CSEP 524: Parallel Computation
(week 4)

Brad Chamberlain
Tuesdays 6:30 —9:20
MGH 231

Pthreads vs. Chapel

Categorizing Pthreads and Chapel
(Generated Dynamically in-class)

_ C+Pthreads Chapel

degree of voodoo
useful abstractions
verbosity

control of memory
HW independence
portability
libraries

opportunities for
error

notation
maturity
classic concepts

completeness

-|-s CSEP 524: Parallel Computation

less voodoo

more HW-oriented

more verbose

more control due to C

less abstracted from HW
quite good

lots of existing library support

more opportunities due to C
and details of sync primitives

library
very mature
the set of classic concepts

confidence that it’s complete

Winter 2013: Chamberlain

more voodoo

more problem-oriented
less verbose

less control (today)

more abstracted...
potentially more portable
almost none currently

less so

language
much less so
pretty significant departure

unclear

Alternatives to C+Pthreads
(Shared Memory Multithreaded Programming)

Java/C# Threads
Emerging C/C++ constructs for parallelism

* User-level threading libraries
+ lighter-weight implementation
— interfaces probably similarly complex

— some examples:
* Qthreads (Sandia): supports full-empty variables
* MassiveThreads (U Tokyo): pthreads interface w/ user-level impl.
* Nanos++ (BSC): data-driven parallelism

Intel TBB, Microsoft TPL, [Intel] Cilk, ...
* OpenMP (next week)

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

Unbalanced Block Distributions

Last week’s discussion about Block strategies

* A Block strategy | was critical/skeptical of last week:
— floor(n/p) to the first p-1 tasks; remainder to final task
— e.g.,, forn=24,p =5, task 5 gets 2x the work as 1-4

— More generally, how bad is it?
* the max difference in items it can get is p-1 more than the others
* as a fraction of overall problem size, that’s (p-1)/n more work
* for small p, as n goes to a very large number, this is insignificant

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

Impact of Unbalanced Distributions

 Consider a 32 GB, 16-core node

Fill half the memory with a 1D array of real(64)s:

— n=2147483647,p =16
=> floor(n/p) = 134,217,727 items
=> remainder = 134,217,742
=> (essentially the identical amount of work)

(analogy between my reaction and my 6-year-old’s)

But, this is not the only way to fill memory...

CSEP 524: Parallel Computation Winter 2013: Chamberlain

Impact of Unbalanced Distributions

 Consider a 32 GB, 16-core node

 What if we fill mem. using an array of arrays instead...
— var Data: [1..26] [1..82595525] real;

...and distributed only the outer array by block?
—nN=26,p=16
=> floor(n/p) = 1 items

=>remainder = 10 extra items
=> one task gets 11x the amount of work/data

* Now, arguably we should’ve distributed the work on
the inner arrays instead/as well

— but maybe we couldn’t parallelize them or were too lazy or...

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

Recall Multidimensional Distributions: 2D Block x Block
(distributed to 2x2 tasks)

% CSEP 524: Parallel Computation Winter 2013: Chamberlain
\ 4

Impact of Unbalanced Distributions

 Consider a 32 GB, 16-core node

* And a 3D array w/ a multidimensional distribution

— e.g.,var Data: [1..1291, 1..1291, 1..1291] real,;

—n=1291,p=4x4x1
=> floor(n/p) = 322 x 322 x 1291 = 133,856,044 items
=> remainder =3 x 3 X/I/extra items = 136;467,560-items

136,361,875
=> one task gets ”,Z/Aa more work/data
1.8%

The red text

fixes my
mistake. 1/31

e Distributing across a distributed memory machine
where p is 18,688 or 299,008, the remainders and
therefore imbalance could be even more significant...

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

10

Locks and RRWW Bugs...
Where Were We?

Recap: RRWW Bugs

* The following schedule is problematic:

executing “totTime += myTime;” in parallel...

