, Mandelbrot, Smith-
Waterman, ...
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Chapel and Education

CRANY”

THE SUPERCOMPUTER COMPANY

e If | were teaching parallel programming, I'd want to cover:

data parallelism

task parallelism

concurrency

synchronization

locality/affinity

deadlock, livelock, and other pitfalls
performance tuning

e | don’t think there’s been a good language out there...

3

for teaching all of these things
for teaching some of these things well at all
until now: We believe Chapel can potentially play a crucial role here

(see http://chapel.cray.com/education.html for more information)




The Parallel Programmer’s Toolbox



Parallel Algorithms

* You can’t learn them all
— though studying a number of common ones is useful

* |nstead, focus on what to reason about:
— parallelism:

* what is amenable to parallelization?
* what type? data? task? (may vs. must?) pipelined? multiple types?
* how much parallelism is appropriate?
— locality:
* how should | distribute my data?
— goal: minimize communication, maximize locality

* how should | store data locally?
— goal: minimize interference of intra-node parallelism (e.g., false sharing)
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Parallel Algorithm Building Blocks

* Embarrassingly Parallel
* Broadcasts

* Reductions

* Scans

* Stencils

* Wavefronts/Pipelining

* All-to-alls / All-to-many
— permutations/redistributions
— scatters/gathers

CSEP 524: Parallel Computation Winter 2013: Chamberlain

49



Implementing All-to-all Communications

* Lots of potential techniques
— compute everything that goes to each processor?
— fill buckets per processor and send when full?
— send off an element at a time?

e Best solution depends a lot on network, algorithm
— a nice thing to leave to the language/library if you can

-|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain
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Introduction to FFT

Given: m-element vector z of complex numbers (where m = 2%)
Compute: 1D Discrete Fourier Transform of z
Pictorially (using a radix-4 algorithm):
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FFT Using Distributed Memory

How to best distribute the data?

° Initially, Block is ideal
* Then (~halfway?), Cyclic is ideal (if using 2 processes/locales)
* So... compute half, redistribute everything, then compute next half
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3D FFT

Far more important than a single 1D FFT in practice
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3D FFT

First compute 1D FFTs along one axis




CRANY

3D FFT

...then the second...

///////////////ﬁ
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3D FFT

...then the third.




3D FFT

Q: How to distribute the data?
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3D FFT

A: use a 1D block distribution:




3D FFT

« compute 2 dimensions of 1D local FFTs
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3D FFT

////////////////

\\\\\\\\\\\\\\\\

T upes




M
I
U

3D FFT

then do a global transpose/redistribution
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3D FFT

and do the final dimension locally




Software Transactional Memory
(STM)



390 |une 2008

Atomic

An easier-to-use and harder-to-implement primitive

void deposit(int x) {

synchronized (this) {
int tmp = balance;
tmp += x;
balance = tmp;

}}

lock acquire/release

void deposit(int x) {
atomic {
int tmp = balance;
tmp += x;
balance = tmp;
}}

(behave as if)
no interleaved computation

64

Source: Dan Grossman, Software Transactions



Proposed Atomic Transactions Concept in Chapel Y.

(joint work with U. Notre Dame)

e Syntax

atomic-statement:
atomic stmt

e Semantics
e Executes stmt so it appears as a single operation

* No other task sees a partial result

e Examples
, // doubly linked 1ist insertioﬁ\\

// s?fe 1pcrement] atomic |

atomic Af[1] += 1; newNode.next = node;
newNode.prev = node.prev;
node.prev.next = newNode;
node.prev = newNode;

}

€
{



Code evolution

void deposit(..) { synchronized(this) { .. }}
.. }}
}}

int balance(..) { synchronized(this) { .

void withdraw(..) { synchronized(this) {

o
J 2008 .
=T une Source: Dan Grossman, Software Transactions
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Code evolution

void deposit(..) { synchronized(this) { }}
void withdraw(..) { synchronized(this) { .. }}
int balance(..) { synchronized(this) ({ }}

void transfer (Acct from, int amt) {

i1f (from.balance () >=amt && amt < maxXfer) {
from.withdraw (amt) ;
this.deposit (amt) ;

}

o
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Code evolution

void deposit(..) { synchronized(this) ({ }}
void withdraw(..) { synchronized(this) { .. }}
int balance(..) { synchronized(this) ({ }}

void transfer (Acct from, int amt) {
synchronized (this) {
//race
i1f (from.balance () >=amt && amt < maxXfer) {
from.withdraw (amt) ;
this.deposit (amt) ;
}

