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Adding OpenMP to Our Categorization (part 1)

- C+Pthreads |Chapel OpenMP

degree of less voodoo more voodoo moderate-to-more

voodoo voodoo

level of more HW-oriented more problem- in the middle

abstraction oriented

verbosity more verbose less verbose in between

control of more control due to less control (today) same as C+Pthreads

memory C

(alighnment/

padding)

HW less abstracted from more abstracted... more abstracted...

independenc HW

e

portability quite good potentially more as portable as C,
portable Fortran, C++
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Adding OpenMP to Our Categorization (part 2)

- C+Pthreads |Chapel OpenMP

libraries lots of existing library  very little currently* can call sequential C
support * = extern support for C
opportunities  more opportunities less so fragility w.r.t. mistyped
for error due to C and details of pragma prefixes (use —
sync primitives Wall); ability to break
seq case (reduce/SPMD)
notation library language pragmas
maturity very mature much less so mature, but evolving
“classic” the set of classic pretty significant lower-level (locks), and
concepts concepts departure higher (critical sections,
(mutex, barriers, reductions,
condvar, ... data parallelism)
completeness confidence that it’s unclear reasonably complete
complete (no must parallelism)
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Categorizing Based on Features/Capabilities

_ C+Pthreads Chapel OpenMP

data parallelism no

may tasks yes? (no implicit support) yes yes
must tasks yes yes not well
barriers no no (not yet) yes
reductions no built-in + user-defined built-in
scans no built-in + user-defined no?
locks yes sync vars yes (library)
incremental SO-SO S0-so —to- yes yes
parallelism

scalability to no yes no

dist. mem/

locality
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Shared Memory Summary

shared memory: A system in which memory can be
accessed via simple load/store instructions

— example: your multicore laptop/desktop
— typically corresponds to executing a single OS image

shared memory programming models:

— parallelism/tasks typically implemented via system threads

* or user threads running on top of system threads

— any task can access any variable
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Shared Memory Programming Models

e.g., OpenMP, Pthreads
+ support dynamic, fine-grain parallelism

+ considered simpler, more like traditional programming
* “if you want to access something, simply name it”

— no support for expressing locality/affinity; limits scalability
— bugs can be subtle, difficult to track down (race conditions)
— tend to require complex memory consistency models

@ @ @ @




Large-Scale Shared Memory?

Q: We've focused on desktop-/latop-scale systems, but
could these same principles and programming models
be used with large-scale machines?

A: Yes and no (depends on your definition of large)

— shared- vs. distributed-memory was a major topic of debate
in parallel computing during the 1980’s-1990’s
e which is easier to build?
e which is easier to program?
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ccNUMA Architectures

ccNUMA: Cache Coherent Non-Uniform Memory Access
— or, simply NUMA for short
* (non-cache coherent is too confusing to be very useful)

— essentially, shared memory in which...
...all memory is capable of being accessed via loads/stores
...but not at uniform cost
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ccNUMA Architectures

ccNUMA: Cache Coherent Non-Uniform Memory Access
— or, simply NUMA for short
* (non-cache coherent is too confusing to be very useful)

— essentially, shared memory in which...

...all memory is capable of being accessed via loads/stores

...but not at uniform cost

load 0x3240
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ccNUMA Architectures

ccNUMA: Cache Coherent Non-Uniform Memory Access
— or, simply NUMA for short
* (non-cache coherent is too confusing to be very useful)

— essentially, shared memory in which...

...all memory is capable of being accessed via loads/stores

...but not at uniform cost

load
0x3240
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ccNUMA Architectures

ccNUMA: Cache Coherent Non-Uniform Memory Access
— or, simply NUMA for short
* (non-cache coherent is too confusing to be very useful)

— essentially, shared memory in which...
...all memory is capable of being accessed via loads/stores
...but not at uniform cost

store 0x3240
(& invalidate)

store 0x3240
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ccNUMA Architectures

ccNUMA: Cache Coherent Non-Uniform Memory Access
— or, simply NUMA for short
* (non-cache coherent is too confusing to be very useful)
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ccNUMA Architectures

ccNUMA: Cache Coherent Non-Uniform Memory Access
— or, simply NUMA for short
* (non-cache coherent is too confusing to be very useful)

— essentially, shared memory in which...