Task 1 Task 2
reg = read totTime
reg = read totTime
time reg = reg + myTime
reg = reg + myTime
m==) totTime = write reg

=) totTime = write reg

3.7 myTime 2.3 myTime

3.7|reg 2.3|reg

2.3 |totTime

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

Fixing RRWW bugs with locks

Pthreads Chaoel

pthread mutex t totTimeMutex;
pthread mutex init(stotTimeMutex, NULL); var totTime3: sync real = 0.0;

create tasks coforall tid in O..#numTasks {

pthread mutex lock (&totTimeMutex) ; totTime$ += myTime;

totTime += myTime;
pthread mutex unlock (&totTimeMutex) ; }

join tasks

pthread mutex destroy (&totTimeMutex) ;

13

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

Pitfalls of Using Locks |

Deadlock: Can occur when grabbing the same locks in

different orders
cobegin {
{ // task 1
const val =

lock2S += 1;

locklS = val + 1;

{ // task 2
const val =

locklS += 1;

lock2S = val + 1;

}
}

—|—s CSEP 524: Parallel Computation

lockls$S;

lock2S;

Task 1
val = lock1S.readFE();

tmp = lock2S.readFE();

(...blocks...)

(Zzzzz....)

Task 2
val = lock2S.readFE()
tmp = lock1S.readFE()

(...blocks...)

(Zzzzz....)

Winter 2013: Chamberlain

14

Pitfalls of Using Locks |

Deadlock: Similarly trivial example in pthreads
{ // task 1
pthread mutex lock (&lockl);
pthread mutex lock (&lockZ2Z);
pthread mutex unlock (&lock?2);
pthread mutex unlock (&lockl);

{ // task 2
pthread mutex lock (&lockZ2Z);
pthread mutex lock (&lockl);
pthread mutex unlock (&lockl);
pthread mutex unlock (&lock2); }

}

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

15

Pitfalls of Using Locks Il

Livelock:
— Tasks are still executing...
— ...but not making useful progress

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

16

var lockl$, lock2s,
locklsS = 1;
cobegin {
{ // task 1
do {

Livelock Example

lock3$: sync int; // all start empty

// £fill lock 1

var val = locklgs,

val?2 = 0;

if (lock2S$S.isFull) { val2 = lock2S; lock3sS =

= val2 + 1;

locklS = val + 1;
} while (val2 == 0);

}

{ // task 2
do {

var val = lockl$, val2 = 0;

if (lock3S$S.isFull) { val2 = lock3S; lock2S =

lockls = wval +
} while (val2 ==

haa:¥
—|—s CSEP 524: Parallel Computation

= val2z2 + 1;
1;

) ;

Winter 2013: Chamberlain

}

}

17

Writing Deadlock-Free Lock Code

One technique:

— when requiring multiple locks, take them in a specific order
* e.g., “always take lock1 before lock2”

— then release them in the opposite order
— ensures that you’ll never enter deadlock

— yet this is not a foolproof solution...

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 18

Problems with Taking Locks in Sorted Order

1) Sometimes you can’t predict the locks you’ll need
— e.g., if the locks are determined by dynamic values

var AS: [1l..numlItems] sync real =0.0;// synchronized data array
const i = infile.read(int); // read an unknown index
const val = AS[i]; // grab its value & lock
const J = someBigComputation (val); // compute some other index
const val2 = AS$[j]; // grab its value & lock
AS[J] = val; // swap the values,

AS[1] = val2; // ...releasing the locks

/* If we can’t determine the relative ordering of i and 7j

a priori, we can’t rely on this code to be safe */

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 19

Problems with Taking Locks in Sorted Order

2) Sometimes you may not realize what locks you’re
taking
— e.g., if you’re calling into library code that takes locks
* agood library would presumably document such behavior

* but will users think deeply enough to take such issues into account?
e arguably the issue interferes with the black box benefit of libraries

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 20

Writing Deadlock-Free Lock Code

3) Use atomic operations

Concept:

— never block
— instead, ensure no other task can see intermediate state

* analogy to databases...

we’ll come back to this later...

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

21

Pitfalls of Using Locks IlI
(and of Shared Memory Parallelism more generally)

* Memory consistency model impacts?

— a problem with library-based locks in traditionally
sequential languages
e e.g., C+Pthreads, as documented in Boehm paper

— even in designed-to-be-parallel languages, something to be
wary of
* e.g., Java, C#, Chapel, etc.

(Note: C/C++ are evolving to address this by becoming
parallel-aware)

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 22

Memory Consistency Models
(“MCMs”)

Memory Consistency Models in a Nutshell

Memory Consistency Model:

% CSEP 524: Parallel Computation Winter 2013: Chamberlain
_4

24

Memory Consistency Models in a Nutshell

Memory Consistency Model: Rules that define how
distinct tasks may view concurrent updates to memory.