}
}

o
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Code evolution

void deposit(..) { synchronized(this) ({ }}
void withdraw(..) { synchronized(this) { .. }}
int balance(..) { synchronized(this) ({ }}

void transfer (Acct from, int amt) {
synchronized (this) {
synchronized (from) { //deadlock
i1f (from.balance () >=amt && amt < maxXfer) {
from.withdraw (amt) ;
this.deposit(amt) ;
}
}}
}

o
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Code evolution

void deposit(..) { atomic { }}
void withdraw(..) { atomic { .. }}
int balance(..) { atomic { }}

void transfer (Acct from, int amt) {
atomic {
//correct and parallelism-preserving!
i1f (from.balance () >=amt && amt < maxXfer) {
from.withdraw (amt) ;
this.deposit (amt) ;
}
}
}

o
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Track what you touch

High-level ideas:

* Optimistic: proceed assuming conflicts unlikely
— contrast with pessimistic locking: take lock “just in case”

e Maintain transaction’ s read set

— so you can agbort if another thread writes to it before you
commit (detect conflicts)

e Maintain transaction’ s write set
— again for conflicts

— also to commit or abort correctly
5
+



Writing

* Two approaches to writes

— Eager update
* update in place, “own until commit” to prevent access by others
* |log previous value; undo update if abort
 if owned by another thread, abort to prevent deadlock (livelock
is possible)
— Lazy update
* write to private buffer
* reads must check buffer
e abort s trivial
e commit is fancy to ensure “all at once”



Reading

* Reads
— May read an inconsistent value

* detect with version numbers and such
* inconsistent read requires an abort

initially x=0, y=0

atomic { atomic {
while (x!'=y) ++x;
’ ++y;
} }

o
J 2008 .
=T une Source: Dan Grossman, Software Transactions
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Other Implementation Challenges

e |/O

 memory allocation/freeing

* Exceptions

e ...more advanced STM concepts...

General strategy: track enough state that you can
“undo” things...

74



Advantages

So atomic “sure feels better than locks”

But the crisp reasons I’ ve seen are all (great) examples

— Account transfer from Flanagan et al
* See alsoJava s StringBuffer append

— Double-ended queue from Herlihy

o
J 2008 . 75
g une Source: Dan Grossman, Software Transactions



Double-ended queue

Operations

void enqueue left(Object)
void enqueue right (Object)

obj dequeue
obj dequeue

Correctness

right () -

— Behave like a queue, even when < 2 elements
— Dequeuers wait if necessary, but can’ t “get lost”

Parallelism

— Access both ends in parallel, except when <1
elements (because ends overlap)

390 june 2008
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Good luck with that...

* One lock?
— No parallelism

e Locks at each end?

— Deadlock potential
— Gets very complicated, etc.

* Waking blocked dequeuers?

— Harder than it looks

o
J 2008 .
=T une Source: Dan Grossman, Software Transactions
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Actual Solution

* A clean solution to this apparent “homework
problem” would be a publishable result?

— In fact it was: [Michael & Scott, PODC 96]

* So locks and condition variables are not a “natural
methodology” for this problem

* Implementation with transactions is trivial

— Wrap 4 operations written sequentially in atomic
* With retry for dequeuing from empty queue

— Correct and parallel



STM vs. HTM

* Because of my (Brad’s) software-oriented bias/
background, I've focused on atomic statements from

a software perspective

e HTM is a related line of research in which the
hardware supports transactional memory concepts

* Hybrid approaches are also pursued which combined
SW- and HW-based approaches



For More Information

* “Director’s Cut” version of these slides:

http://homes.cs.washington.edu/~djg/slides/grossman bangalore08.ppt

* Repository of TM-related publications/work:
http://www.cs.wisc.edu/trans-memory

e STM work for Cha pel (key challenge = distributed memory):

— A Scalable Implementation of Language-Based Software Transactional
Memory for Distributed Memory Systems

http://ft.ornl.gov/pubs-archive/chplstm1-2011-tr.pdf

— Software Transactional Memory for Large-Scale Clusters
http://www.cs.cmu.edu/~rbocchin/Publications_files/Bocchino-PPoPP-2008.pdf

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain
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So... Where are my atomics?

