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Partitioned Global Address Space
(PGAS) Programming Models



Partitioned Global Address Space Languages

(Or perhaps: partitioned global namespace languages)

» abstract concept:

— support a shared namespace on distributed memory
» permit any parallel task to access any lexically visible variable
« doesn’t matter if it's local or remote

— establish a strong sense of ownership

 every variable has a well-defined location
 local variables are cheaper to access than remote ones

shared name-/address space
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(Or perhaps: partitioned global namespace languages)

» abstract concept:

— support a shared namespace on distributed memory
» permit any parallel task to access any lexically visible variable
« doesn’t matter if it's local or remote

— establish a strong sense of ownership

 every variable has a well-defined location
 local variables are cheaper to access than remote ones

partitioned ~- dress space

space 0 space 1 space 3 space 4

% SIAM PP10 - Chamberlain (4)
d



Co-Array Fortran (CAF)

CAF: The first of our “traditional” PGAS languages
— developed ~1994
— adopted into the 2008 Fortran standard

Motivating Philosophy: “What is the smallest change
required to convert Fortran 95 into a robust parallel language?”

— originally referred to as F-- to emphasize “smallest change”
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Quick Fortran Review/Intro

e Traditional variables in Fortran:

integer i I declares an integer, i

real x I declares a float, x

real a(20) I declares a 20-element array
real b (N, N) I'declares an N x N array

* Array accesses are written with parenthesis:

a(l) = x ! Fortran uses 1-based indexing by default
b(l,1) = 2*x
b(2,:) = 3*x I assign 3*x to the second row of b

I'(“is like “..” in Chapel)
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CAF is SPMD

* SPMD programming/execution model
— similar to MPI” in this regard
— program copies are referred to as ‘images’

e Use intrinsic functions to query the basics:

integer :: p, me
P = num_images () ! returns number of processes
me = this image () ! returns value in 1..num images ()

* Barrier sync:

sync all() ! wait for all processes/images

*= typical uses of it, anyway
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Main CAF Concept: Co-Dimensions

Co-Dimension: an array dimension that refers to the
space of CAF images (processes)

— defined using square brackets
 (distinguishes it syntactically from a traditional dimension)
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Main CAF Concept: Co-Dimensions

e Co-array variables in Fortran:

integer i[*] I declares an integer, i, per image
real x[*] I declares a float, x, per image
real a(20) [*] I declares a 20-element array per image

real b (N,N) [*] I declares an N x N array per image
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Main CAF Concept: Co-Dimensions

e Co-array variables in Fortran:
integer i[*] I declares an integer, i, per image

* Of course, traditional variables also result in a copy per
image (it’s SPMD after all), but private to that image

integer 7 I declares a private integer, j, per image
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Using Co-Arrays

integer 1[*]

real x|[*]

* Refer to other images’ values via co-array indexing:

if (me == 2) then

nextX = x[me+1] I read neighbor’s value of x

i[1] = 1 I copy my value of ‘i’ into image 1’s
endif

e Co-array indexing/square brackets = communication
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Stylized Collective Communications in CAF

Given declarations:

real x|[*] real vy real a (num 1mages())

Broadcast:

x[:] =y
Reduction:

y = MINVAL (x[:])
Gather:

a(:) = x[:]
Scatter:

x[:] = a(:)
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Distributed Arrays in CAF

 When things divide evenly, you’re pretty happy:

— e.g., 1000 x 1000 array on a 2 x 2 processor grid:
real a (500,500)[2, 2]
— or, adding in additional space for stencil ghost cells:

real a(0:501,

0:501) [2,2]

_ﬁﬁ
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Distributed Arrays in CAF

* When things divide evenly, you’re pretty happy:

— e.g., 1000 x 1000 array on a 2 x 2 processor grid:
real a (500,500)[2, 2]

— or, adding in additional space for stencil ghost cells:
real a(0:501, 0:501)[2,2]

e Stencil-style boundary value communication idioms:

! compute myrow, mycol, numrows, numcols

if (myrow .ne. 1) then

a(0,:) = a(500,:) [myrow—-1,mycol]
endif
if (myrow .ne. numrows) then
a(b501,:) = a(l,:) [myrowt+l, mycol]
endif

! etc.
+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

14



Distributed Arrays in CAF

* When they don’t, more work is required...