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 25

Strict Consistency

* All reads/writes to memory are viewed in a globally
consistent order by all tasks

— i.e., intuitively, exactly what you would like

— e.g., imagine all memory ops went over a single wire or
were guarded by a single lock

— by definition, different tasks couldn’t have simultaneous
contradictory notions of memory

— but, practically speaking, this is untenable
* kills parallelism across tasks by making memory a bottleneck
 also, destroys architectural benefits of multiple memory banks

* i.e., it could be done, but not without sacrificing performance to the
extent that you might as well have stayed in a sequential language

Motivating Example

(adopted from The Java MCM: Manson, Pugh, Adve)

{ -|—s CSEP 524: Parallel Computation

Initially, x == 0, y == 0

Task 1

regl =x
y=1

Task 2

reg2 =y
X=2

What could reg1 and reg2 hold at this point?

Winter 2013: Chamberlain

27

Motivating Example

(adopted from The Java MCM: Manson, Pugh, Adve)

:—|—s\ CSEP 524: Parallel Computation

Initially, x == 0, y == 0

Task 1
regl =x

y=1

Task 2

reg2 =y

X=2

regl=0,reg2=0

Winter 2013: Chamberlain

28

Motivating Example

(adopted from The Java MCM: Manson, Pugh, Adve)

:—|—s\ CSEP 524: Parallel Computation

Initially, x == 0, y == 0

Task 1

regl =x
y=1

Task 2

reg2 =y
X=2

regl=0,reg2 =1

Winter 2013: Chamberlain

29

Motivating Example

(adopted from The Java MCM: Manson, Pugh, Adve)

:—|—s\ CSEP 524: Parallel Computation

Initially, x == 0, y == 0

Task 1

regl = x
y=1

Task 2

reg2 =y
X=2

regl =2, reg2 =0

Winter 2013: Chamberlain

30

A Weaker Model: Sequential Consistency

 Two parts to the definition:
— All memory ops within a task complete in program order

— Across tasks, memory ops are interleaved in a consistent
total order

Intuitively: “An interleaving of the tasks’ memops if
they were instantaneous”

— all of the preceding slides obeyed sequential consistency

* Not as ideal as strict, but still comprehensible

Unfortunately, still untenable in general

— guaranteeing a consistent, total order on memory ops again
implies too much overhead

CSEP 524: Parallel Computation Winter 2013: Chamberlain 31

Difference Between Strict and Sequential

[Clarifying something | stumbled over in lecture after the fact]

In strict, the global total ordering matches that “which
actually happened” according to some global clock

In sequential, the global total ordering is consistent,
but may not reflect what happened w.r.t. some global
clock if all memory ops were instantaneous

— i.e., it takes into account skew in clocks, time required for
things to percolate through a system

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 32

Motivating Example

(adapted from The Java MCM: Manson, Pugh, Adve)

Sadly, yes — this can occur within most languages/architectures

:—I—s) CSEP 524: Parallel Computation

Initially, x == 0, y == 0

Task 1
regl = x
y=1

Task 2
reg2 =y
X=2

What aboutregl =2, reg2 =1 "?

Winter 2013: Chamberlain

33

Motivating Example
(adapted from The Java MCM: Manson, Pugh, Adve)

Initially, x==0, y ==

Task 1 Task 2
regl=x| reg2=y
y=1 X=2

What about regl =2, reg2 =17

The “blame the compiler” explanation:
* Traditionally, a compiler looks at a single task at a time

(Practically speaking, it can’t consider all possible potentially concurrent tasks)
 To acompiler looking at code in isolation, nothing prevents reordering as follows:

Code Snippet 1 Code Snippet 2
y=1 X=2
regl = x reg2 =y

(at which point, obvious execution interleavings can yield the regl = 2, reg2 = 1 result).