* Has not yet made it from research to production
e Challenges to adoption:

— semantic questions/challenges

— performance relative to locks

— complete, production-grade implementation
 Two prevailing, but opposing, views:

— STM is like GC in the 80’s... en route, just be patient

— STM is unlikely to ever be adoptable

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain
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Back to the Stencil Ramp
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Continuing the Stencil Ramp:
the Fast Multipole Method

(switch slide decks)




Wrap-up




From the Course Description...

styles of parallelism

— data-parallel
— task-parallel
— concurrency
— pipelined parallelism

— nested parallelism

abstract programming models
— shared memory

—  Single Program, Multiple Data (SPMD)

— message passing

— Partitioned Global Address Space (PGAS)

architectural implications

— shared vs. distributed memory

— multicore processors and accelerators
— networks

— caches and memory

programming issues and hazards

— synchronization
— memory consistency
— race conditions
— deadlock and livelock

performance tuning
— scalability

—  locality

— communication

— scalar concerns

programming languages and notations
—  OpenMP

—  MPI

— UPC

—  Chapel

— CUDA/OpenCL/OpenAcCC (?)

algorithms and patterns

reductions and scans

stencils

graph algorithms



Overall Goals

Expose you to as much information about parallel
computing as possible within the allotted time

— foundations

— best practices

— recent trends

Teach you principles of parallel programming
Give you practical parallel programming experience

— using adopted programming models
* Pthreads, OpenMP, MPI, URC

— using Chapel as an idealized parallel language



Course Content

Backbone: follow a progression of architectures and
programming models from shared memory to
distributed memory

Along the way: cover common parallel algorithms/
patterns, hazards, grab-bag topics, ...



Thank youl!

For being a particularly attentive and inquisitive class
For your consistent punctuality
For lots of good discussions, in class, after class, online

o



Surveys

* | value your feedback heavily (kudos & criticisms)
* please put time & thought into it

-|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain
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Survey: Extra Questions (for back of Scantron)

Value of Pthreads programming within this class
Enjoyment of programming in Pthreads in general
Value of OpenMP programming within this class
Enjoyment of programming in OpenMP in general
Value of MPI programming within this class
Enjoyment of programming in MPI in general

Value of Chapel programming within this class

A B o

Enjoyment of programming in Chapel in general
A B C D E F G

Excellent eh... Very Poor
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Bonus Slides




Unstructured Stencils:
the Finite Element Method (FEM)



Finite Element Meshes

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 94
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Finite Element Meshes
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Finite Element Meshes
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Finite Element Mesh Terminology

Vertex/Node

Element

‘5
—
—
~~
—

/
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FEM Declarations

config param numdims = 2;
const facesPerElem = numdims+1,

vertsPerFace = 3,

vertsPerElem = numdims+1;

var Elements: domain(..) = .., O
Faces: domain(..) = ..,
Vertices: domain(..) = ..; C)C)C)
type element = index (Elements), O O O
face = index (Faces),
vertex = index (Vertices);
var elementFaces: [Elements] [1l..facesPerElem] face,
elemVertices: [Elements] [1l..vertsPerElem] vertex,
faceVertices: [Faces] [1l..vertsPerFace] vertex;

T S Rk N



FEM Computation

e Sample Idioms:

var a: [Vertices] atomic real;

var b, ¢, f: [Vertices] real;

This loop nest is effectively a
stencil on an unstructured grid

var p: [1..2] [Vertices] rea
proc PoissonComputeA () {
forall e in Elements {
const ¢ = 0.10 * volume (e);
for vl in elemVertices[e] {
alvl].add(c*f[vl]);
for v2 in elemVertices[e] do
if (vl '= v2) then
alv2].add(0.5*c*f[v2]);
I

proc computePressure (pressure: [Vertices] real) {
pressure = (a - b) / c;

}
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Distributing Unstructured Meshes

/
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Workload Graphs

Workload graphs: a scheme for representing work
— Each vertex represents a unit of data
— Each edge represents a data dependency

structured unstructured
workload graph workload graph
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Workload Graph Distribution

e Structured graphs have obvious distributions
(e.g., blocked, cyclic, block-cyclic)

e Unstructured graphs do not

P
array-based bBlock-eyelic Yoog sso¥ raph raph-based
y N cvelic | p o ETEr L Eray
data set partifon set nartition data seat
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Graph Partitioning Problem

Given: Input graph, G=(V,E);
Number of partitions, p.