— e.g., 1000 x 1000 array on a 2 x 3 processor grid:

real a(500,334)[2,3] !allocate ceil(n/p) everywhere

...and then the images have to do bookkeeping to keep track of which
image(s) own 334 items and which own 333

— details start to resemble the 9-point MPI| code from HW
* e.g., global-to-local and local-to-global index transformations

* also, due to PGAS model, need to know more about neighbors
— MPIL: “I'll send you my high column which has index 333!”; “I’ll recv it!”
— CAF: “I'm going to access your high column” = “I must know its index”

* (of course, some of this applies when things divide evenly as well...)
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CAF Summary

* Program in SPMD style
e Communicate via variables with co-dimensions

— a copy per program image
— refer to other images’ copies via square bracket subscripts

— take advantage of good multidimensional array support

* multidimensional views of process grid
* multidimensional views of local data

 syntactic support for slicing (:)

e Other stuff too, but this gives you the main idea
* Adopted into Fortran 2008 standard

— see also http://www.co-array.org




CAF 2.0 (Rice University)

Motivation: Respond to a lack of richness in CAF
— difficult to have sets of images doing distinct things (teams)
— no support for pointer-based data structures
— poor support for collectives

For more information:
http://caf.rice.edu
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UPC: Unified Parallel C

UPC: Our second “traditional” PGAS language
— developed ~1999

— “unified” in the sense that it combined 3 distinct parallel Cs:
* AC, Split-C, Parallel C Preprocessor

— though a sibling to CAF, philosophically quite different

Motivating Philosophy:
— extend C concepts logically to support SPMD execution

* 1D arrays
* for loops
* pointers (and pointer/array equivalence)
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UPCis also SPMD

* SPMD programming/execution model
— program copies are referred to as ‘threads’

* Built-in constants provide the basics:
int p, me;
p = THREADS; // returns number of processes

me = MYTHREAD; // returns a value in 0..THREADS-1

* Barrier synch statement:

upc barrier; // wait for all processes/threads
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Distributed Arrays in UPC

* Arrays declared with the ‘shared’ keyword are
distributed within the shared space
— uses a cyclic distribution by default

#define N 10
shared float a[N], b[N], c[N];

T
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% CSEP 524: Parallel Computation Winter 2013: Chamberlain 20
4



Distributed Arrays in UPC

* Arrays declared with the ‘shared’ keyword are
distributed within the shared space

— uses a cyclic distribution by default
#define N 10
shared float a[N], b[N], c[N];
for (int i=0; i<N; i++) { // dumb loop: O(N)
if (i%THREADS == MYTHREAD) {
c[i] = al[i]l] + alpha * b[i];
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Distributed Arrays in UPC

* Arrays declared with the ‘shared’ keyword are
distributed within the shared space

— uses a cyclic distribution by default
#define N 10

shared float a[N], b[N], c[N];

// smarter loop: O(N/THREADS)
for (int i1i=MYTHREAD; 1i<N; 1+=THREADS) {
c[i] = al[i]l] + alpha * b[i];
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Distributed Arrays in UPC

* Arrays declared with the ‘shared’ keyword are
distributed within the shared space

— uses a cyclic distribution by default

Affinity field: Which thread

#define N 10 should execute this iteration?
shared float a[N], Db[N], c[N]; NUEQFZIEFAER{R:1H10)

// “global-view”equivalent to \{the previous

upc_forall (int 1=0; 1i<N; 1i++; 1) {
c[i] = al[i]l] + alpha * b[i];
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Distributed Arrays in UPC

* Arrays declared with the ‘shared’ keyword are
distributed within the shared space

— can specify a block-cyclic distribution as well
#define N 10
shared [2] float a[N], b[N], c[N];
upc_forall (int 1i=0; 1i<N; i++; &cl[i])
cl[i] = a[i] + alpha * b[i];Zi

Affinity field: Which thread
should execute this iteration?
(if ptr-to-shared, owner does)
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Distributed Arrays in UPC

* Arrays declared with the ‘shared’ keyword are
distributed within the shared space