...all memory is capable of being accessed via loads/stores

...but not at uniform cost

store
0x3240
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ccNUMA: Scalability

* For small numbers of processors, this is manageable

* As the number grows, however...
...the fraction of network traffic required to keep the caches
coherent can become quite large
...opportunities for traditional shared memory concerns like

false sharing and race conditions can grow

» for these reasons, users often program large-scale ccNUMA
machines using distributed memory techniques anyway...

network
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ccNUMA: How big? SGIUV2000

* SGI UV

— 256 Intel Xeon sockets x 8 cores
== 2,048 cores

* “only solution that uses
Intel Xeon beyond 4
sockets”

— 64 TB memory

— Source of images/
for more information:

http://www.sgi.com/products/servers/uv/index.html
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How Big? ccNUMA vs. distributed memory

SGI UV (ccNUMA) Cray Titan (dist. memory)
— 2,048 cores — 299,008 cores (+ 18,688 GPUs)

— 64 TB memorym — 710 TB memory

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 17



How Big? ccNUMA vs. distributed memory

SGI UV (ccNUMA) IBM Sequoia (dist. memory)

— 2,048 cores m — 1,572,864 cores

— 64 TB memory

— 1.6 PB memory

Source: https://computing.linl.gov/tutorials/bgq/
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Distributed Memory



Distributed Memory Summary

distributed memory: A system with multiple distinct
memory segments that are not trivially accessible from
one another

— examples: commodity clusters; workstations on a network;
large Cray, IBM, HP, etc. systems

— typically a distinct OS image per memory segment
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Distributed Memory Programming Models

distributed memory programming models:
— parallelism typically implemented via processes
 typically much more static than what we’ve been studying

— processes can only access their own local memory directly

* must use communication to coordinate with other processes

Q@ | Q@ @ | @

MEM MEM MEM MEM
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Distributed Memory Architectures

Distributed Memory Architectures:
— A number of compute nodes

 Historically, many custom processor designs have been used
* Today, virtually indistinguishable from your laptop/desktop
— Connected by a network

* Network topologies and technologies vary greatly
* What might they look like?

network

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

22



Bus-based Networks

* As with a memory bus, one node communicates at a time
— Example: ethernet

+ Easy(-ish) to implement
— A bottleneck for communication-intensive apps

network
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Ring-based Networks

* As with a memory bus, one node communicates at a time
— Example: KSR (1990’s)

+ Still Easy(-ish) to implement

+ Supports multiple communications at once, unlike bus
— O(numNodes) hops in worst-case route
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Crossbar-based Networks

* Links between every pair of nodes
+ Contention-free O(1) communication

— not a scalable design
- (e.g., Titan would require 349,222,656 links)
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Hypercube Networks

* Links between every pair of nodes with a 1-bit difference in ID
— e.g., SGI Origin
+ Fixed number of steps to reach any node (log, numNodes)
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Hypercube Networks

* Links between every pair of nodes with a 1-bit difference in ID
— e.g., SGI Origin
+ Fixed number of steps to reach any node (log, numNodes)

— not scalable from network interface chip (NIC) perspective
— maximum size of machine determined by # of output channels

* contrast with bus-based network with 1 channel per NIC

— smaller machines waste unused channels and HW area on NIC
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Image source: http://www.ece.eng.wayne.edu/~czxu/ece7660 f05/network.pdf
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Butterfly Networks

e Shuffle at each stage of network based on bits of node ID
— e.g., Butterfly BBN

+ Fixed number of steps to reach any node (log, numNodes)
— requires N/2 * log N router nodes
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Image source: http://www.ece.eng.wayne.edu/~czxu/ece7660_f05/network.pdf
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Butterfly Networks
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Fat-Tree Networks

* Tree w/ multiple roots, multiple parents per node
— processors are at leaves; internal nodes are routers only
— Why a “fat” tree? To reduce contention higher in the tree.

— e.g., Connection Machine
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Fat-Tree (Top-view)
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Mesh-Based Networks

* Chips connected to nearest neighbors
+ Modest/Scalable chip design: #channels = #mesh neighbors
— Some communications require more hops than others
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Mesh-Based Networks

Chips connected to nearest neighbors
Modest/Scalable chip design: #channels = #mesh neighbors

Some communications require more hops than others
— variable time for a message to cross from source to destination

— increased chances of collisions with other messages

* (compared to crossbar, hypercube, butterfly)

Winter 2013: Chamberlain
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Mesh-Based Networks w/ Toroidal Wraparound

e Similar to mesh

+ Major advantage: doesn’t make traffic as dependent on
placement in the mesh

Winter 2013: Chamberlain
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IBM BG/Q Network: a 5D Toroidal Mesh

Sequoia 5D Torus

compare to hypercube:

5 R16 R17 # hops

— BG/Q: 8+6+8+8+1 =31 hops
— Hypercube: 10g,98,304 = 17 hops

KEY:

A cables
B cables
C cables
D cables

# channels:
— BG/Q: 5 x 2 =10 channels
e (and scales to larger sizes)

C cables apply 10 each

E dimension is
nternal - not shown

e — Hypercube: 17 channels

row - only two rows shown E
-

R90
< RAD
96 racks = 12x8
16x12x16x16x2 nodes RBO RB6 RB7

4x3x4x4 midplanes Image source: https://computing.linl.gov/tutorials/b
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Dragonfly Networks

* Developed jointly by Stanford and Cray
— Network topology for Cray XC30

* Cray’s current flagship architecture
— Developed under DARPA HPCS

e same program as Chapel

— Name intended to be evocative of next-generation butterfly

* The topic of this week’s reading
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Network Design: A Rich Field of Study

(but largely outside the scope of this course)

* Areas of concern:
— topology
— choice of route
— determinism / message ordering
— congestion avoidance

— fault tolerance
* to network failure (“a board and its links just went down!”)
* to data loss (“sorry, that message never arrived”)
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Latency:

Bandwidth:

% CSEP 524: Parallel Computation
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Network Metrics
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Network Metrics

Latency: How long it takes a message to reach its
destination

Bandwidth:
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Network Metrics

Latency: How long it takes a message to reach its
destination

As programmers, we have techniques available to tolerate latency
* j.e., don’tjustsit around waiting
* do some other computation in this task

e switch to another task

Bandwidth: How much data/how many messages the
network can handle simultaneously

By contrast, there’s not much that can be done to deal with
bandwidth limitations

“Don’t communicate as much data” is presumably something
we’re already trying to do for latency reasons

40



Networks in a Nutshell

Networks should only have a performance impact
— not correctness

For the past few generations of HPC machines,
whether or not you access the network is far more
important than...

— where you have to go in it

— the length of your message
* alpha + beta * messagelength

Instead, cost of accessing the network dominates

— working through software stack
— copies/buffering at various levels



Network-Specific Computations

e Sensitivity to network depends a lot on algorithm

— amount of communication, topology of communication,
size of messages, etc.
— In practice, most programmers don’t code to the network

* has similar performance/portability tensions as coding to a CPU
* this has been a significant change since the 80’s...

— typical paper title then: “multiplying matrices on an xyz network”
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HPC and Networks

* |n HPC...
— computations tend to be reasonably network-intensive

— bandwidth tends to be the most precious/expensive
commodity

* So why do we place so much value in the top500?

— recall: a peak FLOPs/CPU-bound benchmark

— alternatives have been proposed:
 HPC Challenge
* Graph 500

...but so far, none have caught on as much (yet)



A Slight Aside About Execution Models



SIMD:

MIMD:
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SIMD vs. MIMD
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SIMD vs. MIMD

SIMD: Single Instruction, Multiple Data
— one instruction/PC drives a bunch of similar operations
— a tightly-coupled style of execution
— e.g., vector processors or GPUs
— e.g., “add these 1000 numbers to those 1000 numbers”

MIMD:
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SIMD vs. MIMD

SIMD: Single Instruction, Multiple Data
— one instruction/PC drives a bunch of similar operations
— a tightly-coupled style of execution
— e.g., vector processors or GPUs
— e.g., “add these 1000 numbers to those 1000 numbers”

MIMD: Multiple Instruction, Multiple Data
— distinct instructions/PCs drive (potentially) distinct operations
— more loosely-coupled, general
— e.g., most distributed memory programming
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Flynn’s Taxonomy

- Multiple

Single SISD

Multiple SIMD MIMD
Essentially, sequential programming by a fancy name

MISD

Execute the same thing redundantly (for resilience?)
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Distributed Memory Programming



SPMD Programming/Execution Models

SPMD: Single Program, Multiple Data
— not an actual member of Flynn’s taxonomy
— the dominant model for distributed memory programming
— Concept:

* write one copy of a program
* execute multiple copies of it simultaneously

— various terms: images, processes, PEs (Processing Elements), ranks, ...
— one per compute node? one per core?
* in a pure SPMD model, this is the only source of parallelism
— i.e., run p copies of my program in parallel
— our parallel tasks are essentially the program images
* in practice, each program can also contain parallelism
— typically achieved by mixing two notations (e.g., MPI + OpenMP)
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How Do SPMD Program Images Interact?

 Message Passing (this week):
— “messages”: essentially buffers of data

— primitive message passing ops: send/receive
* also, typically, collective operations (reductions, barriers, bcasts, ...)

