CSEP 524: Parallel Computation
(week 5)

Brad Chamberlain
Tuesdays 6:30 —9:20
MGH 231

Our goal for tonight

Wrap up all major shared memory topics
Transition to data parallelism
Set up to switch to distributed memory next week

— distributed memory architectures
— SPMD programming/execution model

— Message Passing / MPI
— distributed memory algorithms

Search and Eureka

Parallel Algorithms: Search

Search: search some space for answer(s)
— Could be a data structure (graph, tree, database, ...)

— Could be a conceptual space (molecules, passwords, ...)
» potentially infinite or at least combinatorially huge

— What are we looking for?

e any valid answer?
* all valid answers?
* the “best” answer according to some metric?

* Ability to prune makes search interesting
— Has the potential to scale superlinearly or not at all

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

Terminating Searches Early: Eureka

Eureka: “l found the answer, everybody else quit!”
— an intuitive, but advanced, form of synchronization

Two main varieties:
— passive/reactive

* upon finding solution, task sets a shared flag (“I found it!”)
» other tasks periodically check flag to see if they should quit
* (essentially what you were asked to do in HW#2)

— aggressive/proactive
* upon finding solution, task terminates its siblings
+ less overhead for searching tasks to look over shoulder
+ less overhead for unwinding stacks of terminated tasks
— challenges w.r.t. tracking active tasks and terminating them

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

Note on Passive Eureka, HW, and MCM

% CSEP 524: Parallel Computation Winter 2013: Chamberlain
\ 4

Task Parallelism /
Tasks and Threads

Task Parallelism

Task Parallelism: What we’ve been doing so far

— expressed in terms of what each task will do

e.g., cobegin { foo(); bar(); } // one task does foo(), the other bar()
e.g., coforall tid in 0..#nTasks do foo(); // nTasks tasks each do foo()

— generally more explicit

+ provides more generality and control

— more opportunities for problems (deadlock, livelock, ...)
— two flavors of task parallelism:

- “may”: would work correctly even if multiple tasks were not used
- e.g., tree search (“parallel”)

- “must”: multiple tasks are required for correctness

- e.g., producer/consumer (“concurrent”)

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 8

Tasks/Threads in Pthreads

e As we’ve used Pthreads, task == thread
— created thread

e Alternatively, could have each thread run some sort
of “work manager” function rather than a “task”
— e.g., “wait until a task becomes available... then run it”

e could implement using bounded buffers of tasks
— more complicated to code up
+ amortizes overhead of creating/destroying threads

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

Tasks/Threads in Chapel

* Chapel has multiple tasking layers
— Each has its own implementation and policies
— Default layer (CHPL_THREADS = “fifo”):

program with 1 thread running main()

new thread created for each new task...
...unless a thread is sitting around bored in the pool... see below
...or there aren’t enough resources to create one
...or we hit the user specified limit (humThreadsPerLocale)
in which case, the task is put into a task pool for execution later
each thread runs its task to completion
— task can also help with its cobegin/coforall tasks (“nothing else to do”)

upon completion, runs an unclaimed task if one exists
otherwise, enters thread pool waiting for more tasks to show up

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 10

Tasks/Threads in Chapel

* Chapel has multiple tasking layers
— each has its own implementation and policies

— Most other layers (gthreads, massivethreads, nanox)
e primarily utilize user-level lightweight threading
» create # pthreads equal to # cores (or user-specified value)

* each pthread multiplexes between multiple tasks
— typically switches on blocking events like sync var reads/writes
— sometimes switches on long-latency events like communication

— Also a HW multithreading layer (mta)
* map each task to its own HW thread context (~128 per node)

e HW switches between tasks

For more info: doc/README.tasks

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

11

Tasks/Threads and Virtualization

* In any parallel programming environment, whenever
tasks > # cores, something must give
— OS can multiplex between system-level threads
— runtime can multiplex tasks/user-level threads over system

threads
— tasks can stall and wait for resources to become available

* Attention to these issues can be crucial to obtaining
top performance

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 12

How Many Tasks Should | Use?

* It depends... (on your algorithm and architecture)
— For many problems # tasks == # cores can be ideal

* maximize use of HW without oversubscribing
* a CPU-centric view of computation

— # tasks > # cores can be useful...
 if algorithm inherently wants to use many distinct tasks
 as a task-driven way of doing dynamic load balancing
* to hide memory latencies by switching between tasks (?)