— can specify a block-cyclic distribution as well
#define N 10
shared [3] float a[N], b[N], c[N];
upc_forall (int 1i=0; 1i<N; i++; &cl[i])
c[i] = al[i] + alpha * b[i];
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Distributed Arrays in UPC

* Arrays declared with the ‘shared’ keyword are
distributed within the shared space

— can specify a block-cyclic distribution as well
#define N 15
shared [2] float a[N], b[N], c[N];
upc_forall (int 1i=0; 1i<N; i++; &cl[i])
c[i] = al[i] + alpha * b[i];

Ia[4] a[5].
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Scalars in UPC

« Somewhat confusingly (to me anyway’), shared
scalars in UPC result in a single copy on thread O
int 1i;

shared int 7;

" = because it seems contrary to SPMD programming
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Pointers in UPC

* UPC Pointers may be private/shared and may point
to private/shared

int* PP; //private pointer to local data

2(0]al1] aldlals])alslal7) - alsjalo]
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Pointers in UPC

* UPC Pointers may be private/shared and may point
to private/shared
int* PP; //private pointer to local data
shared int* PS; //private pointer to shared data

a(0]al1] aldals])alslal7) - alsjalo]
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Pointers in UPC

* UPC Pointers may be private/shared and may point
to private/shared
int* PP; //private pointer to local data
shared int* PS; //private pointer to shared data
shared int* shared ss; //shared pointer to shared data

al0lal1] alalals) alelal7) lal8ja[o]
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Arrays of Pointers in UPC

e Of course, one can also create arrays of pointers

// array of shared pointer to shared data
shared int* shared SS[THREADS];

* Asyou can imagine, one UPC’s strengths is its ability
to create fairly arbitrary distributed data structures

a3 alajals)arslar) - alsjale)
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Array/Pointer Equivalence in UPC

* AsinC, pointers can be walked through memory
shared [2] float a[N];
shared [2] float* aPtr = &(al[2]):;

2(0]al1] aldals])alslal7) - alsjalo]
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Array/Pointer Equivalence in UPC

* AsinC, pointers can be walked through memory
shared [2] float a[N];
shared [2] float* aPtr = &(al[2]):;
abPtr++;

2(0]al1] aldals])alslal7) - alsjalo]

——-“‘—
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Array/Pointer Equivalence in UPC

* AsinC, pointers can be walked through memory
shared [2] float a[N];
shared [2] float* aPtr = &(al[2]);
abPtr++;
abPtr++;

2(0]al1] alalals]) al6lal7) - alsjalo]

—_l-“ ~_
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How are UPC Pointers Implemented?

Local pointers to local: just an address, as always

Pointers to shared: 3 parts

— thread ID
— base address of block within the thread
— phase/offset within the block (0..blocksize-1)

 UPC supports a number of utility functions that
permit you to query this information from pointers

e Casting between pointer types is permitted

— but can be dangerous (as in C) and/or lossy

-|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 35



UPC: Local-view or Global-view?

Global arrays and pointers: global-view
upc_forall loops: global-view

Shared scalars: global-view-ish (but constrained)
Private scalars: local-view

SPMD model: local-view

= a bit of both
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Other Features in UPC

Collectives Library

e Memory Consistency Model
— among the first/foremost memory models in HPC
— ability to move between strict and relaxed models
— fence operations

* Dynamic Memory Management
* Locks

Parallel I/O

CSEP 524: Parallel Computation Winter 2013: Chamberlain
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Titanium: Java-based PGAS language

Titanium: The third traditional PGAS language
— And in my opinion, the most promising in terms of features

— Based on Java, though loosely at times

* Unfortunately didn’t catch on as well
— in part because Java not dominant in HPC
— in part because of “superset of subset” problem

 it’s like Java except for when it’s completely different

e Last | heard, “not quite dead yet”
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PGAS: What’s in a Name?

memory programming execution data
model model model structures communication
distributed cooperating executables manually APls
MPI memory (often SPMD in practice) fragmented
hared lobal-vi hared shared
share global-view shared memory
OpenMP : - memory N/A
memory parallelism multithreaded arrays
1 CAF co-arrays co-array refs
vy o Single Program, Multiple Data
< © ’ 1D block-cyc arrays/ . . .
O go UPC PGAS (SPMD) distributed pointers implicit
S . . class-based arrays/
Titanium distributed pointers method-based
. L global-view
Chabel PGAS global-view distributed distributed olici
ape parallelism memory Implicit
: arrays
multithreaded