Find: Disjoint vertex subsets, S, S,, ..., S that:
1) have equal numbers of vertices

2) minimize the number of cut edges
S1

S3

S4
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Mapping Workload Distribution to Graph
Partitioning

* Good workload distributions:
— balance computation between processors

— minimize interprocessor communication
e Similar goals as graph partitioning, so...
* Apply graph partitioning to workload graphs

S1

S2

S3
S4
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The Bad News

* Graph partitioning is NP-Complete

* Therefore all known algorithms are heuristics that
approximate the optimal solution

(That said, there are some pretty good heuristics)



Recursive Bisection

An approach to p-way partitioning that:
— computes a 2-way partition for G (bisection)
— recursively considers the resulting subgraphs

Optimal graph bisection is still NP-Complete.
However, its simplicity makes it widely used.



Geometric Algorithms

Geometric partitioning algorithms...
..utilize the vertices’ geometric coordinates
...are generally very fast
...assume that spatial proximity implies graph locality

well-behaved poorly-behaved

Note that many important graphs have no geometric coordinates — e.g., social networks!

+S



A Simple Geometric Algorithm

Coordinate Bisection:
— find the median coordinate for each dimension
— construct a hyperplane at this location

— bisect using the hyperplane that cuts fewer edges
3

- X
cut size=6 cut size=6




Multilevel Partitioning

Multilevel Framework:
— Coarsen original graph
— Bisect coarsest graph
— Convert coarse bisection into bisection for original

bisect

:oarsenT l propagate
- @reﬁne &
coarsen T propagalte
O Q refine @
:oarsenT l propagate

.
refine
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Coarsening Step

 Compute a maximal matching for the
graph.

* Collapse matched vertices into
multinodes; combine incident edges.

* Use weights to retain information about
the original graph:
— vertex weights to represent vertex count
— edge weights to represent combined edges

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain
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Other Multilevel Steps

Bisection Step: use any bisection algorithm that can
handle weighted graphs (most can)

Propagation Step: expand multinodes and collapsed
edges

Refinement Step: use a local refinement algorithm
such as Kernighan-Lin

b 1
,,,,,, ot | propagar
s & (o
refine
,,,,,, n! | propagat
O Q refine (9
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Graph Partitioning Software

e METIS/ParMETIS:
— http://glaros.dtc.umn.edu/gkhome/views/metis

e Chaco/Zoltan:
— http://www.cs.sandia.gov/~bahendr/chaco.html

— http://www.cs.sandia.gov/Zoltan/

e Jostle
— http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/

...ahd several others
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HPF and ZPL:
Learn from the mistakes of your elders



High Performance Fortran (HPF)

HPF: an array-based data-parallel language

Developed by: HPF Forum (virtually everyone in HPC?)
Timeframe: 1990's

Target machines: 1990’'s HPC parallel platforms
Main concepts:

— directive-based extension to Fortran 90/95

— virtual processor grid

— distribution of arrays using standard set of distributions;
alignment

— assertion of loop-level parallelism
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Jacobi Iteration in HPF

REAL u(0:nx,0:ny), unew(0:nx,0:ny), f£(0:nx,0:ny)

'HPF$ DISTRIBUTE u (BLOCK, *)
'HPF$ ALIGN WITH u(:,:) :: unew(:,:), f£(:,:)

dx = 1.0/nx; dy = 1.0/ny; err = tol * 1leb6

FORALL ( i=0:nx, J=0:ny )

f(i,]) = =2%(dx*1)**2+2*dx*1-2* (dy*J) **2+2*dy*]
END FORALL
u = 0.0; unew = 0.0

DO WHILE (err > tol)
FORALL ( i=l:nx-1, jJ=l:ny-1 ) &
unew (i,3) = (u(i-1,3)+u(i+1l,j)+u(i,j-1)+ &
u(i,j+1)+£(i,3))/4
err = MAXVAL( ABS (unew-u) )
u = unew
END DO
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Jacobi Stencil in D-HPF (Rice)

program jacobi
integer N, m, t
PARAMETER (N=1024)
double precision a (N, N), b (N, N)

CHPF$ processors p (4, 8)

CHPFS$ template t (N, N)

CHPFS$ align a(i,j) with t(i,])

CHPF$ align b(i,j) with t(i,7)

CHPF'S$ distribute t (block,block) onto p

CHPFS$ INDEPENDENT
do j = 2, 1024 - 1
CHPF'S$ INDEPENDENT
do i =2, 1024 - 1
a(i, j3) = 0.25 * (b(i -1, J) + b(1 + 1, 3) + b(i, 7 - 1) +
b(i, 7 + 1))
enddo
enddo
end
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A Common Question about Chapel

Q: Didn’t we try this before with HPF?

Q’: Orville, didn’t Percy Pilcher die in his prototype powered
aircraft?