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 34

Motivating Example

(adapted from The Java MCM: Manson, Pugh, Adve)

Initially, x==0, y ==

Task 1
regl = x
y=1

Task 2
reg2 =y
X=2

What about regl =2, reg2 =17

The “blame the hardware” explanation:
* Processors typically don’t serialize memory ops (particularly on large-scale machines)
* |In practice, independent memory ops can have different latencies / be reordered in HW

* analogous to compiler situation: HW doesn’t know about all other tasks

Task 1
regl =x
y=1

—|—s CSEP 524: Parallel Computation

network

Winter 2013: Chamberlain

Task 2
reg2 =y
X=2

35

Motivating Example
(adapted from The Java MCM: Manson, Pugh, Adve)

Initially, x==0, y ==

Task 1 Task 2
regl=x| reg2=y
y=1 X=2

What about regl =2, reg2 =17

The “blame the hardware” explanation:

* Processors typically don’t serialize memory ops (particularly on large-scale machines)

* |In practice, independent memory ops can have different latencies / be reordered in HW
* analogous to compiler situation: HW doesn’t know about all other tasks

fire off load of x

Task 1
mp regl = X
y=1

Task 2
s reg2 =y
X=2

fire off load of y

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 36

Motivating Example
(adapted from The Java MCM: Manson, Pugh, Adve)

Initially, x==0, y ==

Task 1 Task 2
regl=x| reg2=y
y=1 X=2

What about regl =2, reg2 =17

The “blame the hardware” explanation:

* Processors typically don’t serialize memory ops (particularly on large-scale machines)

* |In practice, independent memory ops can have different latencies / be reordered in HW
* analogous to compiler situation: HW doesn’t know about all other tasks

Yy
load of x continues
Task 1
regl =x
y=1 load of y continues

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 37

Motivating Example
(adapted from The Java MCM: Manson, Pugh, Adve)

Initially, x==0, y ==

Task 1 Task 2
regl=x| reg2=y
y=1 X=2

What about regl =2, reg2 =17

The “blame the hardware” explanation:

* Processors typically don’t serialize memory ops (particularly on large-scale machines)

* |In practice, independent memory ops can have different latencies / be reordered in HW
* analogous to compiler situation: HW doesn’t know about all other tasks

Y X
load of x arrives
Task 1 Task 2
regl =x reg2 =y
y=1 load of y arrives X =2

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 38

Motivating Example
(adapted from The Java MCM: Manson, Pugh, Adve)

Initially, x==0, y ==

Task 1 Task 2
regl=x| reg2=y
y=1 X=2

What about regl =2, reg2 =17

The “blame the hardware” explanation:

* Processors typically don’t serialize memory ops (particularly on large-scale machines)

* |In practice, independent memory ops can have different latencies / be reordered in HW
* analogous to compiler situation: HW doesn’t know about all other tasks

Y X
load of x got 2
Task 1 Task 2
regl =x reg2 =y
y=1 load of y got 1 X =2

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 39

Motivating Example

(adapted from The Java MCM: Manson, Pugh, Adve)

Initially, x==0, y ==

Task 1 Task 2
regl=x| reg2=y
y=1 X=2

What about regl =2, reg2 =17

The “blame the hardware” explanation:

* Processors typically don’t serialize memory ops (particularly on large-scale machines)

* |In practice, independent memory ops can have different latencies / be reordered in HW
* analogous to compiler situation: HW doesn’t know about all other tasks

In shared memory, write buffers
can introduce similar reorderings
as the network did here

Task 1
regl =x
y=1

-|-s CSEP 524: Parallel Computation Winter 2013: Chamberlain 40

Clarifying the “Inconsistency” in MCMs

[Here is something | stumbled over in lecture and got help clarifying at the happy
office hour. Hopefully I've got them right now (he wrote at 12pm)]:

 Asstated in lecture, MCMs are about whether or not two tasks have a
consistent view of what happened

* Inclass, | was having trouble connecting the dots between the surprising
reorderings as explained and different tasks seeing different things. Try
this:

pretend you’re task 1 (or the programmer who wrote it)

you know that according to your program order, you are loading x and then
storing y; and that task 2 is loading y then storing x

upon getting the value of 2 for x, you reason that “Oh, task 2 must have run
before me since | saw the updated x value”

meanwhile, task 2 does the symmetric thing: “Oh, task 1 must have run before
me since | saw the updated y value”

the fact that we each conclude different orderings based on our observations
suggests that our view of what happened w.r.t. memory is inconsistent

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

41

Relaxed/Weak Consistency Models

* Without getting into detailed definitions...
— much less intuitive than strict/sequential consistency

— but much more likely to be implemented/adopted in
practice

e Several other models exist as well (beyond the scope
of this course)

-|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 42

Possible Attitudes About MCMs

“Memory what?”

— Goal for this class: Get you beyond this point; make you
aware of this important and complex topic

“It’s dumb that we are living with this—let’s fix it!”
— How much parallel performance are you willing to sacrifice?