Winter 2013: Chamberlain
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Chapel and PGAS

* Chapel differs from UPC/CAF since it’s not SPMD

="“global name-/address space” comes from lexical scoping

* rather than: “We’re all running the same program, so we must all
have a variable named x”

e as in traditional languages, each declaration yields one variable
 stored on locale where task executes, not everywhere/thread 0

=> user-level concept of locality is central to language

e parallelism and locality are two distinct things
* shouldn’t think in terms of “that other copy of the program”

% CSEP 524: Parallel Computation Winter 2013: Chamberlain
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var i: int;
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Chapel and PGAS
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var i: int;

on Locales|[1]

var j: int;

% CSEP 524: Parallel Computation
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Chapel and PGAS
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Chapel and PGAS

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {

on loc {

var k: int;

% CSEP 524: Parallel Computation Winter 2013: Chamberlain
\ 4

43



Chapel and PGAS: Public vs. Private

 How public a variable is depends only on scoping
— who can see it?
— who actually bothers to refer to it?

var i: int;
on Locales[1] {
var J: int;
coforall loc in Locales {

on loc {

var k = 1 + 7J;
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Chapel and PGAS: Public vs. Private

 How public a variable is depends only on scoping
— who can see it?
— who actually bothers to refer to it?

* Chapel represents variables that are referred to non-
locally using wide pointers
— locale ID + local address

— note: no need for phase/offset as in UPC
* because no block-cyclic pointer math required
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Single-Sided Communication



But First: Two-Sided Communication

two-sided communication: What we did in MPI
— one process sends a message
— another process receives
— both sides necessary for data to be transferred

* else, deadlock
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Implementing PGAS Languages: 1-sided comm.

single-sided (one-sided) communication: the backbone
of most PGAS language implementations

primitive operations:
— get(): reads from a remote process’s address space

— put(): writes to a remote process’s address space

— No matching operation required!
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Prototypical 1-sided comm. routines

void get (void* localAddr, // local destination
int remoteProcID, // remote process/image
void* remoteAddr, // remote source address

int numBytes) ; // amount of data

void put (void* remoteAddr, // remote destination
int remoteProcID, // remote process/image
void* localAddr, // local source address

int numBytes) ; // amount of data

(Many implementations will also support variations for strided
puts/gets, multidimensional puts/gets, gather/scatter puts/gets)
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Why does PGAS need/want 1-sided comm?

e Communication is expressed via naming variables
that happen to live on another process
— generally, one process will have no idea what other is doing

— even in SPMD programming models
* control flow may take different paths
* local/private variables are likely to have different values
— as a result, | can’t guess what data of mine you might need

* so | can’t call the matching sends/recvs to fulfill your requests
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Summary of 1-sided comm.

e Characteristics:
— notably, the text of the remote program need do nothing

— in effect, implements load/store for non-trivial data sizes
over distributed memory

— interestingly, has not become an end-user model like MPI

— key supporting network technology to work well: RDMA
* Remote Direct Memory Access

* Benefits:
— results in fewer copies/buffers within the SW stack (often 0)
— separates data transfer from synchronization of processes
— with RDMA, doesn’t require remote CPU to be involved

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 51



Summary of 1-sided comm.

e Drawbacks:

— if network has no RDMA support, performance can suffer

* e.g., may require devoting a thread to handling incoming requests
 (in particular, 1-sided comm. can be implemented using MPI)

— re-opens door to memory consistency issues
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1-Sided Communication Implementations

SHMEM/OpenSHMEM (Cray/community)
— the first (? major, anyway) single-sided comm. interface

GASNet (Berkeley)
— (what Chapel uses by default)

ARMCI (PNNL)
GASPI (Germany)
MPI-3

— as mentioned last week, part of newest feature set
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Chapel’s Extra Communication Requirement

In addition to puts/gets Chapel needs active messages
— “run this code over there with these arguments”
— can think of as a style of 1-sided communication
— active = control is transferred, not just data

Used to implement on-clauses
var i: int;
on Locales[1] {

// send an active message to execute this code
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Conceptual active message interface

void am(int remoteProclID, // remote process/image
int routinelD, // ID of function to exec
void* args, // arguments to send

int arglen); // length of arguments
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Active Message Support?