A’: No Wilbur, he died in a glider; and even if it had been in his
prototype, that doesn’t mean we’re doomed to fail.

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 117
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Q: How Can Chapel Succeed When HPF Failed?

A: Chapel has had the chance to learn from HPF’s mistakes (and
other languages’ successes and failures)

* Why did HPF fail?
— lack of sufficient performance soon enough
— vagueness in execution/implementation model
— only supported a single level of data parallelism, no task/nested
— inability to drop to lower levels of control
— fixed set of limited distributions on dense arrays
— lacked richer data parallel abstractions
— lacked an open source implementation
— too Fortran-based for modern programmers

— .7
* The failure of one language---even a well-funded, US-backed
one---does not dictate the failure of all future languages

(For more on this topic see https://www.ieeetcsc.org/activities/blog/myths about scalable parallel programming languages part2)
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CRANY

ZPL
ZPL: a contemporary of HPF

° similar goals, but a very different approach

Developed by: University of Washington
Timeframe: 1991 — 2003 (can still download today)
Target machines: 1990’s HPC parallel platforms

* clusters of commodity processors
* clusters of SMPs

* custom parallel architectures
Cray T3E, KSR, SGI Origin, IBM SP2, Sun Enterprise, ...

Main concepts:

° abstract machine model: CTA
° regions: first-class index sets
* WYSIWYG performance model



ZPL Concepts: Regions

regions: distributed index sets...
region R = [1..m, 1..n]; _ =
InnerR = [2..m-1, 2..n-1];

_— InnerR

...used to declare distributed arrays...

var A, B: [R] real;

...and computation over distributed arrays

[InnerR] A = B; “‘i“‘

| B,

nnerR

InnerR

o\
) @ J/P€§



CRANY

ZPL Concepts: Array Operators

array operators: describe nontrivial array indexing

translation via at operator (@)
[InnerR] A = BQ[O0,1];

replication via flood operator (>>)

[R] A = >>[1, 1..n] B; i ?

reduction via reduction operator (op<<) .
« [T

[R] sumB = +<< B; N

sumB

parallel prefix via scan operator (op| |)

112(3]145.. 1111..

arbitrary indexing via remap operator (#) . Byipviy
[R] A = B#[X,Y]; - u p-

4,

» T wpes




CRANY

ZPL Concepts: Syntactic Performance Model

[ InnerR] A = B;

. <= .
No Array Operators = #
No Communication : ;

[TnnerR] A = BR[O, 1]; _ - #
At Operator = . -
Point-to-Point Communication . .

[R = >>][1, B; . ;?.

Flood Operator => Broadcast
(log-tree) Communication

sumB = +<
[R n € -
Reduce Operator = Reduction sumB

(log-tree) Communication

[R] A . 112]3 4.... 11 1...
\‘ Scan Operator = Parallel-Prefix

(log-tree) Communication

B v

\‘ Remap Operator = Arbitrary 7 H : 4
(all-to-all) Communication M
{DARPA 3




ZPL’ s Lesson: Com
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...need not perform poorly
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What were ZPL’s shortcomings?

= Only supports a single level of data parallelism
* imposed by execution model: single-threaded SPMD
* not well-suited for task parallelism, dynamic parallelism
* no support for nested parallelism

= Distinct types & operators for distributed and local arrays
* supports ZPL’s WYSIWYG syntactic model

° impedes code reuse (and has potential for bad cross-products)
° annoying

= Only supports a small set of built-in distributions for arrays

° e.g., Block, Cut (irregular block), ...
* if you need something else, you're stuck



ZPL’s Successes

= First-class concept for representing index sets
= makes clouds of scalars in array declarations and loops concrete
=> supports global-view of data and control; improved productivity

= useful abstraction for user and compiler

The Design and Implementation of a Region-Based Parallel Language. Bradford L. Chamberlain.
PhD thesis, University of Washington, November 2001

= Semantics constraining alignment of interacting arrays

=> communication requirements visible to user and compiler in syntax

ZPL's WYSIWYG performance model. Bradford L. Chamberlain, Sung-Eun Choi, E Christopher
Lewis, Calvin Lin, Lawrence Snyder, and W. Derrick Weathersby. In Proceedings of the IEEE
Workshop on High-Level Parallel Programming Models and Supportive Environments, 1998.