— If thrashing memory, maybe # tasks < # cores is better?

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

13

Data Parallelism

Task vs. Data Parallelism

Data Parallelism:

— expressed in terms of a data set that drives the parallelism
» “data set” = typically an array, data structure, or set of indices

e.g., foralliinl..ndo ... // for all integers/indices 1 thru n do...

e.g., forallain Ado... // for all elements in array A do...

— generally more implicit
+ a simpler concept, easier for programmers to grasp
+ abstracts details of implementation to some lower level SW/HW
— not as general as task parallelism
* but an important common case to support and optimize for
e can typically be thought of as a special case of “may” parallelism

(of course, in practice, data parallelism is implemented using tasks;
and in practice most task parallel programs operate on some sort of data,

so the line between the two can be a little fuzzy)
—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

15

Example of Task- vs. Data-Parallelism

* Reductions
— collective (“members contribute”) == a task-parallel reduction

coforall tid in O..#numTasks {
const myContribution = doSomeWork (..);

const total = sumReduceAll (myContribution);

— global-view (“holistic”) == a data-parallel reduction

const total = + reduce 2; // sum A’s elements

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 16

Speaking of reductions... where
were we?

0.3

Use a Reduction
0.4 0.5

0.6 0.7 0.8

totTime
% CSEP 524: Parallel Computation

Winter 2013: Chamberlain

Depth: O(log,#tasks)
Contention: O(1)

What if we used a tree
with degree d?

18

Two Flavors of Reductions

e collective (“members contribute”)

create tasks..
const myContribution = doSomeWork(..);
const total = sumReduceAll (myContribution);

join tasks..

* global-view (“holistic”)

const total = + reduce 2; // sum A’s elements

—|—S CSEP 524: Parallel Computation Winter 2013: Chamberlain

19

Reductions on Arrays

accumulate ! I I I I I I

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 20
d

Reductions on Multidimensional Arrays

J D
co O N
O o W

* Full/Complete Reduction: collapse array to scalar

+ reduce =45 min reduce =1

e Partial Reduction: collapse a subset of array dims

— reduce along rows: Y6 min 1
15 4
24]
— reduce alongcols: (12 15 18 1 2 3

(higher-D arrays can be reduced to planes or vectors or ...)
—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

Reduction Operators in Chapel

Built-in
— +I *1 &&; ||; &; |; A, min, mMax

— minloc, maxloc
* Takes a zipped pair of values and indices
* Generates a tuple of the min/max value and its index

User-defined

— Defined via a class that implements a standard interface
— Compiler generates code that calls these methods

45 22

Defining Parallel Reductions

 What’s required?
* More generally (result type = input type, or state is required)
— An identity element

e What should we initialize our state to?

— An accumulator function
 Combines an input value and a state value, creating a state value

— A combiner function
* Combines two state values, creates a state value

— A result function
* Transforms a state value into an answer

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

23

Discuss Map-Reduce Paper Here?

CRANY

THE SUPERCOMPUTER COMPANY

Scans: A Related Operation to Reductions

e Syntax

scan-expr:
scan-op scan lterator-expr

e Semantics
e Computes parallel prefix over values using scan-op

e Like a reduction, but leaves intermediate values behind

e Scan-op may be any reduce-op

e Examples
var A, B, C: [1..5] int; A
A= 1; // A: 1 1 1 1 1
B = + scan A; // B: 1 2 3 4 5
B[3] = -B[3]; // B: 1 2 -3 4 5
C = min scan B; // C: 1 1 -3 -3 -3

—HAPEL

0
|

Scans, Step 1: Compute Reduction
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

/|

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 26
4

Scans, Step 2: Propagate Back

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

z
(identity for root)

X+y

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 27
\ 4

Scans, Step 2: Propagate Back

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

z
(identity for root)

X+y

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 28
\ 4

Scans, Step 2: Propagate Back

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

z
(identity for root)

X+y

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 29
\ 4

Scans, Step 2: Propagate Back

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

z
totTime Xty (identity for root)

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 30
\ 4

Scans, Step 3: Update Local Values

0.1+0.0 0.2+0.1 0.3+0.3 0.4+0.6 05+1.0 0.6+1.5 0.7+2.1 0.8+2.8
=0.1 =0.3 =0.6 =1.0 =1.5 =2.1 =2.8 =3.6

A K 4

totTime

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 31
\ 4

Scans, Step 4: Done
0.1 0.3 0.6 1.0 1.5 2.1 2.8 3.6

A

1.0 1.5

1.0

»

Depth: O(log,#tasks)
Contention: O(1)

totTime

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 32
d

Scan: When would | ever use this?