SHMEM/OpenSHMEM (Cray/community)
GASNet (Berkeley)

(PNNL)

(Germany)
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Smith-Waterman Algorithm for
Sequence Alignment



Smith-Waterman

Goal: Determine the similarities/differences between
two protein sequences/nucleotides.

— e.g., ACACACTA and AGCACACA™

Basis of Computation: Defined via a recursive formula:
H(i,0)=0
H(0,/) =0
H(iy) = AH(-1, j-1), H(i-1, ), H(i, j-1))

Caveat: This is a classic, rather than cutting-edge sequence alignment algorithm, but it
illustrates an important parallel paradiagm: wavefront computation
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Smith-Waterman

Naive Task-Parallel Approach:

proc computeH (1i,73) {
if (i==0 || J == 0) then
return O;

else

var hl, h2, h3: i . Note: Recomputes most
subexpressions redundantly

begin hl = computeH(i-1, j-1); This is a case for dynamic

begin h2 = computeH (i-1, J); programming!

begin h3 = computeH (1, j-1);

return f (hl,h2,h3);
}
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Smith-Waterman

Dynamic Programming Approach:
01 234 56 738

N O o B W N - O

3
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Smith-Waterman

Dynamic Programming Approach:

O1 23 4 56 78
0,0{0;/0/0|0(0|O0]|0O]|O
110
I -

we’re able to
310
4 O etc.
510 Hi1j1 H?'j
610 !
et H.

7 O Hl,j-l 1)
3L0
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Smith-Waterman

Dynamic Programming Approach:

01 23456 7 8
olololololololo]o]o
1lol2/1]2/1/2]1]0/2
2lol1l1/1]111]1]0/12
30/0/3/2/3[2/3/2]1
410/2]2|5/4|5/4/3|4
510/1/4/4|716]7]6!5
6/0/2/3/6/6|/9/8|7!|8 |
7101 45 8 81110]0 | — [AmEEEE
310/2]3]6/7 1010110112
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Smith-Waterman

Dynamic Programming Approach:

01 23456 7 8
olololololololo]o]o
1lol2l1/2/1/2]1]0/2
2lol1l1/1]111]1]0/12
310/0/3/2/3[2/3/2]1
410/2]2|5/4|5/4/3|4
510/1/4/4|716]7]6!5
6/0/2/3/6/6|9/8|7!|8 |
7001 4|5 8 81100 | — [AREEEE
310/2]36/7 1010110112
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Smith-Waterman

Dynamic Programming Appr% Step 4: Interpret the path

against the original sequences

A CACACTA
0000|000 0]|O0
Al0l2/1/2|1,2|1,0]|2
G|Oj1(1]1({1|1(1|0/|1
Cl0/0[3]2]3]2/3[2]1 How could we do
Al0]212|5/4[5/4 |34
Cl0|1/4/4[76|7]6|5
Al0/23/6[(6[9[(8|7|8
c/l0/1/4/5/88]11]110|9
ALO012]3/6[710[10/10}]12
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Smith-Waterman

Data-Parallel Approach:

proc computeH (H : :
Traverse each diagonal in

for upperDiag in 1.
/_ parallel

forall diagPos in O..#upperDlag {

const (i,7J) = [diagPos+1l, upperDiag-diagPos];
H{i,j] = £(H[i-1,3-1], H[i-1,3], HI[i,3J-11):

} Repeat for lower
for lowerDiag in 1..n-1 do = diagonals

forall diagPos in lowerDiag..n-1 by -1 {
const (i,3) = [diagPos+l, lowerDiagtdiagPos];
H[llj] = f(H[i_llj_l]l H[i_llj]l H[i/j_l]);

Disadvantages:
Advantages: » Not so great in terms of cache use

* Reasonably clean (if | got my « A bit fine-grained
indexing correct) * max parallelism = N/P
* Not ideal for distributed memory
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Smith-Waterman

Naive Data-Driven Task-Parallel Approach:

proc computeH(H: [0..n, 0..n] int) {
const ProbSpace = H.domain.translate(1l,1);—