— primary example: MPI
 (historically, PVM, NX, and a host of others...)

e Other alternatives (topics for future weeks):
— Single-Sided Communication
— Partitioned Global Address Spaces
— Active Messages
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Message Passing: The Curse and the Blessing

* Using message passing...

— In contrast to shared memory programming, we can no
longer simply refer to other tasks’ variables
* Instead, tasks need to explicitly communicate

+ Happily, this means a bunch of problematic issues go away
 false sharing

* RRWW errors
* race conditions

* memory consistency models

— But of course message passing has its own problems

* Parallel programming still isn’t easy...
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Recall: Global-View Abstractions

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View Local-View
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CRANY

THE SUPERCOMPUTER COMPANY

Recall: Global-View Abstractions

In code: “Apply a 3-Point Stencil to a vector”
Local-View (SPMD)

proc main () {

Global-View e o = LG

var p = numProcs(),

Priirmili(ioéo. me = myProc (),
14 N _ ,
var A, B: [l..n] real; my n/p
myLo = 1,

. myHi = myNj;
forall i in 2..n-1 do

. , var A, B: [0..myN+1] real;
QQ&#L/ = (A[i-1] + A[i+1]1)/2;

.

——

if (me < p-1) {
send (me+1, A[myN]);
recv (me+1l, A[myN+1]);
} else
myHi myN-1;
if (me > 0) {
send (me-1, A[l]);
recv (me-1, A ;
} else
myLo = 2;
forall in myLo..myHi do
B[i] (A[i-1] + A[i+1])/2;

I [=E
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Problem: “Apply 3-pt stencil to vector”
SPMD (pseudo-Chapel + MPI)

var n: int = 1000;

var p, me: int;

MPI Comm size (MPI_COMM WORLD, &p);

MPI Comm rank (MPI_COMM WORLD, &me);

var locN: int = n/p;

var a, b: [0..locN+1l] real;

var innerLo: int = 1, innerHi: int = locN;
var status: MPI_Status;

var retval: int;

if (me < numProcs-1) {

retval = MPI_Send(&(a[locN]), 1, MPI_FLOAT, me+l, 0, MPI_COMM WORLD) ;

if (retval != MPI_SUCCESS) { handleError (retval); }
retval = MPI Recv(&(a[locN+1]), 1, MPI_FLOAT, me+l, 1, MPI_COMM WORLD, &status);
if (retval != MPI_SUCCESS) { handleErrorWithStatus (retval, status); }
} else
innerHi = locN-1;

if (me > 0) {
retval = MPI_Send(&(a[l]), 1, MPI_FLOAT, me-1, 1, MPI_COMM WORLD) ;

if (retval != MPI_SUCCESS) { handleError (retval); }
retval = MPI Recv(&(a[0]), 1, MPI_FLOAT, me-1, 0, MPI_COMM WORLD, &status);
if (retval != MPI_SUCCESS) { handleErrorWithStatus (retval, status); }
} else
innerLo = 2;
forall i in (innerlo..innerHi) {
RIESR = (a (1=1) + a(i+1l)) /2;
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Introduction to MPI



MPI

MPI: Message Passing Interface

— a standard HPC library for communicating between
cooperating processes
* the de facto standard for scalable HPC programming

— IMO, more than simply “a library” due to its impact on the
user’s programming/execution models

* i.e., most libraries don’t change the way you run your program,
think of main(), etc.

* this is as much an effect of the SPMD programming model as
anything related to MPI



Primary MPI Concepts

Communicators: groups of program images (processes)
Sends/Receives: primary building block for communication
Collectives: routines for working as a group
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(switch to RajeeV’s Slides here)




Message Passing Hazards

* Main issues you’re likely to run into:
— mismatch between sends/receives

* e.g., send doesn’t have a matching receive or vice-versa
* e.g., send and receive don’t name right tag, source/destination

— collectives in which participants are missing

* e.g., a process never calls into a barrier or reduction

— issues related to resource constraints/timing
* e.g., insufficient memory to buffer things
* (not likely to hit this in this class)

* These tend to manifest themselves like deadlocks
— or as “out-of-resource” msg, degraded performance,



Stencil Communication

Prior to computing a stencil, communication is
typically required to refresh the ghost cells

Notes:

* Lots of optimization
opportunities

« Have to eventually
start skipping
processors for coarser
levels



This Week’s Homework

* Finish atomic increment + mod if you haven’t
* Translate manual reduction to MPI

* Translate 9-point stencil to MPI
(in both cases, starting from scratch may be best)
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