% CSEP 524: Parallel Computation Winter 2013: Chamberlain
\ 4

33

Scan: When would | ever use this?

Problem: Have p tasks write data to a file in parallel

pleasingly!

Trivial Case: Binary file (embarrassingly-parallel)
— Each task can trivially compute where its data should go:
1) seek to file offset: sizeof(type) * myTaskID

2) write my data

More Interesting Case: Text file
— Number of characters required per value may vary greatly
— So each task should:

1. compute # of characters required to print my value + *’
2. compute a sum-scan of the offsets

3. seek to file offset corresponding to my result value

4. write my data

Inclusive vs. Exclusive Scans

* Should the original item affect its result or not?
—eg.,+scan[1,1,1,1,1,1,1, 1]
— inclusive: [1, 2, 3,4, 5, 6, 7, 8]
— exclusive: [0, 1, 2, 3,4, 5, 6, 7]

* Different scenarios may want different semantics

* Note: given exclusive and input, inclusive can be
computed

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 35

Scans on Arrays: Step 0: Accumulate

accumulate ! I I I I I I

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 36
\ 4

Scans on Arrays: Step 3’: Update all Elements

update i i i i i i i

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 37
\ 4

Scans on Multidimensional Arrays

= =
= =
= =

e Partial Scan: scan a subset of dims in given direction

+scanalongrows, L->R: | 1 2 3 along cols, 3 3 3
1 2 3 B->T:| 2 2 2
1 2 3 1 1 1

e Full/Complete Scan: thread through dimensions

+ scan in Row-Major Order: | 1 2 3
4 5 6
7 8 9

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 38

Barrier Synchronization (“Barrier”)

Barrier: All participating tasks must reach barrier
before any may pass

...create tasks... {
foo();
barrier () ;
bar () ;

Rough analogy: Barrier:Task Control Flow :: Fence:Memory Ops

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 39

Data Parallelism in Chapel

Domains

Domain: A first-class index set
e A fundamental Chapel concept for data parallelism
e Domains may optionally be distributed

—HAPEL

0
E

CRANY

THE SUPERCOMPUTER COMPANY

Sample Domains

config const m = 4, n = §;

var D: domain(2) = {l1l..m, 1..n};

/IR N e
\‘Q’!\ @AEIL

CRANY

THE SUPERCOMPUTER COMPANY

Sample Domains

config const m = 4, n = §; h
var D: domain(2) = {1..m, 1l..n};
var Inner: subdomain (D) = {2..m-1, 2..n-1};
<~
Inner
D

\,de @f“E'“

CRANY

THE SUPERCOMPUTER COMPANY

Sample Domains (Using Inferred Types)

config const m = 4, n = 8§; h
var D = {l1l..m, 1..n};
var Inner = D[2..m-1, 2..n-1];
<~
Inner
D

\’.’4’!\ @AHIL

CRANY

THE SUPERCOMPUTER COMPANY

Domains Define Arrays

e Syntax

array-type:
[domain-expr] elt-type

e Semantics
Stores an elt-type for each index in domain-expr

e Example

var A, B: [D] real;]

e Earlier example, revisited

var A: [1..3, 1..5] real; // [1..3, 1..5] creates an
// anonymous domain

-~ S
[\‘\Q ’/‘) @AEIL

CRANY

THE SUPERCOMPUTER COMPANY

Domain Algebra

. ek_7_'
Domain values support... -
Methods for creating new domains .
var D2 = Inner.expand(1l,0);] P
\DZ
var D3 = Inner.translate(0,1);]
\
D3
ntersection via Slicing
var D4 = D2[D3];‘
e\D4

Range operators (e.g., #, by,align)
% o=

CRANY

THE SUPERCOMPUTER COMPANY

Domain lteration

e For loops
Execute loop body once per domain index, serially

for i in Inner do ...] 1(2(3]4a]|s]|e

e Forall loops
Executes loop body once per domain index, in parallel
Loop must be serializable (executable by one task)

forall i in Inner do ... elelolo|leole

* Loop variables take on const domain index values

@g (==

CRANY”

THE SUPERCOMPUTER COMPANY

Other Forall Loops

Forall loops also support...
e A shorthand notation:

[(i,9) in D] A[i,3] = i + 3/10.0; |

1.11.21314151.61.7 1.8

e Expression-based forms: 21222324252627 28

3.13.23.33.43.53.63.7 3.8

A = forall (i,j) in D do i + j/l0.0;] 4.14.2434.445464.7438

A= [(i,§) in D] i + 3/10.0; |

CRANY

THE SUPERCOMPUTER COMPANY

Array lteration

e Array expressions also support for and forall loops

for a in A[Inner] do ...]

forall a in A[Inner] do ...]

e Array loop indices refer to array elements (can be modified)

forall (a, (i,J)) in zip(A, D) do a = 1 + 3/10.0;
D

111.21314151.61.7 1.8

3.1 3.2 3.33.43.53.6 3.7 3.8

4.1 4.2 434445 4.64.7 4.8

zippered iteration, like for-loops

% G

—HAPEL

CCRANY

THE SUPERCOMPUTER COMP,

Comparison of Loops: For, Forall, and Coforall

For loops: executed using one task
e use when a loop must be executed serially
e or when one task is sufficient for performance

Forall loops: typically executed using 1 < #tasks << #iters
e use when a loop should be executed in parallel...
e ...but can legally be executed serially
e use when desired # tasks << # of iterations

Coforall loops: executed using a task per iteration

* use when the loop iterations must be executed in parallel
e use when you want # tasks == # of iterations
» use when each iteration has substantial work

—HAPEL

0
|

How Much Parallelism?

By default®, controlled by three config variables:

--dataParTasksPerLocale=#
e Specify # of tasks to execute forall loops
e Current Default: number of processor cores

--dataParlgnoreRunningTasks=[true|false]
e If false, reduce # of forall tasks by # of running tasks
e Current Default: true

--dataParMinGranularity=#

e If >0, reduce # of forall tasks if any task has fewer
iterations

e Current Default: 1

@ *Default values can be overridden for specific domains/arrays (==

Promoting Functions and Operators

CRANY

THE SUPERCOMPUTER COMPANY

Functions/operators expecting scalars can also take...
...arrays, causing each element to be passed in

2*A

sin(A)]

Tad
~N

forall a in A do sin(a)
forall a in A do 2*a

...domains, causing each index to be passed in

foo(Inner)]

Ny
~

forall i in Inner do foo(i)]

Multiple arguments promote using zippered iteration

pow (A, B)]

N
~N

forall (a,b) in zip(A,B) do pow(a,b)]

CRANY

THE SUPERCOMPUTER COMPANY

Sub-Arrays/Array Slicing

Indexing into arrays with domain values results in a
sub-array expression (an “array slice”)

AlInner] = B[Inner.translate(o,l)];]

—HAPEL

0
|

CRANY

THE SUPERCOMPUTER COMPANY

Array Reallocation

Reassigning a domain logically reallocates its arrays
array values are preserved for common indices

D= {1..2%m, 1..2*n};]

CRANY

THE SUPERCOMPUTER COMPANY

Chapel Domain Types

Chapel supports several domain types...
var OceanSpace = {0..#lat, 0..#long},
AirSpace = OceanSpace by (2,4),

TceSpace: sparse subdomain (OceanSpace) = genCaps|():;
| LI LI L LI LI HHH IIIIIII
1 O O O O O 11 1]
1 O O O O O - N
1 O O O O O
2 O O SEEESBEESSEEEEEEEEEE
dense strided sparse

“steve”
unstructured QA0 e
OQ Q O associative “Javid”
. S0 “jacob”
O O “ 3 I b e rtu
“brad”

var Vertices: domain (opaque) = .., People: domain (string) = ..;

/IR N e
[\.Q’!\ @AEIL

CRANY

THE SUPERCOMPUTER COMPANY

Chapel Array Types

All domain types can be used to declare arrays...

var Ocean: [OceanSpace] real,
Air: [AlrSpace] real,
IceCaps[IceSpace] real;

SRR EEpEae FFH
] O O O O O = N i
] O O O O O
] O O O O O W‘H‘H‘H‘I‘I‘I‘I‘H‘H‘I‘I‘l
“steve”
“lee”
“Sung”
“david”
“jacob”
“albert”
“brad”
var Weight: [Vertices] real, Age: [People] int;

i "‘\\‘ = cmae
\’.4’!\ @AEIL

CRANY

THE SUPERCOMPUTER COMPANY

Ilteration

...to iterate over index sets...