— How much work to make compilers, architectures conform?

“This is complicated, | don’t want to think about it!”
— Completely natural, but accept that this is part of life...
— As a parallel programmer, you ignore it at your peril

“Ill just write code without data races, so I’'m good”

— True enough, if you can stick to that

CSEP 524: Parallel Computation Winter 2013: Chamberlain 43

MCMs and Data Races

data races:

— Uncoordinated accesses to shared memory by distinct tasks
like we’ve been talking about here

— several memops to same location where 1 or more is a write

Note: Many languages that define memory consistency
models do so only for programs without data races

— j.e., “If your program contains a data race, all bets are off”

— Personally, this has always been a little discouraging to me
(a) it'd be easy to have a data race and never realize it (so “blammo!”?)

(b) intuitively, if you hit a data race, there are more and less likely things
that will occur

— but, in the defense of languages, how much can they really constrain/
define all future HW and compiler optimizations?

Preventing Data Races

* The key to preventing data races is synchronization

— i.e., coordinate between tasks rather than having them race
to memory independently of one another

* The specific synchronization mechanisms available
and semantics they impose tend to be language-/
compiler-specific

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 45

A Common Mechanism: Memory Fences

Memory Fences:

— Intrinsic operations that have specific semantics w.r.t.
memory accesses
* also known as memory barriers, or simply “fences”, ...
— Sometimes specified in language, other times by compilers
* e.g., C, being sequential, hadn’t defined one, so gcc did
— A typical example of a fence:

» execution won’t proceed until all outstanding loads/stores complete
» compiler cannot reorder loads/stores across fence operations

— Specifics vary with implementation
— Granularity is an important issue to pay attention to

e w.r.t. what subset of the hardware?

e w.r.t. ops from the task or process or program or ...?
+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 46

Memory Consistency in Chapel

Two part story:
1) Traditional variables have a relaxed consistency model

var data: [l..size] 1int,
flag = false;

cobegin {

{ // task 1
forall i in 1..size do // write data
datali] = 1i;
flag = true; // signal data written
}
{ // task 2
while (!flag) do ; // spin on flag

writeln (“data is:”, data); // unsafe read!

}
}

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 47

Memory Consistency in Chapel

Two part story:
2) Operations on sync/single variables imply a fence:

var data: [l..size] int,
flag$: sync bool;

cobegin {

{ // task 1
forall i in 1..size do // write data
datali] = 1i;
flag$ = true; // signal data written
}
{ // task 2
const flagval = flags$; // block on flag$

writeln (“data is:”, data); // read will be safe
} // due to fence

}

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain 48

Memory Consistency Models in Adopted Languages

Java: the first major language to adopt one?
— circa 2005 (?)
— the touchstone of language-based MCMs

— arguably overkill for other languages due to security
requirements

C/C++: Playing catch-up — adopted in C11/C++11

— Defined reasonably similarly for both

CH: Seems to have one, I'm not familiar with the history

-|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain 49

Resources For Further Reading

Shared Memory Consistency Models: A Tutorial

— Sarita V. Adve (“Queen of MCMs”), Kourosh Gharachorloo
— http://www.hpl.hp.com/techreports/Compaqg-DEC/WRL-95-7.pdf

The Java Memory Model

— Jeremy Manson, William Pugh, Sarita Adve
— http://dl.dropbox.com/u/1011627/journal.pdf (paper)
— http://cseweb.ucsd.edu/classes/fa05/cse231/Fish.pdf (slides)

— See also: http://www.cs.umd.edu/~pugh/java/memoryModel/ (resources)

Foundations of the C++ Concurrency Memory Model
— Hans Boehm, Sarita Adve
— http://www.hpl.hp.com/techreports/2008/HPL-2008-56.htm|
— See also: http://www.hpl.hp.com/personal/Hans Boehm/c++mm/

The C# Memory Model in Theory and Practice

— http://msdn.microsoft.com/en-us/magazine/jj863136.aspx

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

50

Discuss Boehm Paper Here

Performance Impacts of Locks

Fixing RRWW bugs with locks

Pthreads Chaoel

pthread mutex t totTimeMutex;
pthread mutex init (&totTimeMutex, NULL) ; var totTime3: sync real = 0.0;

create tasks coforall tid in O..#numTasks {

pthread mutex lock (&totTimeMutex) ; totTime$ += myTime;

totTime += myTime;
pthread mutex unlock (&totTimeMutex) ; \

join tasks

pthread mutex destroy (&totTimeMutex) ;

What’s the performance

problem with these codes as we
increase the number of tasks?