Create domain describing

shifted version off H’s domain

var NeighborsDone: [ProbSpace] atomic int = 0;

var Ready$: [ProbSpace] sync int; \ Arrays to count how many of our
NeighborsDone[l, ..].add(1l); 3 neighbors are done; and to
NeighborsDone[.., 1].add(1); signal when we can compute

e S R L VAN Sct up boundaries: north and west elements
1

Reidyi[i'l] - have a neighbor done; top-left is ready
cofora (i,3) 1in ProbSpace {
const goNow — ReadyS[i,3]; = ———— Create a task per matrix element
H[i,3] = f£(H[i-1,3-1], H[l—l,j], STEPEIERRRN 2 nd have it block until ready

const eastReady = NeighborsDone[i, j+1].fetchAdd
const seReady = NeighborsDone[i+1, j+1].fetchAdd

Compute our element

const southReady = NeighborsDone[i+1,j].fetchAdd ( \\\__ Increment our
if (eastReady == 2) then Ready$[i,j+1] = 1; neighbors’ counts

if

(seReady == 2) then Ready$[i+l,3j+1] = 1; \ Slgnalour nelghbors as
if (southReady == 2) then Ready$[i+l,73] = 1; ready if we’re the third

}
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THE SUPERCOMPUTER COMP,

Comparison of Synchronization Types in Chapel

sync/single:
» Best for producer/consumer style synchronization
* Imply a memory fence w.r.t. other loads/stores
e Use single to express write-once values

atomic:
e Best for uncoordinated accesses to shared state

—HAPEL

0
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Smith-Waterman

Naive Data-Driven Task-Parallel Approach:

proc computeH(H: [0..n, 0..n] int) {
const ProbSpace = H.domain.translate(1l,1);
var NeighborsDone: [ProbSpace] atomic int = 0O;

var Ready$: [ProbSpace] sync int;

NeighborsDone[l, ..].add(1l);
NeighborsDone[.., 1].add(1); Disadvantages:
NeighborsDone[1l, 1].add(1); e Still not great in cache use
ReadyS$[1l,1] = 1; » Uses n? tasks
coforall (i,j) in ProbSpace ({ * Most spend most of their
const goNow = Ready$[i,]]; time blocking
H[i,3] = £(H[i-1,3-1], H[i-1,3], H[1,3-11);

’

const eastReady = NeighborsDone[i, j+1].fetchAdd (1)
const seReady = NeighborsDone[i+1, j+1].fetchAdd (1)
const southReady = NeighborsDone[i+l,]].fetchAdd (1l

) ;

if (eastReady == 2) then Ready$[i,j+1] = 1;
if (seReady == 2) then ReadyS$S[i+1l,j+1] = 1;
if (southReady == 2) then Ready$[i+l,73] = 1;

}
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Smith-Waterman

Slightly Less Naive Data-Driven Task-Parallel Approach:

proc computeH(H: [0..n, 0..n] int) {

const ProbSpace = H.domain.translate(1l,1);

var NeighborsDone: [ProbSpace] atomic int = 0;

NeighborsDone[l, ..].add(1l); S
-J e (1) Rather than create the tasks a priori, fire

NeighborsDone[.., 1].add(1l);

them off once we know they’re legal

NeighborsDone[l, 1].add(1l);
sync { computeHHelp(1l,1); }

{ sync to ensure they’re all done before we go on

H[i,j] = £(H[i-1,3-1], H[i-1,3], H[i,3-11);
const eastReady = NeighborgDone[i,j+1].fetchAdd (1)
const seReady = NeighborsDPone[i+1l, j+1].fetchAdd (1)
const southReady = NeighlbjorsDone[i+1l, 7] .fetchAdd (1
)
)

proc computeHHelp (1i,7])

14

) ;

if (eastReady == 2) then begin computeHHelp (i, j+1);
if (seReady == 2) then begin computeHHelp (i+1,J+1);
if (southReady == 2) then begin computeHHelp (i+1l,7);

-
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Smith-Waterman

Slightly Less Naive Data-Driven Task-Parallel Approach:

proc computeH(H: [0..n, O0..n] int) {

const ProbSpace = H.domain.translate(1l,1);

var NeighborsDone: [ProbSpace] atomic int = 0O;