forall 1j in AirSpace do
Ocean[i]] += IceCaps[ij];

n::I:I::ﬂ:ZI::I u| O O O O O] |
SRS ¢ H = o
1 | O O O O
- = i O o o o d R
“steve”
“l 12}
“Sung”
“david”
“jacob”
“albert”
“brad”
forall v in Vertices do forall p in People do
Weight [v] = numEdges|[V]; Age[p] += 1;

i "‘\\‘ = cmae
\’.4’!\ @AEIL

CRANY

THE SUPERCOMPUTER COMPANY

Slicing

...to slice arrays...

Ocean [AlrSpace] += IceCaps|[AirSpace];

(T T T T (T T T] T
e o O DR [
] O O O | O
] O O O O O
HHH H H O 0O o o O T
“steve”
“l 12}
“Sung”
“david”
“jacob”
“albert”
“brad”
..Vertices|[Interior].. ..People[Interns]..

\,Q’QA @‘A\EIL

Reallocation

...and to reallocate arrays
AirSpace = OceanSpace by (2,2);
IceSpace += genEquator();

NS [U I S I i | | HEEEN I T T T TT]
HOopopoOooOooOogoOoQ __IIIIII] I__
O O0oO0OoDOOoO0OoOoO — -
CO0ogOoOooOooOgo ITT T T T T T T T T TTTTTITTTITTTITT
L LLILILILILR O R
“steve”
11 7
|
11 2]
sung
“david”
(1 7
jacob
O “albert”
“brad”
“VaSS”
newnode = Vertices.create(); People += “vass”;

\,Q’QA @‘A\EIL

CRANY

THE SUPERCOMPUTER COMPANY

Associative Domains and Arrays by Example

var Presidents: domain (string) =
{“George", \\John//, “ThomaS”, George
“James”, “Andrew”, “Martin”}; John
Thomas
Presidents += “William”; LI
Andrew
Martin
William
var Age: [Presidents] int, Presidents
Birthday: [Presidents] string;
Birthday[“George”] = “Feb 227;
forall president in President do
if Birthday[president] == today then
Age [president] += 1; Birthday Age

\,de @f“E'“

CRANY

Jacobi lteration in Pictures

A: T
repeat until max
n change < ¢
()
> + 4)
\ J
i T upes

CRANY

Jacobi Iteration in Chapel

config const n = 6,
epsilon = 1.0e-5;

const BigD: domain(2) = {0..n+1, O..n+1},
D: subdomain (BigDh) = {1..n, 1..n},
LastRow: subdomain (BigD) = D.exterior(1l,0);
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[(1,3) in D] Temp[i,Jj] = (A[i-1,3] + A[1+1,7]]

+ A[i/j_l] + A[l/j+l]) / 4;
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];
} while (delta > epsilon);

writeln (A) ;

T upes

CRANY

Jacobi Iteration in Chapel

config const n = o,
epsilon = 1.0e-5;

Declare program parameters

const = can’t change values after initialization

config = can be set on executable command-line
prompt> jacobi --n=10000 --epsilon=0.0001

note that no types are given; inferred from initializer
n = default integer (32 bits)
epsilon = default real floating-point (64 bits)

@ T upes

CRANY

Jacobi Iteration in Chapel

const BigD: domain(2) = {0..n+1, O..n+1},
D: subdomain (BigDh) = {1..n, 1..n},
LastRow: subdomain (BigD) = D.exterior (1,0);

Declare domains (first class index sets)

domain(2) = 2D arithmetic domain, indices are integer 2-tuples

subdomain(P) = a domain of the same type as P whose indices
are guaranteed to be a subset of P's

() N+

n+1 HEEEEE
BigD D LastRow

exterior = one of several built-in domain generators

i HMPES
‘% {DARPA S

CRANY

Jacobi Iteration in Chapel

var A, Temp : [BigD] real; —

Declare arrays

var = can be modified throughout its lifetime
: [BigD] T = array of size BigD with elements of type T
(no initializer) = values initialized to default value (0.0 for reals)

BigD A Temp
i T upes

CRANY

Jacobi Iteration in Chapel

A[LastRow] = 1.0;