53

:—|—s) CSEP 524: Parallel Computation Winter 2013: Chamberlain

The Problem: totTime becomes a bottleneck
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Depth: O(1)
Contention: O(#tasks)

Whether or not this is a problem
depends on the architecture and

. parameters
totTime FERITETY practice it’s not scalable

% CSEP 524: Parallel Computation Winter 2013: Chamberlain
\ 4

Fix: Use a Reduction
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

/|

totTime

* CSEP 524: Parallel Computation Winter 2013: Chamberlain 55
4

Fix: Use a Reduction
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 56
4

Fix: Use a Reduction
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 57
4

Fix: Use a Reduction
0.3 0.4 0.5 0.6 0.7 0.8

Depth: O(log,#tasks)
Contention: O(1)

What if we used a tree
with degree d?

totTime

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 58
\ 4

Fix: Use a Reduction
0.3 0.4 0.5 0.6 0.7 0.8

What to do with the result?
1) Leave it with one task

totTime

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 59
\ 4

Fix: Use a Reduction
3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

What to do with the result?
1) Leave it with one task
2) Broadcast it back to all

totTime

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 60
4

Reduction Operations

Typical operations: +, *, &, |, », min[loc], max[loc], ...

— typically operators that are commutative and associative

Two main flavors:
— collective (“members contribute”)

create tasks..
const myContribution = doSomeWork(..);
const total = sumReduceAll (myContribution);

join tasks..

— global-view (“holistic”)

const total = + reduce 2A; // sum A’s elements

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

61

CRANY

THE SUPERCOMPUTER COMPANY

Reductions in Chapel (Global-View only today)

e Syntax

reduce-expr:
reduce-op reduce iterator-expr

e Semantics
* Combines argument values using reduce-op
* Reduce-op may be built-in or user-defined

e Examples

total = + reduce A;
bigDiff = max reduce [1 in Inner] abs(A[i1]-B[1i]);
(minVal, minLoc) = minloc reduce zip (A, D);

—HAPEL

®
|

Fixing RRWW bugs with reductions

Collective Style Global-View Style
create tasks var times: [0..#numTasks] real;
myTotTime = sumReduce (myTime) ;

coforall tid in O..#numTasks {

join tasks

times[tid] = myTime;
Interestingly, collective-style }
reductions are supported by neither
Pthreads (to my knowledge) const totTime = + reduce times;

nor Chapel (planned as future work)

:—|—s) CSEP 524: Parallel Computation Winter 2013: Chamberlain 63

Defining Parallel Reductions

 What’s required?
* |n the simplest case (result type == state type == input type)
— An identity element

* What should we return if we end up reducing nothing?

— A combiner function
 Combines two input values to create a result value

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

64

Defining Parallel Reductions

 What’s required?
* |n the simplest case (result type == state type == input type)

e examplel: sum reduction
e example2: min reduction
— An identity element
0
* max(type)?
— A combiner function
* vl +v2

* max(vl, v2)

—|—s CSEP 524: Parallel Computation Winter 2013: Chamberlain

65

Fix: Use a Reduction
3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

totTime

% CSEP 524: Parallel Computation Winter 2013: Chamberlain 66
4

Defining Parallel Reductions

 What’s required?
* More generally (result type = input type, or state is required)
— An identity element

e What should we initialize our state to?

— An accumulator function
 Combines an input value and a state value, creating a state value

— A combiner function
* Combines two state values, creates a state value

— A result function
* Transforms a state value into an answer

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

67

Defining Parallel Reductions

 What’s required?
* More generally (result type = input type, or state is required)
— example: “min-max reduction” (find range of values)
* e.g.,, min-max reduce of [4, 2, 9, -3, 7, 8] would be -3..9
— An identity element
* (max, min)

— An accumulator function

* (min(newval, state.min), max(newval, state.max))

— A combiner function
* (min(statel.min, state2.min), max(statel.max, state2.max))

— A result function
e return state.min..state.max

+S CSEP 524: Parallel Computation Winter 2013: Chamberlain

68

e Questions?

: j—[-s) CSEP 524: Parallel Computation

That'’s it for today!

Winter 2013: Chamberlain

69