NeighborsDone[l, ..].add(1l);

NeighborsDone[.., 1].add(1l);

NeighborsDone[1l, 1].add(1); Disadvantages:

sync { computeHHelp(1,1); } » Still uses a lot of tasks

e Each task is very fine-grained

proc computeHHelp(i,7J) {
H[i,j] = £(H[i-1,3-1], H[i-1,3], H[i,3-11);
const eastReady = NeighborsDonel[i, Jj+1].fetchAdd (1)
const seReady = NeighborsDone[i+1l, j+1].fetchAdd (1)
const southReady = NeighborsDone[i+1l,7j].fetchAdd (1l
)
)

14

) ;

if (eastReady == 2) then begin computeHHelp (i, J+1);
if (seReady == 2) then begin computeHHelp (i+1l,J+1);
if (southReady == 2) then begin computeHHelp (i+l,7);

}
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Smith-Waterman

Coarsening the Parallelism:

01 2 3 4 5

6
0/0]00/0|0|0

O |~
o |00
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3
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Smith-Waterman

riven Task-Parallel Approach:

, O0..n] int) {

omain.translate(1l,1)

Blocked Data-

proc computeH(H: [O..

const ProbSpace = H. y (rowsPerChunk, colsPerChunk);

var NeighborsDone: [PkobSpace] atomic i

NeighborsDone[l, ..].add(1l); : :
NeighborsDonel.., 1].add(1); Can now use strided array for atomics
NeighborsDone[l, 1].add(2l
sync { computeHHelp ({1l..rowsPerChunk,1l..colsPerChunk}); }

Change helper to take a domain
proc computeHHelp (inds) {

describing the chunk to compute

for (i,j) in H.domain[inds]

H[i,3] = £(H[1-1,3-1], HI[1 j],L[i,j—l]);
const (i,3) = inds.low; Compute over chunk serially
[i,J+colsPerChunk] .fetchAdd (1) ;

const seReady = NeighborsDone[i+rowsPerChunk, j+tcolsPerChunk].fetchAdd (1) ;
const southReady = NeighborsDone[it+rowsPerChunk, j].fetchAdd (1) ;

const eastReady = NeighborsDon

if (eastReady == 2) then begin computeHHelp (i, jtcolsPerChunk) ;
if (seReady == 2) then begin computeHHelp (i+rowsPerChunk, Jj+tcolsPerChunk) ;
if (southReady == 2) then begin computeHHelp (it+rowsPerChunk, j);
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Smith-Waterman

Now, what about distributed memory?
01 23456 738
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Smith-Waterman

Now, what about distributed memory?
01 2 314 5617 8
0/,0/0|0{0O|0|0}0O

* Good cache behavior: Nice
fat blocks of data touchable
in memory order
Pipeline parallelism: Good
utilization once pipeline is
filled

0
Advantages:
T Advantages:
=

Other notes:
* Communication pattern?

N O o B W N - O

0
0
0
0
0
0
0

e Hybrid distributed + shared
memory approach?

(0]

I I
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Chapel Domain Maps

(switch to other slide deck)




From the Course Description...

styles of parallelism

— data-parallel
— task-parallel
— concurrency
— pipelined parallelism

— nested parallelism

abstract programming models
— shared memory

—  Single Program, Multiple Data (SPMD)

— message passing

— Partitioned Global Address Space (PGAS)

architectural implications

— shared vs. distributed memory

— multicore processors and accelerators
— networks

— caches and memory

programming issues and hazards

— synchronization
— memory consistency
— race conditions
— deadlock and livelock

performance tuning
— scalability

—  locality

— communication

— scalar concerns

programming languages and notations
—  OpenMP

—  MPI

— UPC

—  Chapel

— CUDA/OpenCL/OpenAcCC (?)

algorithms and patterns

reductions and scans

stencils

graph algorithms



Requests for next week?

Amdahl’s Law

modern compute nodes: CPU+GPU, NUMA nodes
software transactional memory

ZPL/HPF : Grand failures of the 90’s

advanced Chapel concepts: user-defined arrays/foralls
Dragonfly network

open discussion questions

more algorithms