Set Explicit Boundary Condition

indexing by domain = slicing mechanism
array expressions = parallel evaluation

T upes

CRANY

Jacobi Iteration in Chapel

Compute 5-point stencil

[(i,j) in D] = parallel forall expression over D’s indices, binding them
to new variables i and j

Z[+ 4 w0

[(1,]) in D] Templi,3]] = (A[1-1,3] + A[1+1,7]

T upes

CRANY

Jacobi Iteration in Chapel

Compute maximum change

op reduce = collapse aggregate expression to scalar using op

Promotion: abs() and — are scalar operators, automatically promoted to
work with array operands

const delta = max reduce abs (A[D] - Temp[D]);

T upes

CRANY

Jacobi Iteration in Chapel

Copy data back & Repeat until done

A [1.4 uses slicing and whole array assignment
standard do...while loop construct

A[D] = Temp[D];
} while (delta > epsilon);

T upes

CRANY

Jacobi Iteration in Chapel

A[LastRow] = 1.0;

Write array to console

writeln (A7) ;

T upes

CRANY

Jacobi Iteration in Chapel

config const n = 6,
epsilon = 1.0e-5;

const BigD: domain(2) = {0..n+1, O..n+1},
D: subdomain (BigDh) = {1..n, 1..n},
LastRow: subdomain (BigD) = D.exterior(1l,0);
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[(1,3) in D] Temp[i,Jj] = (A[i-1,3] + A[1+1,7]]

+ A[i/j_l] + A[l/j+l]) / 4;
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];
} while (delta > epsilon);

writeln (A) ;

T upes

CRANY

THE SUPERCOMPUTER COMPANY

Forall Loops: Lingering Questions

forall a in A do
writeln (“Here is an element of A: 7, a);

| i

* How many tasks will be used?

* How are iterations mapped to the tasks?

forall (a, i) in zip(A, 1..n) do}

a=1i/10.0; —

/

Forall-loops may be zippered, like for-loops
* Corresponding iterations must match up

* But how does this work?

> g

—HAPEL

Array Indexing

CRANY

THE SUPERCOMPUTER COMPANY

e Arrays can be indexed using variables of their
domain’s index type (tuples) or lists of integers

var 1 = 1, j =
var ij = (1,]);
Alij] = 1.0;

Ali, 3] = 2.0;

2;\

e Array indexing can use either parentheses or brackets

A(ij) = 3.0;
A(i, j) = 4.0;

3

CRANY

THE SUPERCOMPUTER COMPANY

Array Arguments and Aliases

e Arrays are passed by reference by default

proc zero(X: []) { X = 0; }

zero (A[Inner]); // zeroes the inner values of A

e Formal array arguments can reindex actuals
proc f(X: [l1..b,1..b]) { .. } // X uses l-based indices

~

f(A[lo..#b, lo..#bl);

e Array alias declarations provide similar functionality

var InnerA => A[Inner];
var InnerAl: [1..n-2,1..m-2] => A[2..n-1,2..m-1];

o
|

—HAPEL

OpenMP

(switch to Alex Duran’s slide deck here)

Using OpenMP

e Supported by gcc
— but must use —-fopenmp flag
— OpenMP 3.1 supported in gcc 4.7 onwards

e (the version that’s available on our Fedora VM)
* HW makes use of min/max reductions which are new as of v3.1

-|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

76

OpenMP Summary

* Lots of support for things we’ve done manually

— parallel loops via block, cyclic, block-cyclic, dynamic
schedules

— collective reductions
— critical sections (lock-protected code segments)

e Support for concepts that we’ve been using
— creation of threads/tasks
— locks

e Support for things we’ve talked about tonight
— atomic operations
— barriers

OpenMP Characterizations

* Relaxed memory consistency model
 May-style task parallelism

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

78

Lock-Free Programming
(Atomic Computations)

Writing Deadlock-Free Lock Code

3) Use atomic operations
(“atomic” in the sense of “indivisible”, not “boom!”)

Concept:

— never block
e gets rid of deadlock issues
* livelock can still be a potential issue in some cases

— instead, ensure no other task can see intermediate state

* analogy to databases...

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 80

Two Forms of Atomic/Lock-Free Mechanisms

* General Atomic Statements (STM/HTM)
e Atomic Variables/Operations

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

81

Software Transactional Memory
(STM)

Atomic

An easier-to-use and harder-to-implement primitive

void deposit(int x) { void deposit(int x) {

synchronized (this) { atomic {
int tmp = balance; int tmp = balance;
tmp += x; tmp += x;
balance = tmp; balance = tmp;
}} }}
lock acquire/release (behave as if)

no interleaved computation

So... Where are my atomics?