= |mplementation-neutral expression of communication

=> supports implementation on each architecture using best paradigm

A compiler abstraction for machine independent parallel communication generation. Bradford L.
Chamberlain, Sung-Eun Choi, and Lawrence Snyder. In Proceedings of the Workshop on

Languages and Compilers for Parallel Computing, 1997.
= A good start on supporting distributions, task parallelism

Steven J. Deitz. High-Level Programming Language Abstractions for Advanced and Dynamic
Parallel Computations. PhD thesis, University of Washington, February 2005.

i T upes



For more information on HPF and ZPL

HoPL: 39 ACM Conference on History of Programming Languages

* Good retrospective summaries of languages
— and the groups that developed them

* Papers are generally very readable, enjoyable

* Videos of talks also available on-line
. http://dl.acm.org/citation.cfm?id=1238844&picked=prox&CFID=288610646& CFTOKEN=99080594
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Lessons Chapel Learned from HPF and ZPL

Single-level of data parallelism insufficient (both)

Practical programmers like imperative semantics (HPF)

— not merely hints / “trust the compiler”

Ability to reason about locality crucial (HPF)
* Syntactic performance too restrictive (ZPL)
— semantic model with runtime queries is better

e Users need ability to specify parallel features (both)

— data distributions

— parallel loop schedules
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CRANY

THE SUPERCOMPUTER COMPANY

Chapel’s Domain Map Philosophy

1. Chapel provides a library of standard domain maps
* to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
* to cope with shortcomings in the standard library

Domain Maps )
é. Data Parallelism

Base Language

Locality Control

3. Chapel’s standard domain maps are written using the same
end-user framework
* to avoid a performance cliff between “built-in” and user-defined cases

—HAPEL

o
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THE SUPERCOMPUTER COMPANY

Data Parallelism: Implementation Qs

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?

= A 273 : z%
e P EEEE] EBE

What data structure is used to store sparse arrays? (COO, CSR, ...?)

nenn
J

Q2: How are data parallel operators implemented?
How many tasks?
How is the iteration space divided be:cwgen_ the tasks?

dabmiEl] .7

\,Q’QA @‘A\EIL



Data Parallelism: Implementation Qs

Q3: How are arrays distributed between locales?
e Completely local to one locale? Or distributed?

e |f distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

Q4: What architectural features will be used?

e Can/Will the computation be executed using CPUs? GPUs? both?
* What memory type(s) is the array stored in? CPU? GPU? texture? ...?

Al: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions

0
|
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For More Information on Domain Maps

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework, Chamberlain, Deitz, Iten,
Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel,
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:
e Technical notes detailing domain map interface for programmers:
SCHPL_HOME/doc/technotes/README.dsi
e Current domain maps:
SCHPL_HOME/modules/dists/*.chpl
layouts/*.chpl
internal/Default*.chpl

—HAPEL
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THE SUPERCOMPUTER COMPANY

Forall Loops: Implementation Questions

forall a in A do
writeln (“Here is an element of A: 7, a);

| i

* How many tasks will be used?

* How are iterations mapped to the tasks?

forall (a, i) in zip(A, 1..n) do}

a=1i/10.0; —

/

Forall-loops may be zippered, like for-loops
* Corresponding iterations must match up

* But how does this work?

> g
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THE SUPERCOMPUTER COMP,

Leader-Follower Iterators: Definition

* Chapel defines all zippered forall loops in terms of
leader-follower iterators:
» leader iterators: create parallelism, assign iterations to tasks
* follower iterators: serially execute work generated by leader

e Gjven...
forall (a,b,c) in zip(A,B,C) do\
a = b + alpha * c¢;

...A is defined to be the leader

..A, B, and C are all defined to be followers

—HAPEL

0
|



CRANY

THE SUPERCOMPUTER COMPANY

Writing Leaders and Followers

Leader iterators are defined using task parallelism:
iter BlockArr.lead () { \\
const numTasks = here.numCores /() ;

coforall tid in numTasks do
yield computeMyChunk (tid, numTasks);

(‘ Domain Maps D
[ [ [ Data Parallelism

I I I Base Language

Follower iterators simply use serial features:

iter BlockArr.follow (work) { )
for 1 in work do

yield accessElement (1) ;




v
For More Information on Leader-Follower Iterators

PGAS 2011: User-Defined Parallel Zippered Iterators in Chapel,
Chamberlain, Choi, Deitz, Navarro; October 2011

Chapel release:
e SCHPL_HOME/examples/primers/leaderfollower.chpl

e See the Advancediters module, described in the “Standard
Modules” section of the language specification for some
interesting leader-follower iterators:

e OpenMP-style dynamic schedules

e work-stealing iterators

—HAPEL
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