* Has not yet made it from research to production
e Challenges to adoption:

— semantic questions/challenges

— performance relative to locks

— complete, production-grade implementation
 Two prevailing views:

— STM is like GC in the 80’s... en route

— STM is unlikely to ever be adoptable

390 |une 2008

84

In the meantime...
Atomic Variables and Operations

Atomic Variables/Operators

Concept:
— supply special variable types
— with fixed, built-in set of atomic operators
— results in a code style called lock-free programming

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

86

CRANY

THE SUPERCOMPUTER COMPANY

Atomic Variables in Chapel

e Syntax

sync—-type:
atomic type

e Semantics:
e Supports operations on variable atomically w.r.t. other tasks
e Based on C/C++ atomic operations
e Currently supported atomic types: ints, uints, reals

e Status note:

» Passing by blank/default intent doesn’t use ‘ref’ by default
e makes local copy of procedure instead
e workaround: use explicit ref intent

—HAPEL

0
|

Atomic Methods: Reading and Writing

3

CCRANY

THE SUPERCOMPUTER COMP,

read():t return current value
write(v:t) store v as current value
exchange (v:t) : t store v, returning previous value

e like read and write bundled together

waitFor (v:t) wait until the stored value is v

testAndSet () like exchange(true) for atomic bool

clear () like write(false) for atomic bool
@:;‘.’:

CRANY

THE SUPERCOMPUTER COMPANY

Atomic Methods: Simple Operations

e add(v:t) add v to the value atomically
e fetchAdd (v:t) same, and return sum

(also support for sub, or, and, xor operations)

e Example: Trivial barrier (supports one use only)

var count: atomic int, \\\
done: atomic bool;

proc barrier (numTasks) {
const myCount = count.fetchAdd(1l);
if (myCount < numTasks) then
done.waitFor (true);
else
done.testAndSet () ;

—HAPEL

@
E

Fixing RRWW bugs with atomics

Atomic Statement

var totTime: real;

coforall tid in O..#numTasks {

atomic {

totTime += myTime;

Note: Not supported much of

anywhere (yet)...

{ -|—s CSEP 524: Parallel Computation Winter 2013:

Atomic Variables

var totTime: atomic real;
coforall tid in O..#numTasks {

totTime.add (myTime) ;

Chamberlain 90

CRANY

THE SUPERCOMPUTER COMPANY

Atomic Methods: Compare-and-Swap (CAS)

e compareExchange (old:t,new:t) :bool
store new iff previous value was old; returns true on success

Classic example: lock-free enqueue in Chapel’:

class Node { war data: int; <\\\
var next: Node; }
var head: atomic Node = nil;
coforall tid in O..#numTasks {
var newNode = new Node (data = tid);
do {
const oldHead = head.read():;
newNode->next = oldHead;
} while (!head.compareExchange (oldHead, newNode));

" = except that Chapel doesn’t yet support atomic class refs @

CCRANY

THE SUPERCOMPUTER COMP,

Comparison of Synchronization Types in Chapel

sync/single:
» Best for producer/consumer style synchronization
* Imply a memory fence w.r.t. other loads/stores
e Use single to express write-once values

atomic:
e Best for uncoordinated accesses to shared state

—HAPEL

0
|

Atomic Operations in Adopted Languages

C/C++: C11/C++11 has just added atomic ops
— Chapel’s design was based on this

Java: see Java.util.concurrent.atomic
C#: not sure...

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

93

Fixing RRWW bugs with atomics

Atomic Statement

var totTime: real;

coforall tid in O..#numTasks {

atomic {

totTime += myTime;

Note: Not yet supported much of

anywhere (yet)...

Atomic Variables

var totTime: atomic real;
coforall tid in O..#numTasks {

totTime.add (myTime) ;

-|-s CSEP 524: Parallel Computation Winter 2013: Chamberlain 94

This Week’s Homework

* Reading:
— LogP (1990’s paper on abstract dist. mem. machine models)
— Chapter 2, Lin & Snyder
— data parallelism Chapel section

* Written Questions
— figure out how to do full scans
— create a new lock-free operation
* Coding: (Data Parallelism, should be easy)
— OpenMP: 9-point stencil
— OpenMP or Chapel: Mandelbrot

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 95

